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Abstract

The Brownian motion (UN
t )t≥0 on the unitary group converges, as a process, to the free unitary

Brownian motion (ut)t≥0 as N →∞. In this paper, we prove that it converges strongly as a process:
not only in distribution but also in operator norm. In particular, for a fixed time t > 0, we prove that
the unitary Brownian motion has a spectral edge: there are no outlier eigenvalues in the limit. We
also prove an extension theorem: any strongly convergent collection of random matrix ensembles
independent from a unitary Brownian motion also converge strongly jointly with the Brownian
motion. We give an application of this strong convergence to the Jacobi process.
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1 Introduction

This paper is concerned with convergence of the noncommutative distribution of the standard Brow-
nian motion on unitary groups. Let MN denote the space of N ×N complex matrices, and let Tr(A) =∑N

j=1Ajj denote the (usual) trace. It will be convenient throughout to use the normalized trace, and so
we use the symbol tr = 1

NTr (with a lower-case t) for this purpose. We denote the unitary group in MN

as UN . The Brownian motion on UN is the diffusion process (UNt )t≥0 started at the identity with in-
finitesimal generator 1

2∆UN
, where ∆UN

is the left-invariant Laplacian on UN . (This is uniquely defined
up to a choice of N -dependent scale; see Section 2.1 for precise definitions, notation, and discussion.)

For each fixed t ≥ 0, UNt is a random unitary matrix, whose spectrum spec(UNt ) consists of N
eigenvalues λ1(UNt ), . . . , λN (UNt ). The empirical spectral distribution, also known as the empirical law of
eigenvalues, of UNt (for a fixed t ≥ 0) is the random probability measure LawUN

t
on the unit circle U1

that puts equal mass on each eigenvalue (counted according to multiplicity):

LawUN
t

=
1

N

N∑
j=1

δλj(UN
t ).

In other words: LawUN
t

is the random measure determined by the characterization that its integral
against a test function f ∈ C(U1) is given by∫

U1

f dLawUN
t

=
1

N

N∑
j=1

f(λj(U
N
t )). (1.1)

It is customary to realize all of the processes {UNt : N ∈ N} on a single probability space in order to
talk about almost sure convergence of LawUN

t
as N → ∞. The standard realization is to declare that

UNt and UMs are independent for all s, t ≥ 0 and all N 6= M . (To be clear, though, none of the results
stated below depend on this particular realization, and indeed hold for any coupling.)

In [4], Biane showed that the random measure LawUN
t

converges weakly almost surely to a deter-
ministic limit probability measure νt,

lim
N→∞

∫
U1

f dLawUN
t

=

∫
U1

f dνt a.s. f ∈ C(U1). (1.2)

The measure νt can be described as the spectral measure of a free unitary Brownian motion (cf. Section
2.3). For t > 0, νt possesses a continuous density that is symmetric about 1 ∈ U1, and is supported on
an arc strictly contained in the circle for 0 < t < 4; for t ≥ 4, supp νt = U1.

The result of (1.2) is a bulk result: it does not constrain the behavior of eigenvalues near the edge.
The additive counterpart is the classical Wigner’s semicircle law. Let XN be a Gaussian unitary en-
semble (GUEN ), meaning that the joint density of entries of XN is proportional to exp

(
−N

2 Tr(X2)
)
.

Alternatively, XN may be described as a Gaussian Wigner matrix, meaning it is Hermitian, and other-
wise has i.i.d. centered Gaussian entries of variance 1

N . Wigner’s law states that the empirical spectral
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distribution converges weakly almost surely to a limit: the semicircle distribution 1
2π

√
(4− x2)+ dx,

supported on [−2, 2] (cf. [50]). This holds for all Wigner matrices, independent of the distribution of
the entries, cf. [2]. But this does not imply that the spectrum of XN converges almost surely to [−2, 2];
indeed, it is known that this spectral edge phenomenon occurs iff the fourth moments of the entries of
XN are finite (cf. [3]).

Our first major theorem is a spectral edge result for the empirical law of eigenvalues of the Brow-
nian motion UNt . Since the spectrum is contained in the circle U1, instead of discussing the ill-defined
“largest” eigenvalue, we characterize convergence in terms of Hausdorff distance dH : the Hausdorff
distance between two compact subsets A,B of a metric space is defined to be

dH(A,B) = inf{ε ≥ 0: A ⊆ Bε & B ⊆ Aε},

where Aε is the set of points within distance ε of A. It is easy to check that the spectral edge theorem
for Wigner ensembles is equivalent to the statement that dH(spec(XN ), [−2, 2]) → 0 a.s. as N → ∞;
for a related discussion, see Corollary 3.3 and Remark 3.4 below.

Theorem 1.1. Let N ∈ N, and let (UNt )t≥0 be a Brownian motion on UN . Fix t ≥ 0. Denote by νt the law of
the free unitary Brownian motion, cf. Theorem 2.5. Then

dH
(
spec(UNt ), supp νt

)
→ 0 a.s. as N →∞.

Remark 1.2. When t ≥ 4, supp νt = U1, and Theorem 1.1 is immediate; the content here is that, for
0 ≤ t < 4, for large N all the eigenvalues are very close to the arc defined in (2.7).

Figure 1: The spectrum of the unitary Brownian motion UNt with N = 400 and t = 1. These figures
were produced from 1000 trials. On the left is a plot of the eigenvalues, while on the right is a 1000-
bin histogram of their complex arguments. The argument range of the data is [−1.9392, 1.9291], as
compared to the predicted large-N limit range (to four digits) [−1.9132, 1.9132], cf. (2.7).

To prove Theorem 1.1, our method is to prove sufficiently tight estimates on the rate of convergence
of the moments of UNt . We record the main estimate here, since it is of independent interest.

Theorem 1.3. Let N,n ∈ N, and fix t ≥ 0. Then∣∣∣∣Etr
[
(UNt )n

]
−
∫
U1

wn νt(dw)

∣∣∣∣ ≤ t2n4

N2
. (1.3)
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Theorems 1.1 and 1.3 are proved in Section 3.
The second half of this paper is devoted to a multi-time, multi-matrix extension of this result.

Biane’s main theorem in [4] states that the process (UNt )t≥0 converges (in the sense of finite-dimensional
noncommutative distributions) to a free unitary Brownian motion (ut)t≥0. To be precise: for any k ∈ N
and times t1, . . . , tk ≥ 0, and any noncommutative polynomial P ∈ C〈X1, . . . , X2k〉 in 2k indetermi-
nates, the random trace moments of (UNtj )1≤j≤k converge almost surely to the corresponding trace
moments of (utj )1≤j≤k:

lim
N→∞

tr
(
P (UNt1 , (U

N
t1 )∗, . . . , UNtk , (U

N
tk

)∗)
)

= τ
(
P (ut1 , u

∗
t1 , . . . , utk , u

∗
tk

)
)
a.s.

(Here τ is the tracial state on the noncommutative probability space where (ut)t≥0 lives; cf. Section 2.3.)
This is the noncommutative extension of a.s. weak convergence of the empirical spectral distribution.
The corresponding strengthening to the level of the spectral edge is strong convergence: instead of mea-
suring moments with the linear functionals tr and τ , we insist on a.s. convergence of polynomials in
operator norm. See Section 2.2 for a full definition and history.

Theorem 1.1 can be rephrased to say that, for any fixed t ≥ 0, UNt converges strongly to ut (cf.
Corollary 3.3). Our second main theorem is the extension of this to any finite collection of times. In
fact, we prove a more general extension theorem, as follows.

Theorem 1.4. For each N , let (UNt )t≥0 be a Brownian motion on UN . Let AN1 , . . . , A
N
n be random ma-

trix ensembles in MN all independent from (UNt )t≥0, and suppose that (AN1 , . . . , A
N
n ) converges strongly to

(a1, . . . , an). Let (ut)t≥0 be a free unitary Brownian motion freely independent from {a1, . . . , an}. Then, for
any k ∈ N, and any t1, . . . , tk ≥ 0,

(AN1 , . . . , A
N
n , U

N
t1 , . . . , U

N
tk

) converges strongly to (a1, . . . , an, ut1 , . . . , utk).

Theorem 1.4 is proved in Section 4.
We conclude the paper with an application of these strong convergence results to the empirical

spectral distribution of the Jacobi process, in Theorem 5.7. We proceed now with Section 2, laying out
the basic concepts, preceding results, and notation we will use throughout.

2 Background

Here we set notation and briefly recall some main ideas and results we will need to prove our main
results. Section 2.1 introduces the Brownian motion (UNt )t≥0 on UN . Section 2.2 discusses noncommu-
tative distributions (which generalize empirical spectral distributions to collections of noncommuting
random matrix ensembles, and beyond) and associated notions of convergence, including strong con-
vergence. Finally, Section 2.3 reviews key ideas from free probability and free stochastic calculus,
leading up to the definition of free unitary Brownian motion and its spectral measure νt.

2.1 Brownian Motion on UN

Throughout, UN denotes the unitary group of rank N ; its Lie algebra Lie(UN ) = uN consists of the
skew-Hermitian matrices in MN , uN = {X ∈ MN : X∗ = −X}. We define a real inner product on uN
by scaling the Hilbert-Schmidt inner product

〈X,Y 〉N ≡ −NTr(XY ), X, Y ∈ uN .

As explained in [20], this is the unique scaling that gives a meaningful limit as N →∞.
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Any vector X ∈ uN gives rise to a unique left-invariant vector field on UN ; we denote this vector
field as ∂X (it is more commonly called X̃ in the geometry literature). That is: ∂X is a left-invariant
derivation on C∞(UN ) whose action is

(∂Xf)(U) =
d

dt

∣∣∣∣
t=0

f(UetX)

where etX denotes the usual matrix exponential (which is the exponential map for the matrix Lie group
UN ; in particular etX ∈ UN whenever X ∈ uN ). The Laplacian ∆UN

on UN (determined by the metric
〈·, ·〉N ) is the second-order differential operator

∆UN
≡
∑
X∈βN

∂2
X

where βN is any orthonormal basis for uN ; the operator does not depend on which orthonormal basis
is used. The Laplacian is a negative definite elliptic operator; it is essentially self-adjoint in L2(UN )
taken with respect to the Haar measure (cf. [41, 45]).

The unitary Brownian motion UN = (UNt )t≥0 is the Markov diffusion process on UN with gener-
ator 1

2∆UN
, with UN0 = IN . In particular, this means that the law of UNt at any fixed time t ≥ 0 is the

heat kernel measure on UN . This is essentially by definition: the heat kernel measure ρNt is defined
weakly by

EρNt (f) ≡
∫
UN

f dρNt =
(
e

t
2

∆UN f
)

(IN ), f ∈ C(UN ). (2.1)

We mention here the fact that the heat kernel measure is symmetric: it is invariant under U 7→ U−1

(this is true on any Lie group).
There are (at least) two more constructive ways to understand the Brownian motion UN directly.

The first is as a Lévy process: UN is uniquely defined by the following properties.

• CONTINUITY: The paths t 7→ UNt are a.s. continuous.

• INDEPENDENT MULTIPLICATIVE INCREMENTS: For 0 ≤ s ≤ t, the multiplicative increment
(UNs )−1UNt is independent from the filtration up to time s (i.e. from all random variables mea-
surable with respect to the entires of UNr for 0 ≤ r ≤ s).

• STATIONARY HEAT-KERNEL DISTRIBUTED INCREMENTS: For 0 ≤ s ≤ t, the multiplicative incre-
ment (UNs )−1UNt has the distribution ρNt−s.

In particular, since UNt is distributed according to ρNt , we typically write expectations of functions on
UN with respect to ρNt as

EρNt (f) = E[f(UNt )].

For the purpose of computations, the best representation of UN is as the solution to a stochastic
differential equation. Let XN be a GUEN -valued Brownian motion: that is, XN is Hermitian where
the random variables [XN ]jj ,Re[XN ]jk, Im[XN ]jk for 1 ≤ j < k ≤ N are all independent Brownian
motions (of variance t/N on the main diagonal and t/2N above it). Then UN is the solution of the Itô
stochastic differential equation

dUNt = iUNt dXN
t −

1

2
UNt dt, UN0 = IN . (2.2)

We will use this latter definition ofUNt , via the SDE in terms of GUEN -valued Brownian motion, almost
exclusively throughout this paper.

5



2.2 Noncommutative distributions and convergence

Let (A , τ) be a W ∗-probability space: a von Neumann algebra A equipped with a faithful, normal,
tracial state τ . Elements a ∈ A are referred to as (noncommutative) random variables. The non-
commutative distribution of any finite collection a1, . . . , ak ∈ A is the linear functional µ(a1,...,ak) on
noncommutative polynomials defined by

µ(a1,...,ak) : C〈X1, . . . , Xk〉 → C
P 7→ τ(P (a1, . . . , ak)).

(2.3)

Some authors explicitly include moments in aj , a∗j in the definition of the distribution; we will instead
refer to the ∗-distribution as the noncommutative distribution µ(a1,a∗1,...,ak,a

∗
k) explicitly when needed.

Note, when a ∈ A is normal, µa,a∗ is determined by a unique probability measure Lawa, the spectral
measure of a, on C in the usual way:∫

C
f(z, z̄) Lawa(dzdz̄) = µa,a∗(f), f ∈ C[X,X∗]

(i.e. when normal it suffices to restrict the noncommutative distribution to ordinary commuting poly-
nomials). In this case, the support supp Lawa is equal to the spectrum spec(a). If u ∈ A is unitary,
Lawu is supported in the unit circle U1. For example: a Haar unitary is a unitary operator in (A , τ)
whose spectral measure is the uniform probability measure on U1 (equivalently τ(un) = δn0 for n ∈ Z).
In general, however, for a collection of elements a1, . . . , ak (normal or not) that do not commute, the
noncommutative distribution is not determined by any measure on C.

As a prominent example, let AN be a normal random matrix ensemble in MN : i.e. AN is a random
variable defined on some probability space (Ω,F ,P), taking values in MN . The distribution of AN

as a random variable is a measure on MN ; but for each instance ω ∈ Ω, the matrix AN (ω) is a non-
commutative random variable in the W ∗-probability space MN , whose unique tracial state is tr. In
this interpretation, the law LawAN (ω) determined by its noncommutative distribution is precisely the
empirical spectral distribution

LawAN (ω) =
1

N

N∑
j=1

δλj(AN (ω)),

where λ1(AN (ω)), . . . , λn(AN (ω)) are the (random) eigenvalues of AN .
Let (AN1 , . . . , A

N
n ) be a collection of random matrix ensembles, viewed as (random) noncommu-

tative random variables in (MN , tr). We will assume that the entries of AN are in L∞−(Ω,F ,P),
meaning that they have finite moments of all orders. The noncommutative distribution µ(AN

1 ,...,A
N
n )

is thus a random linear functional C〈X1, . . . , Xn〉 → C; its value on a polynomial P is the (classi-
cal) random variable tr(P (AN1 , . . . , A

N
n )), cf. (2.3). Now, let (A , τ) be a W ∗-probability space, and let

a1, . . . , an ∈ A . Say that (AN1 , . . . , A
N
n ) converges in noncommutative distribution to a1, . . . , an al-

most surely if µ(AN
1 ,...,A

N
n ) −→ µ(a1,...,an) almost surely in the topology of pointwise convergence. That

is to say: convergence in noncommutative distribution means that all (random) mixed tr moments of
the ensembles ANj converge a.s. to the same mixed τ moments of the aj . Later, a stronger notion of
convergence emerged.

Definition 2.1. Let AN = (AN1 , . . . , A
N
n ) be random matrix ensembles in (MN , tr), and let a = (a1, . . . , an)

be random variables in a W ∗-probability space (A , τ). Say that AN converges strongly to a if AN converges
to a almost surely in noncommutative distribution, and additionally

‖P (AN1 , . . . , A
N
n )‖MN

→ ‖P (a1, . . . , an)‖A a.s. ∀ P ∈ C〈X1, . . . , Xn〉.

(Here ‖ · ‖MN
denotes the usual operator norm on MN , and ‖ · ‖A denotes the operator norm on A .)
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This notion first appeared in the seminal paper [24] of Haagerup and Thorbjørnsen, where they
showed that if XN

1 , . . . , X
N
n are independent GUEN random matrices, then they converge strongly to

free semicircular random variables (x1, . . . , xn). The notion was formalized into Definition 2.1 in the
dissertation of Male (cf. [35]).

Remark 2.2. It should be noted that the choice of terminology strong convergence is at odds with the stan-
dard notion of strong topology in functional analysis, which certainly does not involve the operator
norm! While this may be jarring to some readers, the terminology is now standard in free probability
circles.

Male’s paper [35] also proved the following generalization: an extension property of strong con-
vergence).

Theorem 2.3 (Male, 2012). Let AN = (AN1 , . . . , A
N
n ) be a collection of random matrix ensembles that con-

verges strongly to some a = (a1, . . . , an) in a W ∗-probability space (A , τ). Let XN = (XN
1 , . . . , X

N
k ) be

independent Gaussian unitary ensembles independent from AN , and let x = (x1, . . . , xk) be freely independent
semicircular random variables in A all free from a. Then (AN ,XN ) converges strongly to (a,x).

(For a brief definition and discussion of free independence, see Section 2.3 below.) Later, together with
the present first author in [13], Male proved a strong convergence result for Haar distributed random
unitary matrices (which can be realized as limt→∞ U

N
t ).

Theorem 2.4 (Collins, Male, 2013). Let AN = (AN1 , . . . , A
N
n ) be a collection of random matrix ensembles that

converges strongly to some a = (a1, . . . , an) in a W ∗-probability space (A , τ). Let UN be a Haar-distributed
random unitary matrix independent from AN , and let u be a Haar unitary operator in A freely independent
from a. Then (AN , UN , (UN )∗) converges strongly to (a, u, u∗).

(The convergence in distribution in Theorem 2.4 is originally due to Voiculescu [47]; a simpler proof of
this result was given in [10].) Note that, for any matrix A ∈MN and any operator a ∈ A ,

‖A‖MN
= lim

p→∞

(
tr
[
(AA∗)p/2

])1/p
, and ‖a‖A = lim

p→∞

(
τ
[
(aa∗)p/2

])1/p
.

These hold because the states tr and τ are faithful. These are the noncommutative Lp-norms on
Lp(MN , tr) and Lp(A , τ) respectively. The norm-convergence statement of strong convergence can
thus be rephrased as an almost sure interchange of limits: if AN converges a.s. to a in noncommuta-
tive distribution, then AN converges to a strongly if and only if

P
(

lim
N→∞

lim
p→∞

‖P (AN )‖Lp(MN ,tr) = lim
p→∞

‖P (a)‖Lp(A ,τ)

)
= 1, ∀ P ∈ C〈X1, . . . , Xn〉. (2.4)

If we fix p instead of sending p → ∞, the corresponding notion of “Lp-strong convergence” of the
unitary Brownian motion (UNt )t≥0 to the free unitary Brownian motion (ut)t≥0 was proved in the third
author’s paper [30]. This weaker notion of strong convergence does not have the same important
applications as strong convergence, however. As a demonstration of the power of true strong conver-
gence, we give an application to the eigenvalues of the Jacobi process in Section 5: the principal angles
between subspaces randomly rotated by UNt evolve a.s. with finite speed for all large N .

2.3 Free probability, free stochastics, and free unitary Brownian motion

We briefly recall basic definitions and constructions here, mostly for the sake of fixing notation. The
uninitiated reader is referred to the monographs [38, 49], and the introductions of the authors’ previous
papers [12, 30, 32] for more details.
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Let (A , τ) be a W ∗-probability space. Unital subalgebras A1, . . . ,Am ⊂ A are called free or freely
independent if the following property holds: given any sequence of indices k1, . . . , kn ∈ {1, . . . ,m}
that are consecutively-distinct (meaning kj−1 6= kj for 1 < j ≤ n) and random variables aj ∈ Akj , if
τ(aj) = 0 for 1 ≤ j ≤ n then τ(a1 · · · an) = 0. We say random variables a1, . . . , am are freely indepen-
dent if the unital ∗-subalgebras Aj ≡ 〈aj , a∗j 〉 ⊂ A they generate are freely independent. Freeness is
a moment factorization property: by centering random variables a → a − τ(a)1A , freeness allows the
(recursive) computation of any joint moment in free variables as a polynomial in the moments of the
separate random variables. In other words: the distribution µ(a1,...,ak) of a collection of free random
variables is determined by the distributions µa1 , . . . , µak separately.

A noncommutative stochastic process is simply a one-parameter family a = (at)t≥0 of random
variables in some W ∗-probability space (A , τ). It defines a filtration: an increasing (by inclusion)
collection At of subalgebras of A defined by At ≡ W ∗(as : 0 ≤ s ≤ t), the von Neumann algebras
generated by all the random variables as for s ≤ t. Given such a filtration (At)t≥0, we call a process
b = (bt)t≥0 adapted if bt ∈ At for all t ≥ 0.

A free additive Brownian motion is a selfadjoint noncommutative stochastic process x = (xt)t≥0

in a W ∗-probability space (A , τ) with the following properties:

• CONTINUITY: The map R+ → A : t 7→ xt is weak∗-continuous.

• FREE INCREMENTS: For 0 ≤ s ≤ t, the additive increment xt − xs is freely independent from As

(the filtration generated by x up to time s).

• STATIONARY INCREMENTS: For 0 ≤ s ≤ t, µxt−xs = µxt−s .

It follows from the free central limit theorem that the increments must have the semicircular distri-
bution: Lawxt = 1

2πt

√
(4t− x2)+ dx. Voiculescu (cf. [46, 47, 49]) showed that free additive Brownian

motions exist: they can be constructed in any W ∗-probability space rich enough to contain an infinite
sequence of freely independent semicircular random variables (where x can be constructed in the usual
way as an isonormal process).

In pioneering work of Biane and Speicher [6, 7] (and many subsequent works such as the third
author’s joint paper with Nourdin, Peccati, and Speicher [32]), a theory of stochastic analysis built on
x was developed. Free stochastic integrals with respect to x are defined precisely as in the classical
setting: as L2(A , τ)-limits of integrals of simple processes, where for constant a ∈ A ,

∫ t
0 1[t−,t+](s)a dxs

is defined to be a · (xt+ − xt−). Using the standard Picard iteration techniques, it is known that free
stochastic integral equations of the form

at = a0 +

∫ t

0
φ(s, as) ds+

∫ t

0
σ(s, as) dxs (2.5)

have unique adapted solutions for drift φ and diffusion σ coefficient functions that are globally Lips-
chitz. Note: due to the noncommutativity, the kinds of processes one should really use in the stochastic
integral are biprocesses: βt ∈ A ⊗ A . The stochastic integral against a single free Brownian motion
xt is then denoted βt#dxt, where this is defined so that, if βt = at ⊗ bt is a pure tensor state, then
βt#dxt = atdxtbt, allowing the process to act on both sides of the Brownian motion. (See [6, 32] for
details.) A one-sided process like the one in (2.5) is typically not self-adjoint, which limits φ, σ to be
polynomials, and ergo linear polynomials due to the Lipschitz constraint. That will suffice for our
present purposes.) Equations like (2.5) are often written in “stochastic differential” form as

dat = φ(t, at) dt+ σ(t, at) dxt.
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Given a free additive Brownian motion x, the associated free unitary Brownian motion u = (ut)t≥0 is
the solution to the free SDE

dut = iut dxt −
1

2
ut dt, u0 = 1. (2.6)

This precisely mirrors the (classical) Itô SDE (2.2) that determines the Brownian motion (UNt )t≥0 on
UN .

The free unitary Brownian motion (ut)t≥0 was introduced by Biane in [4] via the above definition.
In that paper, with more details in Biane’s subsequent [5], together with independent statements of
the same type in [40], Lawut was computed. Since ut is unitary, this distribution is determined by a
measure νt that is supported on the unit circle U1. This measure is described as follows.

Theorem 2.5 (Biane 1997). For t > 0, νt has a continuous density %t with respect to the normalized Haar
measure on U1. For 0 < t < 4, its support is the connected arc

supp νt =

{
eiθ : |θ| ≤ 1

2

√
t(4− t) + arccos

(
1− t

2

)}
, (2.7)

while supp νt = U1 for t ≥ 4. The density %t is real analytic on the interior of the arc. It is symmetric about 1,
and is determined by %t(eiθ) = Reκt(e

iθ) where z = κt(e
iθ) is the unique solution (with positive real part) to

z − 1

z + 1
e

t
2
z = eiθ.

Note that the arc (2.7) is the spectrum spec(ut) for 0 < t < 4; for t ≥ 4, spec(ut) = U1.
With this description, one can also give a characterization of the free unitary Brownian motion

similar to the invariant characterization of the Brownian motion (UNt )t≥0 on page 5. That is, (ut)t≥0 is
the unique unitary-valued process that satisfies:

• CONTINUITY: The map R+ → A : t 7→ ut is weak∗ continuous.

• FREELY INDEPENDENT MULTIPLICATIVE INCREMENTS: For 0 ≤ s ≤ t, the multiplicative incre-
ment u−1

s ut is independent from the filtration up to time s (i.e. from the von Neumann algebra
As generated by {ur : 0 ≤ r ≤ s}).

• STATIONARY INCREMENTS WITH DISTRIBUTION ν: For 0 ≤ s ≤ t, the multiplicative increment
u−1
s ut has distribution given by the law νt−s.

3 The Edge of the Spectrum

This section is devoted to the proof of our spectral edge theorem for a single time marginal UNt . We
begin by showing how Theorem 1.1 follows from Theorem 1.3, and recast the conclusion as a strong
convergence statement in Corollary 3.3. Section 3.2 is then devoted to the proof of the moment growth
bound of Theorem 1.3.

3.1 Strong convergence and the proof of Theorem 1.1

We begin by briefly recalling some basic Fourier analysis on the circle U1. For f ∈ L2(U1), its Fourier
expansion is

f(w) =
∑
n∈Z

f̂(n)wn, where f̂(n) =

∫
U1

f(w)w−n dw,

9



where dw is the normalized Lebesgue measure on U1. For p > 0, the Sobolev space Hp(U1) is defined
to be

Hp(U1) =

{
f ∈ L2(U1) : ‖f‖2Hp

≡
∑
n∈Z

(1 + n2)p|f̂(n)|2 <∞

}
. (3.1)

If ` > k ≥ 1 are integers, and ` ≥ p ≥ k + 1
2 , then C`(U1) ⊂ Hp(U) ⊂ Ck(U1); it follows that

H∞(U1) ≡
⋂
p≥0Hp(U1) = C∞(U1). These are standard Sobolev imbedding theorems (that hold for

smooth manifolds); for reference, see [22, Chapter 5.6] and [42, Chapter 3.2].

Theorem 1.3 yields the following estimate on moment growth tested against Sobolev functions
disjoint from the limit support.

Proposition 3.1. Fix 0 ≤ t < 4. Let f ∈ H5(U1) have support disjoint from supp νt. There is a constant
C(f) > 0 such that, for all N ∈ N, ∣∣Etr[f(UNt )]

∣∣ ≤ t2C(f)

N2
. (3.2)

Proof. Denote by νNt (n) ≡ Etr[(UNt )n] and νt(n) ≡
∫
U1
wn νt(dw) = limN→∞ ν

N
t (n). Expanding f as a

Fourier series, we have

Etr[f(UNt )] =
∑
n∈Z

f̂(n)Etr[(UNt )n] =
∑
n∈Z

f̂(n)νNt (n). (3.3)

By the assumption that supp f is disjoint from supp νt, we have

0 =

∫
U1

f dνt =
∑
n∈Z

f̂(n)

∫
U1

wn νt(dw) =
∑
n∈Z

f̂(n)νt(n). (3.4)

Combining (3.3) and (3.4) with Theorem 1.3 yields

∣∣Etr[f(UNt )]
∣∣ ≤∑

n∈Z
|f̂(n)||νNt (n)− νt(n)| ≤

∑
n∈Z
|f̂(n)| · t

2n4

N2
.

By assumption f ∈ H5(U1), and so

∑
n∈Z

n4|f̂(n)| =
∑

n∈Z\{0}

1

n
· n5|f̂(n)| ≤

 ∑
n∈Z\{0}

1

n2

1/2(∑
n∈Z

n10|f̂(n)|2
)1/2

≤ π√
3
‖f‖H5 <∞.

Taking C(f) = π√
3
‖f‖H5 concludes the proof.

We now use Proposition 3.1 to give an improved variance estimate related to [34, Propositions 6.1,
6.2].

Proposition 3.2. Fix 0 ≤ t < 4. Let f ∈ C6(U1) with support disjoint from supp νt. There is a constant
C ′(f) > 0 such that, for all N ∈ N,

Var[Tr(f(UNt ))] ≤ t3C ′(f)

N2
.

10



Proof. In the proof of [34, Proposition 3.1] (on p. 3179), and also in [9, Proposition 4.2 & Corollary 4.5],
the desired variance is shown to have the form

Var[Tr(f(UNt ))] =

∫ t

0
Etr[f ′(UNs V

N
t−s)f

′(UNs W
N
t−s)] ds (3.5)

where UN , V N ,WN are three independent Brownian motions on UN . For fixed s ∈ [0, t], we apply the
Cauchy-Schwarz inequality twice and use the equidistribution of UNs V N

t−s and UNs WN
t−s to yield∣∣Etr[f ′(UNs V

N
t−s)f

′(UNs W
N
t−s)]

∣∣ ≤ E
[∣∣tr[f ′(UNs V N

t−s)
2]
∣∣1/2 · ∣∣tr[f ′(UNs WN

t−s)
2]
∣∣1/2] ≤ Etr[f ′(UNs V

N
t−s)

2].

Since UN and V N are independent, (UNs , V
N
t−s) has the same distribution as (UNs , (U

N
s )−1UNt ) (as the in-

crements are independent and stationary). Thus Etr[f ′(UNs V
N
t−s)

2] = Etr[f ′(UNt )2], and so, integrating,
we find

Var[Tr(f(UNt ))] ≤ tEtr[f ′(UNt )2]. (3.6)

Since f ∈ C6(U1), the function (f ′)2 is C5 ⊂ H5, and the result now follows from Proposition 3.1, with
C ′(f) = C((f ′)2).

This brings us to the proof of the spectral edge theorem.

Proof of Theorem 1.1 assuming Theorem 1.3. Fix a closed arc α ⊂ U1 that is disjoint from supp νt. Let f be
a C∞ bump function with values in [0, 1] such that f |α = 1 and supp f ∩ supp νt = ∅. Then

P(spec(UNt ) ∩ α 6= ∅) ≤ P(Tr[f(UNt )] ≥ 1). (3.7)

We now apply Chebyshev’s inequality, in the following form: let Y = Tr[f(UNt )]. Then, assuming
1− E(Y ) > 0, we have

P(Y ≥ 1) = P(Y − E(Y ) ≥ 1− E(Y )) ≤ Var(Y )

(1− E(Y ))2
.

In our case, we have |E(Y )| = |ETr[f(UNt )]| = N |Etr[f(UNt )]| ≤ t2C(f)
N by Proposition 3.1. Thus, there

is N0 (depending only on f and t) so that (1 − ETr[f(UNt )])2 ≥ 1
2 for N ≥ N0. Combining this with

(3.7) yields
P(spec(UNt ) ∩ α 6= ∅) ≤ 2Var[Tr(f(UNt ))] for N ≥ N0.

Now invoking Proposition 3.2, we find that this is ≤ 2t3C′(f)
N2 whenever N ≥ N0. It thus follows from

the Borel-Cantelli lemma that the probability that spec(UNt )∩α 6= ∅ for infinitely manyN is 0; i.e. with
probability 1, for all sufficiently large N , UNt has no eigenvalues in α.

Thus, we have shown that, for any closed arc α disjoint from supp νt, with probability 1, spec(UNt )
is contained in U1 \ α for all large N . In particular, fixing any open arc β ⊂ U1 containing supp νt, this
applies to α = U1 \ β. I.e. spec(UNt ) is a.s. contained in any neighborhood of supp νt for all sufficiently
large N . This suffices to prove the theorem: because LawUN

t
converges weakly almost surely to the

measure νt which possesses a strictly positive continuous density on its support, any neighborhood of
the spectrum of UNt eventually covers supp νt.

Thus, we have proved Theorem 1.1 under the assumption that Theorem 1.3 is true. Before turning
to the proof of this latter result, let us recast Theorem 1.1 in the language of strong convergence, as we
will proceed to generalize this to the fully noncommutative setting in Section 4.
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Corollary 3.3. For N ∈ N, let (UNt )t≥0 be a Brownian motion on UN . Let (ut)t≥0 be a free unitary Brownian
motion. Then for any fixed t ≥ 0, (UNt , (U

N
t )∗) converges strongly to (ut, u

∗
t ).

Proof. Since UNt → ut in noncommutative distribution, strong convergence is the statement that

‖P (UNt , (U
N
t )∗)‖ → ‖P (ut, u

∗
t )‖

in operator norms. Fix a noncommutative polynomial P in two variables, and let p be the unique
Laurent polynomial in one variable so that P (U,U∗) = p(U) for every unitary operator U . Since UNt is
normal, ‖p(UNt )‖ = max{|λ| : λ ∈ p(spec(UNt ))}; similarly, ‖p(ut)‖ = max{|λ| : λ ∈ p(supp νt)} where
supp νt is the arc in (2.7).

Let ΛNp = |p|(spec(UNt )), and let Λp = |p|(supp νt). (Here |p| denotes the modulus of the polynomial
function, |p|(u) = |p(u)|.) Since spec(UNt ) converges to supp νt in Hausdorff distance and all the sets
are compact, it follows easily from the continuity of |p| (on the unit circle) that ΛNp converges to Λp in
Hausdorff distance as well. In particular, for any ε > 0, there is some N0 ∈ N so that, for all N ≥ N0,
(ΛNp )ε ⊆ Λp and (Λp)ε ⊆ ΛNp . It follows that max Λp − ε ≤ max ΛNp ≤ max Λp + ε. This shows that
‖p(UNt )‖ = max ΛNp → max Λp = ‖p(ut)‖, as desired.

Remark 3.4. In fact, the converse of Corollary 3.3 also holds: strong convergence of UNt → ut (for a fixed
t < 4) implies convergence of the spectrum in Hausdorff distance. Indeed, suppose we know strong
convergence. In particular, taking the polynomial P (U) = U − 1, we then have ‖UNt − IN‖ → ‖ut− 1‖.
Since the spectrum of ut is an arc symmetric about 1, spec(ut) = B‖ut−1‖(1) ∩ U1 (here BR(1) denotes
the ball {z ∈ C : |z−1| < R} ). Note that ‖UNt −IN‖ = maxk ‖λk(t)−1‖; this shows that all eigenvalues
λk(t) are in an arc very close to spec(ut) for large N . This shows that spec(UNt ) is eventually contained
in any neighborhood of supp νt; the other half of the convergence in Hausdorff distance follows from
the convergence in distribution (and strict positivity of the limit density νt on supp νt).

When t ≥ 4, supp νt = U1, and strong convergence becomes vacuously equivalent to the known
convergence in distribution.

3.2 The proof of Theorem 1.3

This section is devoted to the proof of the main moment growth bound, i.e. (1.3). Before proceeding
with our proof which is quite involved, it is worth noting a key feature. The bound (1.3) on the speed
of convergence νNt (n) → νt(n) depends polynomially on n; this is crucial to the proof of Theorem 1.1.
If one only requires the O( 1

N2 ) bound of this estimate without much regard for the dependence on n,
a much simpler (though still nontrivial) approach can be found in the third auhor’s paper [30, Section
3.3], which provides a bound of the form form K(t, n)/N2, where K(t, n) ∼ tn2

2 exp( tn
2

2 ). This growth
in n is much too large to get control over test functions that are only in a Sobolev space, or even in
C∞(U1); the largest class of functions for which this Fourier series is summable is an ultra-analytic
Gevrey class. That blunter estimate does not suffice for our present purposes; showing polynomial
dependence on n turns out to require very careful analysis so as not to ignore the many cancellations
in the complicated expansions for the moments.

Remark 3.5. We note that the blunter bound in [30] was proved not only for UN , but for a family of
diffusions on GLN including both UN and the Brownian motion on GLN . It remains open whether a
polynomial bound like (1.3) holds for this wider class of diffusions.

The proof of the weaker bound described above relied on an explicit decomposition of the Lapla-
cian on UN in the form D + 1

N2L, which was exploited in the third author’s papers [30, 31] and joint
work with Driver and Hall [20] (and Cébron’s independent work [8]), in the complementary work
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of the second author [14] and preceding paper of T. Lévy [33], and in some form also in the preced-
ing work of Rains [40], Sengupta [43], and others. In that approach, the idea was to decompose the
relevant space of functions (polynomials in traces of powers of the matrix) into a nested family of
finite-dimensional subspaces all invariant under the Laplacian, and then appropriately estimate the
distortion between the norm of exp(D) and exp(D + 1

N2L) on each such space. While an approach of
that nature might conceivably yield bounds similar to (1.3), our present approach is quite different.

To begin: we will actually prove the following Cauchy sequence growth estimate. We again use
the notation νNt (n) = E[tr(UNt )n].

Proposition 3.6. Let N,n ∈ N, and fix t ≥ 0. Then

∣∣νNt (n)− ν2N
t (n)

∣∣ ≤ 3t2n4

4N2
. (3.8)

This is the main technical result of the first part of the paper, and its proof will occupy most of this
section. Let us first show how Theorem 1.3 follows from Proposition 3.6.

Proof of Theorem 1.3 assuming Proposition 3.6. Since limN→∞ ν
N
t (n) = νt(n), we have the following con-

vergent telescoping series:

|νNt (n)− νt(n)| =

∣∣∣∣∣
∞∑
k=0

(
νN2k

t (n)− νN2k+1

t (n)
)∣∣∣∣∣ ≤

∞∑
k=0

∣∣∣νN2k

t (n)− νN2k+1

t (n)
∣∣∣ .

Now apply (3.8) with N replaced by N2k, we find∣∣∣νN2k

t (n)− νN2k+1

t (n)
∣∣∣ ≤ 3

4

t2n4

(N2k)2
=

3

4

1

4k
t2n4

N2
.

Summing the geometric series proves the theorem.

3.2.1 Outline of the Proof of Proposition 3.6

The proposition requires comparison of a moment νNt (n) of an N ×N unitary Brownian motion with
a moment ν2N

t (n) of a 2N × 2N unitary Brownian motion. To compare them, we need to choose
a coupling between the two processes in different spaces. As such, fix a Brownian motion U2N on
U2N , along with two Brownian motions UN,1, UN,2 on UN , so that the processes U2N , UN,1, UN,2 are all
independent. For t ≥ 0, let B2N

t ∈ U2N denote the block diagonal random matrix

B2N
t =

[
UN,1t 0

0 UN,2t

]
∈ U2N .

We will hold t fixed through; let us fix the notation

A2N
s = U2N

t−sB
2N
s .

This process will be used very often in what follows.
Setting s = 0, we have A2N

0 = U2N
t ; on the other hand, setting s = t, we have A2N

t = B2N
t . Hence

Etr[(A2N
0 )n] = Etr[(U2N

t )n] = ν2N
t (n), while

Etr[(A2N
t )n] = Etr[(B2N

t )n] =
1

2N
E
(

Tr[(UN,1t )n] + Tr[(UN,2t )n]
)

= Etr[(UN,1t )n] = νNt (n).

13



Therefore, setting
F (s) = Etr[(A2N

s )n] = Etr[(U2N
t−sB

2N
s )n] (3.9)

we see that the quantity νNt (n)− ν2N
t (n) to be estimated in Proposition 3.6 is equal to

νNt (n)− ν2N
t (n) = F (t)− F (0).

The main approach of the proof will be to show that F ∈ C1[0, t], so that the Fundamental Theorem of
Calculus allows us to express

νNt (n)− ν2N
t (n) =

∫ t

0
F ′(s) ds (3.10)

and then appropriately estimate |F ′(s)| to achieve the desired bound of (3.8).
Due to the nonlinearity (for n > 1) of the trace moment F (s) = Etr[(A2N

s )n] as a function ofA2N
s , it is

useful to multilinearize this quantity in what follows. To do so, we will work in the n-fold tensor prod-
uct of M2N , essentially replacing a power An with a tensor power A⊗n = A⊗A⊗ · · · ⊗A ∈ (M2N )⊗n;
since we could identify this space with M2Nn, we will still refer to such tensor product operators as
matrices. To recover the original quantity (in terms of the trace of An), we cannot simply take the trace
of A⊗n (which would produce [Tr(A)]n); instead, we must involve an action of the symmetric group
Sn. To any permutation σ ∈ Sn, we associate a matrix [σ] ∈ (M2N )⊗n by permuting the tensor indices:
for any vector v1 ⊗ · · · ⊗ vn ∈ (C2N )⊗n,

[σ](v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n). (3.11)

Remark 3.7. This representation of Sn on (C2N )⊗n is sometimes called the Schur–Weyl representation.
In general, for any vector space V , the Schur–Weyl representation of Sn on V ⊗n is faithful whenever
dimV ≥ n, and since we hold n fixed and send N →∞, we may always safely assume the representa-
tion is faithful; i.e. the map σ 7→ [σ] may be assumed to be one-to-one.

This representation is dual to the standard representation of GL(V ) on V ⊗n — G · v1 ⊗ · · · ⊗ vn =
(Gv1) ⊗ · · · ⊗ (Gvn) — in the sense that the two representations commute and are in fact mutual cen-
tralizers in End(V ⊗n). This is the so-called Schur–Weyl duality, which allows for a lot of useful com-
putations by interchanging the two representations back and forth. The Schur–Weyl duality plays a
central role in T. Lévy’s approach to the heat kernel on unitary groups, cf. [33]; we will not need much
of that detailed approach here, but we are motivated by it in our present constructions.

We may readily verify that, if σ ∈ Sn and has cycle decomposition σ = c1 · · · cr with ck = (ik1 · · · ik`k),
then for A1, . . . , An ∈M2N ,

Tr(M2N )⊗n([σ]A1 ⊗ · · · ⊗An) = TrM2N
(Ai1`1

· · ·Ai11) · · ·TrM2N
(Air`r

· · ·Air1) (3.12)

where we have (in this one instance only) emphasized over which space each trace is taken. Note, in
particular, that if σ = (i1 · · · in) is a cycle, then Tr([σ]A1 ⊗ · · · ⊗ An) = Tr(Ain · · ·Ai1) is a single trace.
Hence

F (s) = Etr[(A2N
s )n] =

1

N
ETr

(
[(1 · · ·n)](A2N

s )⊗n
)

(3.13)

where (1 · · ·n) denotes the standard full cycle in Sn.
Interchanging the trace and expectation, we can now work with the following simpler tensor-

valued function:
G(s) = E[(A2N

s )⊗n]. (3.14)
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Then we have F (s) = 1
NTr ([(1 · · ·n)]G(s)), and hence to prove F is C1, it suffices to prove that G is

C1. Computing this derivative is greatly aided by the independence of the processes U2N and B2N : by
definition (A2N

s )⊗n = (U2N
t−sB

2N
s )⊗n = (U2N

t−s)
⊗n(B2N

s )⊗n, and by independence we have

G(s) = E[(U2N
t−s)

⊗n]E[(B2N
s )⊗n]. (3.15)

To concretely express the derivative of G, we introduce a little more notation. First, due to the block
structure of the matrix B2N

s , the two projections

P1 =

[
IN 0
0 0

]
, P2 =

[
0 0
0 IN

]
(3.16)

will play a role in all of what follows. Because the diffusion term in the SDE (2.2) governing U2N
s

depends linearly on U2N
s , there is mixing that can be expressed as a combination of all transpositions

in the Schur–Weyl representation. Hence, we introduce the following notation: for any A,B ∈ M2N

and 1 ≤ i < j ≤ n, denote by [A⊗B]i,j the following matrix in (M2N )⊗n:

[A⊗B]i,j = I⊗i−1 ⊗A⊗ I⊗j−i−1 ⊗B ⊗ I⊗n−j (3.17)

where I = I2N is the identity matrix in M2N .
With this notation in hand, we can now show that G ∈ C1[0, t], and compute that its derivative is

given by

G′(s) =
1

2N
G(s)

∑
1≤i<j≤n

[(i j)] (I − 2[P1 ⊗ P1]i,j − 2[P2 ⊗ P2]i,j) (3.18)

where [(i j)] denotes the Schur-Weyl representation of the transposition in Sn, cf. (3.11). This is proved
in Lemma 3.8 in Section 3.2.2 below. The computation begins by writing down SDEs for (U2N

s )⊗n

and(B2N
s )⊗n (following from (2.2)), and then using the product rule in conjunction with (3.15).

Since F is a linear functional of G, this shows that F is also C1[0, t]. The next step in the proof is to
plug (3.18) into (3.13) to derive an expression for the derivative F ′(s). The derivative G′(s) is a sum of(
n
2

)
terms, but after contracting them in the trace, the derivative F ′(s) can be written as a sum of n− 1

similar terms:

F ′(s) =
n

2

n−1∑
p=1

Hp,n−p(s)

where

Hp,q(s) =
1

4N2
E[Tr((A2N

s )p)Tr((A2N
s )q)]− 1

2N2

2∑
`=1

E[Tr((A2N
s )pP`)Tr((A2N

s )qP`)]. (3.19)

This is proved in Lemma 3.9 below. Combining this with (3.10), we therefore have

νNt (n)− ν2N
t (n) =

n

2

n−1∑
p=1

∫ t

0
Hp,n−p(s) ds. (3.20)

It now behooves us to estimate the terms Hp,n−p(s), cf. (3.19). These terms have an explicit 1
N2 fac-

tor, which appears to be good news for the desired estimate of Proposition 3.6. Note, however, that
(3.19) involves expectations of products of pairs of unnormalized traces of powers of A2N

s . Since A2N
s

possesses a large-N limit noncommutative distribution in terms of normalized traces, the leading order
contribution of the first term inHp,n−p(s) isO(1). In fact, there are many cancellations between the two

15



terms; this is the key observation of the whole proof. The way we will encapsulate the cancellations is
by first re-expressing Hp,q(s) as a combination of covariances:

N2Hp,q(s) =
1

4
Cov[Tr((A2N

s )p),Tr((A2N
s )q)]− Cov[Tr((A2N

s )pP1),Tr((A2N
s )qP1)]. (3.21)

This is proved in Lemma 3.10, and is a fairly straightforward computation: the P1 and P2 terms can be
combined due to the rotational-invariance of the process A2N

s , and the remaining product terms cancel
between the two covariances.

While the two expectation terms in the expression for N2Hp,q(s) in (3.19) are each O(N2), once
the cancellations between them have been taken into account to produce the covariance expression of
(3.21), we find that N2Hp,q(s) = O(1). In fact, each of the covariance terms in (3.21) is O(1): the precise
estimates are ∣∣Cov[Tr((A2N

s )p),Tr((A2N
s )n−p)]

∣∣ ≤ p(n− p)(t+ 3s),∣∣Cov[Tr((A2N
s )pP1),Tr((A2N

s )n−pP1)]
∣∣ ≤ p(n− p)(t+ 3s)

(3.22)

for 0 ≤ s ≤ t. From here, the remainder of the proof is routine: (3.21) shows that |Hp,n−p(s)| ≤
5p(n−p)(t+3s)

4N2 ; summing 0 ≤ p ≤ n, and integrating s ∈ [0, t] gives a cubic in n times a linear factor in t
times 1

N2 , and then (3.20) completes the proof. These details are written out more explicitly at the end
of Section 3.2.2.

Thus, the proof is completed by proving the covariance estimates (3.22). This is the most technically
challenging part of the proof, and requires several involved steps, which we outline here.

1. Multilinearize the covariances: as we did in replacing the moment F (s) with the tensor-valued
functionG(s), we compute that both covariances in (3.21) can be expressed as certain contractions
of a common covariance tensor Cp,n−p(s), defined by

Cp,n−p(s) ≡ E((A2N
s )⊗n)− E((A2N

s )⊗p)⊗ E((A2N
s )⊗(n−p)). (3.23)

The two covariance terms in (3.21) can be expressed in terms of Cp,n−p(s) by tracing against
certain p-dependent permutation and projection matrices. This computation is the content of
Lemma 3.11.

2. Explicitly compute the covariance tensor Cp,n−p(s): using the tensorized SDE for the unitary
Brownian motion (following from (2.2), as used in the computation (3.18) of G′(s)) and taking
expectations, we compute two explicit matrices Φp,Ψp ∈ (M2N )⊗n for 0 ≤ p ≤ n such that

Cp,n−p(s) = e−
nt
2

[
e(t−s)ΦnesΨn − e(t−s)ΦpesΨp

]
.

The matrices Φp and Ψp are given by certain p-restricted sums of transposition matrices [(i j)] and
the tensorized projection matrices [P` ⊗ P`]i,j , and are explicitly defined below in (3.36). These
computations are done in Lemma 3.12 and Corollary 3.13.

3. Use Duhamel’s formula to produce more cancellations: for any complex matrices X and Y ,
Duhamel’s formula asserts that

eX − eY =

∫ 1

0
e(1−u)X(X − Y )euY du. (3.24)

Applying this in telescoping fashion to the above expression for Cp,n−p(s) and simplifying yields
the expression

Cp,n−p(s) =

∫ t−s

0
e(t−s−u)Φn(Φn − Φp)e

uΦpesΨn du+

∫ s

0
e(t−s)Φpe(s−u)Ψn(Ψn −Ψp)e

uΨp du.
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This is helpful because Φn−Φp and Ψn−Ψp yield yet more cancellations. The resulting expression
for Cp,n−p(s) is given in Lemma 3.14.

4. Reinterpret the terms as expectations of products of unitary and projection matrices: since the
matrices Φp and Ψp generate (via exponential) the expectations of tensor powers of U2N andB2N ,
it is possible to reinterpret the preceding expression for Cp,n−p(s) as a sum of expected traces of
matrices that are tensor products of independent copies of U2N and B2N mixed with certain
permutation matrices and projection matrices (given in the definition (3.36) of Φp and Ψp).

To be more precise, for 0 ≤ p ≤ n and i, j with 1 ≤ i ≤ p and p < j ≤ n, there are random
matrices Rpi,j(u; t, s), Qpi,j(u; t, s) ∈ (M2N )⊗n such that

Cp,n−p(s) =
1

2N

∑
1≤i≤p<j≤n

(∫ t−s

0
E[Rpi,j(u; t, s)] du+

∫ s

0
E[Qpi,j(u; t, s)] du

)
.

The matrices Rpi,j(u; t, s) and Qpi,j(u; t, s) are defined in (3.45) and (3.46); each is a pure tensor
product of matrices built out of independent copies of the processes U2N and B2N , together with
permutation and projection matrices. This is proved in Lemma 3.15.

5. Contract Cp,n−p(s) to yield expressions for the desired covariance terms, and use soft estimates
to prove (3.22): the desired covariance terms are related to Cp,n−p(s) via contraction against cer-
tain permutation and projection matrices, as explained in Step 1. Performing these contractions
with the integrand expressions in Step 4 yield a sum of terms all of which are given as an expected
(unnormalized) trace Tr of a product of unitary and projection matrices. In particular, as each
is a contraction, the modulus of the trace is bounded by 2N (by the Schatten–Hölder inequal-
ity), which cancels the 1

2N factor before the sum in the final expression for Cp,n−p(s). Integrating
and summing then yields the desired estimates (3.22) to complete the proof. The calculations are
performed in Lemmas 3.16 and 3.17.

3.2.2 Proof of Proposition 3.6

We now proceed to fill in the details of the proof outline given in the previous section. We succinctly
restate terminology and notation throughout to make the proof more readable. We begin with the
computation of the derivative of the tensor-valued function G.

Lemma 3.8. Fix t > 0 and N,n ∈ N, and let G : [0, t] → (M2N )⊗n denote the function G(s) = E[(A2N
s )⊗n].

Then G ∈ C1[0, t], and its derivative is given by (3.18):

G′(s) =
1

2N
G(s)

∑
1≤i<j≤n

[(i j)] (I − 2[P1 ⊗ P1]i,j − 2[P2 ⊗ P2]i,j) .

Proof. To begin, note that U2N and B2N are independent, and so following (3.15) we have

G(s) = E[(U2N
t−s)

⊗n]E[(B2N
s )⊗n] ≡ G1(s)G2(s), (3.25)

where both factorsG1, G2 are continuous (since they are expectations of polynomials in diffusions). Us-
ing the SDE (2.2) and applying Itô’s formula to the diffusion B2N shows that there is an L2-martingale
(M2N

s )s≥0 such that

d
(
(B2N

s )⊗n
)

= dM2N
s − n

2
(B2N

s )⊗n ds− 1

N

∑
1≤i<j≤n
1≤a,b≤N

2∑
`=1

(B2N
s )⊗n · (Ea+`N,b+`N ⊗ Eb+`N,a+`N )i,j ds

17



where Ec,d ∈ M2N is the standard matrix unit (all 0 entries except a 1 in entry (c, d)) with indices
written modulo 2N . Using the projection matrices P1 and P2 of (3.16) and notation (3.17), we can write
this SDE in the form

d
(
(B2N

s )⊗n
)

= dM2N
s − n

2
(B2N

s )⊗n ds− 1

N

∑
1≤i<j≤n

2∑
`=1

(B2N
s )⊗n[(i j)][P` ⊗ P`]i,j ds. (3.26)

It follows that G2 ∈ C1[0, t], and

G′2(s) = −n
2
G2(s)− 1

N

∑
1≤i<j≤n

2∑
`=1

E
(
(B2N

s )⊗n[(i j)][P` ⊗ P`]i,j
)
. (3.27)

At the same time, a similar calculation with Itô’s formula applied with (2.2) shows that there is an
L2-martingale (M̃2N

s )s≥0 such that

d((U2N
s )⊗n) = dM̃2N

s − n

2
(U2N

s )⊗n ds− 1

2N

∑
1≤i<j≤n

(U2N
s )⊗n[(i j)] ds (3.28)

which, changing s 7→ t− s, implies that G1 is C1[0, t] and

G′1(s) =
n

2
G1(s) +

1

2N

∑
1≤i<j≤n

E
(
(U2N

t−s)
⊗n[(i j)]

)
. (3.29)

Combining (3.27) and (3.29), the product rule G′(s) = G1(s)G′2(s) + G2(s)G′1(s) shows that G ∈
C1[0, t]. Using G = G1 · G2 again when recombining, we see that the n

2 terms cancel; moreover, the
same recombination due to independence yields

G′(s) =
1

2N

∑
1≤i<j≤n

E
(
(U2N

t−s)
⊗n[(i j)](B2N

s )⊗n
)
− 1

N

∑
1≤i<j≤n

2∑
`=1

E
(
(A2N

s )⊗n[(i j)][P` ⊗ P`]i,j
)
.

Finally, in the first term, notice that [(i j)](B2N
s )⊗n = (B2N

s )⊗n[(i j)] (since the Schur-Weyl represen-
tation of any permutation commutes with any matrix of the form B⊗n). Hence, we have

E
(
(U2N

t−s)
⊗n[(i j)](B2N

s )⊗n
)

= E
(
(U2N

t−s)
⊗n)E ([(i j)](B2N

s )⊗n
)

= E
(
(U2N

t−s)
⊗n)E ((B2N

s )⊗n[(i j)]
)

= G(s)[(i j)].

Similarly factoring out the G(s) from the second term yields the result.

This allows us to compute the derivative of F (s) = 1
NTr ([(1 · · ·n)]G(s)), in terms of the auxiliary

functions Hp,q(s) defined in (3.19).

Lemma 3.9. For 0 ≤ s ≤ t,

F ′(s) =
n

2

n−1∑
p=1

Hp,n−p(s) (3.30)

where

Hp,q(s) =
1

4N2
E[Tr((A2N

s )p)Tr((A2N
s )q)]− 1

2N2

2∑
`=1

E[Tr((A2N
s )pP`)Tr((A2N

s )qP`)].

18



Proof. Applying (3.18), we have

F ′(s) =
1

2N
Tr
(
[(1 · · ·n)]G′(s)

)
=

1

4N2

∑
1≤i<j≤n

{
Tr ([(1 · · ·n)]G(s)[(i j)])− 2

2∑
`=1

Tr ([(1 · · ·n)]G(s)[(i j)][P` ⊗ P`]i,j)

}
.

We now use the trace property in the first term to cyclically reorder the matrices; thus we must compute
[(i j)][(1 · · ·n)] = [(i j)(1 · · ·n)]. Noting that (i j)(1 · · · n) = (1, · · · , i− 1, j, · · · , n)(i · · · j − 1), it follows
from (3.12) that

Tr ([(1, · · · , i− 1, j, · · · , n)(i · · · j − 1)]G(s)) = E[Tr((A2N
s )j−i)Tr((A2N

s )n−(j−i))].

A similar calculation shows that

Tr ([(1 · · · n)]G(s)[(i j)][P` ⊗ P`]i,j) = E[Tr((A2N
s )j−iP`)Tr((A2N

s )n−(j−i)P`)].

Thus, we have

F ′(s)

=
1

4N2

∑
1≤i<j≤n

{
E[Tr((A2N

s )j−i)Tr((A2N
s )n−(j−i))]− 2

2∑
`=1

E[Tr((A2N
s )j−iP`)Tr((A2N

s )n−(j−i)P`)]

}
.

The terms inside the overall summation depend on (i, j) only through j− i; in other words, the overall
sum has the form ∑

1≤i<j≤n
hj−i,n−(j−i)

for a function h : {1, . . . , n−1}2 → C which is symmetric in its two variables. For such a sum in general
we have

S ≡
∑

1≤i<j≤n
hj−i,n−(j−i) =

n−1∑
p=1

∑
1≤i<j≤n
j−i=p

hp,n−p =

n−1∑
p=1

(n− p)hp,n−p

since the number of (i, j) with 1 ≤ i < j ≤ n and j − i = p is (n − p). Now using the symmetry and
reindexing by q = n− p we have

2S =

n−1∑
p=1

(n− p)hp,n−p +

n−1∑
q=1

qhn−q,q =

n−1∑
p=1

(n− p)hp,n−p +

n−1∑
p=1

php,n−p = n

n−1∑
p=1

hp,n−p.

Applying this with the above summations yields the result.

Having now expressed the desired quantities in terms of Hp,q(s), we proceed to encapsulate the
many cancellations by re-expressing Hp,q(s) as a linear combination of covariances.

Lemma 3.10. For s ≥ 0 and p, q ∈ N, Hp,q(s) is given by the linear combination of covariances in (3.21):

N2Hp,q(s) =
1

4
Cov[Tr((A2N

s )p),Tr((A2N
s )q)]− Cov[Tr((A2N

s )pP1),Tr((A2N
s )qP1)].
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Proof. From (3.19), N2Hp,q(s) is a difference of two terms. The first is

1

4
E[Tr((A2N

s )p)Tr((A2N
s )q)]

=
1

4
Cov[Tr((A2N

s )p),Tr((A2N
s )q)] +

1

4
E[Tr((A2N

s )p)]E[Tr((A2N
s )q)].

(3.31)

The second term is a sum

−1

2

2∑
`=1

E[Tr((A2N
s )pP`)Tr((A2N

s )qP`)].

Let R be the block rotation matrix of C2N by π
2 in each factor of CN , so that RP1R

∗ = P2. Since the
distribution of A2N

s is invariant under rotations, it follows that

E[Tr((A2N
s )pP`)] and E[Tr((A2N

s )pP`)Tr((A2N
s )qP`)]

do not depend on ` (as each is a conjugation-invariant polynomial function in A2N
s ). In particular, the

two terms in the `-sum are equal, and so the second term in Hp,q(s) is

− E[Tr((A2N
s )pP`)Tr((A2N

s )qP`)]

= −Cov[Tr((A2N
s )pP1),Tr((A2N

s )qP1)]− E[Tr((A2N
s )pP1)]E[Tr((A2N

s )qP1)].
(3.32)

Moreover, since E[Tr((A2N
s )pP1)] = E[Tr((A2N

s )pP2)] and P1 + P2 = I , we have E[Tr((A2N
s )pP1)] =

1
2E[Tr((A2N

s )p)]. Thus, the last term in (3.32) is −1
4E[Tr((A2N

s )p)]E[Tr((A2N
s )q)]. Combining this with

(3.31) then yields the result.

Now, to begin the process of estimating these covariances, we re-express them using the Schur–
Weyl representation, in terms of the two-cycle permutation

γp,q = (1 · · · p)(p+ 1 · · · p+ q) ∈ Sp+q.

(For present notational convenience, we de-emphasize the role of n, letting q = n− p.)

Lemma 3.11. Let Cp,q(s) denote the covariance tensor of (3.23),

Cp,q(s) ≡ E((A2N
s )⊗n)− E((A2N

s )⊗p)⊗ E((A2N
s )⊗q).

Then the two covariance terms in (3.21) are given by

Cov[Tr((A2N
s )p),Tr((A2N

s )q)] = Tr (Cp,q(s)[γp,q]) , and (3.33)

Cov[Tr((A2N
s )pP1),Tr((A2N

s )qP1)] = Tr (Cp,q(s)[P1 ⊗ P1]p,p+q[γp,q]) . (3.34)

Proof. To begin, observe that for any matrix A, (3.12) yields

Tr(Ap)Tr(Aq) = Tr
(
A⊗p ⊗A⊗q[γp,q]

)
.

For notational convenience in this proof, denote the full cycle (1 · · · p) ∈ Sp by γp, so that Tr(Ap) =
Tr (A⊗p[γp]). It follows that

Cov[Tr((A2N
s )p),Tr((A2N

s )q)]

= E[Tr((A2N
s )p)Tr((A2N

s )q)]− E[Tr((A2N
s )p)]E[Tr((A2N

s )q)]

= ETr
(
(A2N

s )⊗p ⊗ (A2N
s )⊗q[γp,q]

)
− ETr

(
(A2N

s )⊗p[γp]
)
ETr

(
(A2N

s )⊗q[γq]
)

= Tr
(
E((A2N

s )⊗(p+q))[γp,q]
)
− Tr

(
E((A2N

s )⊗p)⊗ E((A2N
s )⊗q)[γp,q]

)
= Tr

([
E((A2N

s )⊗(p+q))− E((A2N
s )⊗p)⊗ E((A2N

s )⊗q)
]

[γp,q]
)

= Tr (Cp,q(s)[γp,q])
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thus proving (3.33). At the same time, using the fact that the projection P1 is diagonal, we have for any
matrix A ∈M2N

Tr(ApP1)Tr(AqP1) = Tr
(
A⊗p ⊗A⊗q[P1 ⊗ P1]p,p+q[γp,q]

)
,

where we remind the reader that [P`⊗P`]i,j references notation (3.17); here i = p and j = p+q (the final
tensor factor). The derivation of (3.34) follows from here analogously to the above computations.

Thus, from (3.21), (3.33), and (3.34), to estimate Hp,n−p(s) we must understand the covariance
tensor Cp,n−p(s). To that end, we introduce some notation. For 1 ≤ i < j ≤ n, define the matrix
Ti,j ∈ (M2N )⊗n by

Ti,j = 2[(i j)] [P1 ⊗ P1 + P2 ⊗ P2]i,j . (3.35)

Additionally, for 1 ≤ p ≤ n, we introduce Φp,Ψp ∈ (M2N )⊗n as follows:

Φp = − 1

2N

∑
1≤i<j≤p, or
p<i<j≤n

[(i j)], Ψp = − 1

2N

∑
1≤i<j≤p, or
p<i<j≤n

Ti,j , (3.36)

with the understanding that, when p = n, the sum is simply over 1 ≤ i < j ≤ n.

Lemma 3.12. Let p ∈ {1, . . . , n}, and let 0 ≤ s ≤ t. Then

E[(U2N
s )⊗p]⊗ E[(U2N

s )⊗(n−p)] = e−
ns
2 esΦp , (3.37)

E[(B2N
s )⊗p]⊗ E[(B2N

s )⊗(n−p)] = e−
ns
2 esΨp , (3.38)

E[(A2N
s )⊗p]⊗ E[(A2N

s )⊗(n−p)] = e−
nt
2 e(t−s)ΦpesΨp , (3.39)

where, in the case p = n, we interpret the 0-fold tensor product as the identity as usual.

Proof. Returning to the SDEs (3.26) and (3.28), taking expectations we find that

d

ds
E[(U2N

s )⊗n] = −n
2
E[(U2N

s )⊗n]− 1

2N
E

(U2N
s )⊗n ·

∑
1≤i<j≤n

[(i j)]

 , (3.40)

d

ds
E[(B2N

s )⊗n] = −n
2
E[(B2N

s )⊗n]− 1

2N
E

(B2N
s )⊗n ·

∑
1≤i<j≤n

Ti,j

 . (3.41)

Since the processes B2N and U2N start at the identity, it is then immediate to verify that the solutions
to these ODEs are

E[(U2N
s )⊗n] = e−

ns
2 exp

− s

2N

∑
1≤i<j≤n

[(i j)]

 , and E[(B2N
s )⊗n] = e−

ns
2 exp

− s

2N

∑
1≤i<j≤n

Ti,j

 .

Now, for the tensor product, we decompose

E[(U2N
s )⊗p]⊗ E[(U2N

s )⊗(n−p)] =
(
E[(U2N

s )⊗p]⊗ I⊗(n−p)
)
·
(
I⊗p ⊗ E[(U2N

s )⊗(n−p)]
)
.

We can express these expectations as in (3.40), provided we note that (i j) now refers (alternatively) to
the action of Sp or Sn−p on (M2N )⊗n = (M2N )⊗p⊗ (M2N )⊗(n−p), either trivially in the first factor or the
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second. The result is that

E[(U2N
s )⊗p]⊗ I⊗(n−p) = e−

ps
2 exp

− s

2N

∑
1≤i<j≤p

[(i j)]


I⊗p ⊗ E[(U2N

s )⊗(n−p)] = e−
(n−p)s

2 exp

− s

2N

∑
p<i′<j′≤n

[(i′ j′)]

 .

Note that all the (i j) terms in the first sum commute with all the (i′ j′) terms in the second sum (since
i < j < i′ < j′) and taking the product, we can combine to yield

E[(U2N
s )⊗p]⊗ E[(U2N

s )⊗(n−p)] = e−
ns
2 exp

−
s

2N

∑
1≤i<j≤p, or
p<i<j≤n

[(i j)]

 = e−
ns
2 esΦp ,

verifying (3.37). An entirely analogous analysis proves (3.38).
Finally, using independence as in (3.25) to factor

E[(A2N
s )⊗p]⊗ E[(A2N

s )⊗(n−p)]

=
(
E[(U2N

t−s)
⊗p]⊗ E[(U2N

t−s)
⊗(n−p)]

)
·
(
E[(B2N

s )⊗p]⊗ E[(B2N
s )⊗(n−p)]

) (3.42)

and substituting s 7→ t− s in (3.37), (3.39) follows from (3.38) and (3.42).

Corollary 3.13. For 0 ≤ p ≤ n and 0 ≤ s ≤ t,

Cp,n−p(s) = e−
nt
2

[
e(t−s)ΦnesΨn − e(t−s)ΦpesΨp

]
. (3.43)

Proof. From (3.39), we have

E[(A2N
s )⊗p]⊗ E[(A2N

s )⊗(n−p)] = e−
nt
2 e(t−s)ΦpesΨp

for 0 ≤ p ≤ n. In particular, taking p = n (in which case the second factor is trivial and omitted) we
have

E[(A2N
s )⊗n] = e−

nt
2 e(t−s)ΦnesΨn .

Subtracting these two and using the definition (3.23) of Cp,n−p(s) yields the result.

The next technical lemma uses Duhamel’s formula to rewrite the expression in (3.43) in a more
complicated, but more computationally useful, way.

Lemma 3.14. For 0 ≤ s ≤ t,

Cp,n−p(s) =
e−

nt
2

2N

∑
1≤i≤p<j≤n

(∫ t−s

0
e(t−s−u)Φn [(i j)]euΦpesΨn du+

∫ s

0
e(t−s)Φpe(s−u)ΨnTi,je

uΨp du

)
.
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Proof. We begin by using Duhamel’s formula (3.24), applied to (3.43) by adding and subtracting the
mixed term e(t−s)ΦpesΨn :

e(t−s)ΦnesΨn − e(t−s)ΦpesΨp

=
[
e(t−s)Φn − e(t−s)Φp

]
esΨn + e(t−s)Φp

[
esΨn − esΨp

]
=

∫ 1

0
e(1−u)(t−s)Φn(t− s)(Φn − Φp)e

u(t−s)Φp du · esΨn + e(t−s)Φp

∫ 1

0
e(1−u)sΨns(Ψn −Ψp)e

usΨp du

=

∫ t−s

0
e(t−s−u)Φn(Φn − Φp)e

uΦpesΨn du+

∫ s

0
e(t−s)Φpe(s−u)Ψn(Ψn −Ψp)e

uΨp du (3.44)

where we have made the substitution u 7→ (t− s)u in the first integral and u 7→ su in the second. Now,
from the definition (3.36) of Φp and Ψp, we have

Φp − Φn =
1

2N

∑
1≤i≤p<j≤n

[(i j)], and Ψp −Ψn =
1

2N

∑
1≤i≤p<j≤n

Ti,j .

Substituting these into (3.44) yields the result.

We now reinterpret the exponentials in the integrals as expectations of the processes U2N and B2N ,
using (3.37) and (3.38). The first integrand is

e−
nt
2 e(t−s−u)Φn [(i j)]euΦpesΨn = E[(U2N

t−s−u)⊗n] · [(i j)] · E[(U2N
u )⊗p]⊗ E[(U2N

u )⊗(n−p)] · E[(B2N
s )⊗n].

By definition U2N and B2N are independent. Let us introduce two more copies V 2N ,W 2N of U2N so
the {U2N , V 2N ,W 2N , B2N} are all independent. Then this product may be expressed as the expectation
of

Rpi,j(u; s, t) ≡ (U2N
t−s−u)⊗n · [(i j)] · (V 2N

u )⊗p ⊗ (W 2N
u )⊗(n−p) · (B2N

s )⊗n. (3.45)

Similarly, if we introduce independent copies C2N and D2N of B2N so that all the the processes U2N ,
V 2N , W 2N , B2N , C2N , D2N are independent, the second integrand can be expressed as the expectation
of

Qpi,j(u; s, t) ≡ (V 2N
t−s)

⊗p ⊗ (W 2N
t−s)

⊗(n−p) · (B2N
s−u)⊗n · Ti,j · (C2N

u )⊗p ⊗ (D2N
u )⊗(n−p). (3.46)

To summarize, we have computed the following.

Lemma 3.15. Let 0 ≤ s ≤ t and p ∈ {1, . . . , n}. Then

Cp,n−p(s) =
1

2N

∑
1≤i≤p<j≤n

(∫ t−s

0
E[Rpi,j(u; t, s)] du+

∫ s

0
E[Qpi,j(u; t, s)] du

)
. (3.47)

We will now use this, together with (3.21), (3.33), and (3.34), to estimate Hp,n−p(s). We estimate
each of the two covariance terms separately, in the following two lemmas.

Lemma 3.16. For p ∈ {1, . . . , n} and 0 ≤ s ≤ t,∣∣Cov[Tr((A2N
s )p),Tr((A2N

s )n−p)]
∣∣ ≤ p(n− p)(t+ 3s). (3.48)

Proof. From (3.47) together with (3.33), the quantity whose modulus we wish to estimate is∑
1≤i≤p<j≤n

(∫ t−s

0

1

2N
ETr

(
Rpi,j(u; t, s) · [γp,n−p]

)
du+

∫ s

0

1

2N
ETr

(
Qpi,j(u; t, s) · [γp,n−p]

)
du

)
.
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For the first term, we note (U2N
t−s−u)⊗n[γp,n−p] = [γp,n−p](U

2N
t−s−u)⊗n (the Schur-Weyl representation of

any permutation in Sn commutes with a matrix of the form M⊗n). It follows from the trace property
that

ETr
(
Rpi,j(u; s, t) · [γp,n−p]

)
= ETr

(
(V 2N
u )⊗p ⊗ (W 2N

u )⊗(n−p) · (B2N
s )⊗n · [γp,n−p] · (U2N

t−s−u)⊗n · [(i j)]
)

= ETr
(

(V 2N
u )⊗p ⊗ (W 2N

u )⊗(n−p) · (B2N
s )⊗n · (U2N

t−s−u)⊗n · [γp,n−p] · [(i j)]
)
.

Since i ≤ p < j, the permutation γp,n−p(i j) is a single cycle. Thus, by (3.12), the ⊗n-fold trace reduces
to a trace of some p, n, i, j-dependent word in V 2N

u , W 2N
u , B2N

s , and U2N
t−s−u. This word is a random

element of U2N , and hence

1

2N
ETr

(
Rpi,j(u; s, t) · [γp,n−p]

)
=

1

2N
ETr

(
a random matrix in U2N

)
which ∴ has modulus ≤ 1.

Hence, the first integral is∣∣∣∣∫ t−s

0

1

2N
ETr

(
Rpi,j(u; t, s) · [γp,n−p]

)
du

∣∣∣∣ ≤ (t− s). (3.49)

For the second term, the fact that Ti,j = 2[(i j)][P1 ⊗ P1 + P2 ⊗ P2]i,j only acts non-trivially in the
i, j factors, and i ≤ p < j, shows that (as above) Ti,j commutes with (C2N

u )⊗p ⊗ (D2N
u )⊗(n−p). Hence,

we can express the second integrand as

ETr
(
Qpi,j(u; t, s) · [γp,n−p]

)
=ETr

(
(V 2N
t−s)

⊗p ⊗ (W 2N
t−s)

⊗(n−p) · (B2N
s−u)⊗n · Ti,j · (C2N

u )⊗p ⊗ (D2N
u )⊗(n−p) · [γp,n−p]

)
=ETr

(
(V 2N
t−s)

⊗p ⊗ (W 2N
t−s)

⊗(n−p) · (B2N
s−u)⊗n · Ti,j · [γp,n−p] · (C2N

u )⊗p ⊗ (D2N
u )⊗(n−p)

)
=2

2∑
`=1

ETr
(

(C2N
u )⊗p ⊗ (D2N

u )⊗(n−p) · (V 2N
t−s)

⊗p ⊗ (W 2N
t−s)

⊗(n−p) · (B2N
s−u)⊗n · [P` ⊗ P`]i,j [(i j)] · [γp,n−p]

)
(3.50)

where we have used the fact that [γp,n−p] commutes with any matrix of the form C⊗p ⊗ D⊗(n−p) in
the second equality, and then the trace property in the third equality. As above, each of these terms
reduces to a trace of a word, this time of the form

2
2∑
`=1

ETr(UP`VP`)

where U and V are random matrices in U2N (depending on p, n, i, j). Since ‖P`‖ ≤ 1, the modulus of
each term is ≤ 2N , giving an overall factor of ≤ 8N . Combining with the 1

2N in the integral, this gives∣∣∣∣∫ s

0

1

2N
ETr

(
Qpi,j(u; t, s) · [γp,n−p]

)
du

∣∣∣∣ ≤ 4s. (3.51)

Hence, from (3.49) and (3.51), the modulus of the desired covariance is bounded by∑
1≤i≤p<j≤n

[(t− s) + 2s] = p(n− p)(t+ 3s),

yielding (3.48).

24



Lemma 3.17. For p ∈ {1, . . . , n} and 0 ≤ s ≤ t,∣∣Cov[Tr((A2N
s )pP1),Tr((A2N

s )n−pP1)]
∣∣ ≤ p(n− p) (t+ 3s) . (3.52)

Proof. From (3.47) together with (3.34), the quantity whose modulus we wish to estimate is

∑
1≤i≤p<j≤n

(∫ t−s

0

1

2N
ETr

(
Rpi,j(u; t, s) · [P1 ⊗ P1]p,n · [γp,n−p]

)
du

+

∫ s

0

1

2N
ETr

(
Qpi,j(u; t, s) · [P1 ⊗ P1]p,n · [γp,n−p]

)
du

)
.

(3.53)

For the first term, we expand the integrand, commuting [(i j)] past (U2N
t−s−u)⊗n as in the proof of Lemma

3.16, to give

1

2N
ETr

(
(U2N

t−s−u)⊗n · (V 2N
u )⊗p ⊗ (W 2N

u )⊗(n−p) · (B2N
s )⊗n · [P1 ⊗ P1]p,n · [γp,n−p] · [(i j)]

)
.

As above, since γp,n−p · (i, j) is a single cycle, this trace reduces to a trace over C2N , of the form

1

2N
ETr[U′P1V

′P1]

where U′ and V′ are random unitary matrices in U2N composed of certain i, j, p, n-dependent words in
U2N
t−s−u, V 2N

u , W 2N
u , and B2N

s . As ‖P1‖ ≤ 1, it follows that this normalized trace is ≤ 1, and so the first
integral in (3.53) is ≤ (t− s) in modulus, as in (3.49).

Similarly, we expand the second term as in (3.50), which gives the sum over ` ∈ {1, 2} of the
expected normalized trace of

(V 2N
t−s)

⊗p ⊗ (W 2N
t−s)

⊗(n−p) · (B2N
s−u)⊗n · [γp,n−p] · [(i, j)] · [P` ⊗ P`]i,j · (C2N

u )⊗p ⊗ (D2N
u )⊗(n−p) · [P1 ⊗ P1]p,n.

As in the above cases, since γp,n−p(i, j) is a single cycle, this is equal to a single trace Tr(A1 · · ·An)
where A1, . . . , An belong to the set {V 2N

t−s ,W
2N
t−s, B

2N
s−u, C

2N
u , D2N

u , P`, P1}. As each of these is either a
random unitary matrix or a projection, it follows that the expected normalized trace has modulus ≤ 1,
and so the 1

N -weighted sum of 2 terms, each of modulus ≤ 2N , gives a contribution no bigger than 4.
The remainder of the proof is exactly as the end of the proof of Lemma 3.16.

Finally, we are ready to conclude this section.

Proof of Proposition 3.6. From (3.20), we have

|νNt (n)− ν2N
t (n)| ≤ n

2

n−1∑
p=1

∫ t

0
|Hp,n−p(s)| ds.

Lemma 3.10 then gives

|Hp,q(s)| ≤
1

4N2

∣∣Cov[Tr((A2N
s )p),Tr((A2N

s )q)]
∣∣+

1

N2

∣∣Cov[Tr((A2N
s )pP1),Tr((A2N

s )qP1)]
∣∣ .

Combining this with (3.48) and (3.52) therefore yields

|Hp,q(s)| ≤
p(n− p)
N2

· 5

4
(t+ 3s).
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Integration then gives

|νNt (n)− ν2N
t (n)| ≤ n

2

n−1∑
p=1

p(n− p)
N2

· 25

8
t2 =

25t2n

16N2

n−1∑
p=1

p(n− p).

The sum over p has the exact value 1
6(n3 − n) ≤ n3

6 . The blunt estimate 25
96 <

3
4 yields the result.

4 Strong Convergence

In this section, we prove Theorem 1.4. We begin by showing (in Section 4.1) that the eigenvalues of
the unitary Brownian motion at a fixed time converge to their “classical locations”, and we use this to
prove that the unitary Brownian motion can be uniformly approximated by a function of a Gaussian
unitary ensemble (for time t < 4). We then use this, together with Male’s Theorem 2.3, to prove
Theorem 1.4.

4.1 Marginals of Unitary Brownian Motion and Approximation by GUEN

We begin with the following general result on convergence of empirical measures. As usual, for a
probability measure µ on R, the cumulative distribution function Fµ is the nondecreasing function
Fµ(x) = µ((−∞, x]) and its right-inverse is the left-continuous nondecreasing function

F−1
µ (y) = inf{x ∈ R : y ≤ Fµ(x)},

with F−1
µ (0) = −∞. If µ has a density ρ, we may abuse notation and write Fµ = Fρ.

Proposition 4.1. For each N ∈ N, let (xNk )Nk=1 be points in R with xN1 ≤ · · · ≤ xNN . Let µN = 1
N

∑N
k=1 δxNk

be the associated empirical measures. Suppose the following hold true.

(1) There is a compact interval [a−, a+] and a continuous probability density ρ with supp ρ = [a−, a+] so
that, with µ(dx) = ρ(x) dx, we have µN ⇀ µ weakly as N →∞.

(2) xN1 → a− and xNN → a+ as N →∞.

For r ∈ [0, 1], define x∗(r) = F−1
µ (r) if r ∈ (0, 1), and x∗(0) = a−, x∗(1) = a+. Then, as N →∞,

max
1≤k≤N

∣∣xNk − x∗( kN )
∣∣→ 0.

Proof. For any N, the right-inverse of FµN satisfies

F−1
µN

(r) = xNk and FµN (F−1
µN

(r)) =
k

N
, (4.1)

for any k ∈ {1, . . . , N} and r ∈ (k−1
N , kN ]. Since µN converges weakly towards µ and Fµ is continuous,

the sequence FµN converges pointwise towards Fµ. What is more, using that µ is compactly supported,
a variant of Dini’s theorem (cf. [39, Problem 127 Chapter II]) implies further that FµN → F uniformly
on R. Let us consider Ψ : [0, 1]→ [a−, a+], the continuous inverse of the one-to-one mapFµ : [a−, a+]→
[0, 1]. It satisfies Ψ(r) = F−1

µ (r), for any r ∈ (0, 1] and Ψ(Fµ(x)) = max(a−,min(a+, x)), for any x ∈
R. Combining this latter equality with (4.1), and using the uniform continuity of Ψ and the uniform
convergence of FµN towards Fµ, implies that max(a−,min(a+, F

−1
µN

)) converges uniformly towards Ψ
on (0, 1]. The first equality of (4.1) together with the assumption (2) yield then the claim.
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For example, if (xNk )Nk=1 are the ordered eigenvalues of a GUEN , then Wigner’s law (and the cor-
responding spectral edge theorem) show that the empirical spectral distribution satisfies the con-
ditions of Proposition 4.1 almost surely, where the limit measure is the semicircle law µ = σ1 ≡
1

2π

√
(4− x2)+ dx. In particular, when k(N)

N → r, we have xNk(N) → F−1
σ1 (r). These values are some-

times called the classical locations of the eigenvalues. In the case of a GUEN , much more is known;
for example, [23] showed that the eigenvalues have variance of O( logN

N2 ) in the bulk and O(N−4/3) at
the edge, and further standardizing them, their limit distribution is Gaussian in the bulk and Tracy–
Widom at the edge. For our purposes, the macroscopic statement of Proposition 4.1 will suffice.

Now, fix t ∈ [0, 4). From Theorem 2.5, the law νt of the free unitary Brownian motion ut has an
analytic density %t supported on a closed arc strictly contained in U1, and has the form %t(e

ix) = ρt(x)
for some strictly positive continuous probability density function ρt : (−π, π)→ R which is symmetric
about 0 and supported in a symmetric interval [−a(t), a(t)] where a(t) = 1

2

√
t(4− t) + arccos(1− t/2);

cf. (2.7). For 0 < r < 1, define that classical locations υ∗(t, r) of the eigenvalues of unitary Brownian
motion as follows:

υ∗(t, r) = exp
(
iF−1
ρt (r)

)
,

and also set υ∗(t, 0) = e−ia(t) and υ∗(t, 1) = eia(t).

Corollary 4.2. Let 0 ≤ t < 4, and let V N
t be a random unitary matrix distributed according to the heat kernel

on UN at time t (i.e. equal in distribution to the t-marginal of the unitary Brownian motion UNt ). Enumerate
the eigenvalues of V N

t as υN1 (t), . . . , υNN (t), in increasing order of complex argument in (−π, π). Then,

lim
N→∞

|υNk (t)− υ∗(t, kN )| = 0 a.s.

Proof. Let xNk (t) = −i log υNk (t), where we use the branch of the logarithm cut along the negative real
axis. Note: by Theorem 1.1, for sufficiently large N , υNk (t) are outside a t-dependent neighborhood of
−1, and so the log function is continuous. The empirical law of {υNk (t) : 1 ≤ k ≤ N < ∞} converges
weakly a.s. to νt (cf. (1.2)), and so by continuity, the empirical measure of {xNk (t) : 1 ≤ k ≤ N < ∞}
converges a.s. to the measure with density ρt. Moreover, Theorem 1.1 shows that υN1 (t) → e−ia(t)

and υNN (t) → eia(t) a.s., and so xN1 (t) → −a(t) while xNN (t) → a(t) a.s. Hence, by Proposition 4.1,
max1≤k≤N |xNk (t)− F−1

ρt ( kN )| → 0. Taking exp(i·) of these statements yields the corollary.

Now, let us combine this result with the comparable one for the GUEN . Let gt : R→ R be given by
gt = F−1

ρt ◦ Fσ1 ; this is an increasing, continuous map that pushes σ1 forward to ρt. Define ft : R→ U1

by
ft = exp(igt), ∴ νt = (ft)∗(σ1). (4.2)

The main result of this section is that, rather than just pushing the semicircle law forward to the law
of free unitary Brownian motion, gt in fact pushes a GUEN forward, asymptotically, to V N

t (for fixed
t ∈ [0, 4)).

Proposition 4.3. Let 0 ≤ t < 4, and let V N
t be a random unitary matrix distributed according to the heat

kernel on UN at time t (i.e. equal in distribution to the t-marginal of the unitary Brownian motion UNt ). There
exists a self-adjoint random matrix XN with the following properties:

(1) XN is a GUEN .

(2) The eigenvalues of XN are independent from V N
t , and {V N

t , XN} have the same eigenvectors.

(3) ‖ft(XN )− V N
t ‖MN

→ 0 a.s. as N →∞.
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Proof. Let (υNk (t))Nk=1 denote the eigenvalues of V N
t in order of increasing argument in (−π, π), as in

Corollary 4.2. It is almost surely true that arg(υN1 (t)) < · · · < arg(υNN (t)), and so we work in this event
only. Let E N

k denote the eigenspace of the eigenvalue υNk (t). This space has complex dimension 1 a.s.,
and so we may select a unit length vector ENk from this space, with phase chosen uniformly at random
in U1, independently for each of EN1 , . . . , E

N
N . Then, by orthogonality of distinct eigenspaces, the ran-

dom matrix EN = [EN
1 ··· EN

N ] is in UN ; what’s more, since the distribution of V N
t is invariant under

conjugation by unitaries, we may further assume that EN is Haar distributed on UN . Now, for each
N , fix a random vector µN = (µN1 , . . . , µ

N
N ) independent from V N

t with joint density fµN (x1, . . . , xN )

equal to the known joint density of eigenvalues of a GUEN , i.e. proportional to

fµN (x1, . . . , xn) ∼
N∏
j=1

e−
N
2
x2j

∏
1≤j<k≤N

|xj − xk|2.

Then we define

XN ≡ EN


µN1 0 · · · 0
0 µN2 · · · 0
...

...
. . .

...
0 0 · · · µNN

 (EN )∗.

It is well known (cf. [1, 37]) that the distribution of XN is the GUEN , verifying item (1). Item (2) holds
by construction of XN . It remains to see that (3) holds true. Note, since operator norm is invariant
under unitary conjugation, we simply have

‖ft(XN )− V N
t ‖MN

= max
1≤k≤N

|ft(µNk )− υNk |. (4.3)

But for any k ∈ {1, . . . , N}, v∗(t, kN ) = ft(µ
N
k ) and Corollary 4.2 yields the result.

4.2 Strong Convergence of the Process (UN
t )t≥0

Since the Gaussian unitary ensemble is selfadjoint, we may extend Male’s Theorem 2.3 to continuous
functions in independent GUENs.

Lemma 4.4. Let AN = (AN1 , . . . , A
N
n ) be a collection of random matrix ensembles that converges strongly to

some a = (a1, . . . , an) in a W ∗-probability space (A , τ). Let XN = (XN
1 , . . . , X

N
k ) be independent Gaussian

unitary ensembles independent from AN , and let x = (x1, . . . , xk) be freely independent semicircular random
variables in A all free from a. Let f = (f1, . . . , fk) : R → Ck be continuous functions, and let f(XN ) =
(f1(XN

1 ), . . . , fk(X
N
k )) and f(x) = (f1(x1), . . . , fk(xk)). Then (AN , f(XN )) converges strongly to (a, f(x)).

Proof. We begin with the case k = 1. If p is any polynomial, by Theorem 2.3, (AN , p(XN
1 )) converges

strongly to (a, p(x1)) by definition. Now, let ε > 0, and fix a noncommutative polynomial P in n + 1
indeterminates. Then P (a, y) is a finite sum of monomials, each of the form

Q0(a)yQ1(a)y · · ·Qd−1(a)yQd(a)

for some noncommutative polynomials Q0, . . . , Qd and nonnegative integers d. Let dP be the “degree”
of P : the maximum number of Qk(a) terms that appears in any monomial in the above expansion
of P (a, y). Let M = 1+ the sum of all the products ‖Q0(a)‖ · · · ‖Qd(a)‖ over all monomial terms
appearing in P . Given a fixed κ > 2, by the Weierstrass approximation theorem, for any ε > 0, there is
a polynomial p in one indeterminate so that

‖p− f1‖L∞[−κ,κ] <
ε

8dPM(1 + ‖f1‖L∞[−κ,κ])dP
. (4.4)

28



It follows that, for small enough ε > 0, we also have ‖p‖L∞[−κ,κ] ≤ 1 + ‖f1‖L∞[−κ,κ]. Now we break up
the difference in the usual manner,∣∣‖P (AN , f1(XN

1 ))‖ − ‖P (a, f1(x1))‖
∣∣ ≤ ∣∣‖P (AN , f1(XN

1 ))‖ − ‖P (AN , p(XN
1 ))‖

∣∣
+
∣∣‖P (AN , p(XN

1 ))‖ − ‖P (a, p(x1))‖
∣∣

+ |‖P (a, p(x1))‖ − ‖P (a, f(x1))‖| .
(4.5)

By the known strong convergence of (AN , p(XN
1 )) to (a, p(x1)), the middle term is < ε

4 for all suffi-
ciently large N . For the first and third terms, we use the reverse triangle inequality; in the third term
this gives

|‖P (a, p(x1))‖ − ‖P (a, f(x1))‖| ≤ ‖P (a, p(x1))− P (a, f(x1))‖.

Let y = p(x1) and z = f1(x1). We may estimate the norm of the difference using the triangle inequality
summing over all monomial terms; then we have a sum of terms of the form

‖Q0(a)yQ1(a)y · · ·Qd−1(a)yQd(a)−Q0(a)zQ1(a)z · · ·Qd−1(a)zQd(a)‖. (4.6)

By introducing intermediate mixed terms of the form Q0(a)y · · ·Qk−1(a)yQk(a)z · · ·Qd−1(a)zQd(a) to
give a telescoping sum, we can estimate the term in (4.6) by

‖Q0(a)‖ · · · ‖Qd(a)‖
d∑

k=1

‖y‖k−1‖z‖d−k‖y − z‖. (4.7)

Since ‖y‖ = ‖p(x1)‖ = ‖p‖L∞[−κ,κ] ≤ 1+‖f1‖L∞[−κ,κ] and ‖z‖ = ‖f1(x1)‖ ≤ 1+‖f1‖L∞[−κ,κ], each term
in the previous sum is bounded by

‖y‖k−1‖z‖d−k ≤ (1 + ‖f1‖L∞[−κ,κ])
d−1 ≤ (1 + ‖f1‖L∞[−κ,κ])

dP .

Since ‖y − z‖ = ‖p− f1‖L∞[−κ,κ], combining this with (4.4) shows that the third term in (4.5) is < ε
4 for

all large N .
The first term in (4.5) is handled in an analogous fashion, with the caveat that the prefactor in (4.7)

is replaced by ‖Q0(AN )‖ · · · ‖Qd(AN )‖. Here we use the fact that XN
1 converges strongly towards x1

to ensure that almost surely, for N large enough,

spec(XN
1 ) ⊂ [−κ, κ],

together with the assumption of strong convergence of AN → a to show that, for all sufficiently large
N ,

‖Q0(AN )‖ · · · ‖Qd(AN )‖ ≤ max{1, 2 · ‖Q0(a)‖ · · · ‖Qd(a)‖}.

Then we see that the first term in (4.5) is < ε
2 for all large N , and so we have bounded the sum < ε for

all large N , concluding the proof of the lemma in the case k = 1.
Now suppose we have verified the conclusion of the lemma for a given k. We proceed by induction.

Taking (AN , f1(XN
1 ), . . . , fk(X

N
k )) as our new input vector, since fk+1(XN

k+1) is independent from all
previous terms, the induction hypothesis and the preceding argument in the case k = 1 give strong
convergence of the augmented vector (AN , f1(XN

1 ), . . . , fk(X
N
k ), fk+1(XN

k+1)) as well. Hence, the proof
is complete by induction.

This finally brings us to the proof of Theorem 1.4.
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Proof of Theorem 1.4. As above, let AN = (AN1 , . . . , A
N
n ) and let a = (a1, . . . , an) be the strong limit. By

reindexing the order of the variables in the noncommutative polynomial P appearing in the definition
of strong convergence, it suffices to prove the theorem in the case of time-ordered entries: UNt1 , . . . , U

N
tk

with t1 ≤ t2 ≤ · · · ≤ tk. What’s more, we may assume without loss of generality that the time
increments s1 = t1, s2 = t2−t1, . . . , sk = tk−tk−1 are all in [0, 4). Indeed, if we know the theorem holds
in this case, then for a list of ordered times with some gaps 4 or larger, we may introduce intermediate
times until all gaps are < 4; then the restricted theorem implies strong convergence for this longer list
of marginals, which trivially implies strong convergence for the original list.

Now, set V N
s1 = UNt1 , and V N

sj = (UNtj−1
)∗UNtj for 2 ≤ j ≤ k. As discussed in Section 2.1, these

increments of the process are independent, and V N
sj has the same distribution as UNsj . Hence, by Propo-

sition 4.3, there are k independent GUENs XN
1 , . . . , X

N
k , and continuous functions fsj : R→ C, so that

‖fsj (XN
j )−V N

sj ‖MN
→ 0 as N →∞. Since the V N

sj are all independent from AN , so are the XN
j . Hence,

by Lemma 4.4, taking x1, . . . , xk freely independent semicircular random variables all free from a, it
follows that

(AN , fs1(XN
1 ), . . . , fsk(XN

k )) converges strongly to (a, fs1(x1), . . . , fsk(xk)).

By the definition of the mapping fs (cf. (4.2)), fsj (xj) has distribution νsj , and as all variables in sight
are free, (a, fs1(x1), . . . , fsk(xk)) has the same distribution as (a, vs1 , . . . , vsk) where (vs)s≥0 is a free
unitary Brownian motion, freely independent from a.

It now follows, since ‖fsj (XN
j )− V N

sj ‖MN
→ 0, that

(AN , V N
s1 , . . . , V

N
sk

) converges strongly to (a, vs1 , . . . , vsk).

(The proof is very similar to the proof of Lemma 4.4.) Finally, we can recover the original variables
UNtj = V N

s1 V
N
s2 · · ·V

N
sj . Therefore

(AN , UNt1 , . . . , U
N
tk

) converges strongly to (a, vs1 , vs1vs2 . . . , vs1vs2 · · · vsk).

The discussion at the end of Section 2.3 shows that (vs1 , vs1vs2 , . . . , vs1vs2 · · · vsk) has the same distribu-
tion as (ut1 , ut2 , . . . , utk) where (ut)t≥0 is a free unitary Brownian motion in the W ∗-algebra generated
by (vs)s≥0, and is therefore freely independent from a. This concludes the proof.

5 Application to the Jacobi Process

In this final section we combine our main Theorem 1.4 with some of the results of the first and third
authors’ earlier paper [12], to show that the Jacobi process (cf. (5.1) and (5.2)) has spectral edges that
evolve with finite propagation speed.

There are three classical Hermitian Gaussian ensembles that have been well studied. The first is the
Gaussian Unitary Ensemble described in detail above, whose analysis was initiated by Wigner [50] and
began random matrix theory. The second is the Wishart Ensemble, also known (through its applications
in statistics) as a sample covariance matrix. Let a ≥ 1, and let X = XN be an N × daNe matrix all of
whose entries are independent normal random variables of variance 1

N ; then W = XX∗ is a Wishart
ensemble with parameter a. As N → ∞, its empirical spectral distribution converges almost surely
to a law known as the Marchenko-Pastur distribution; this was proved in [36]. As with the Gaussian
Unitary Ensemble, it also has a spectral edge, and the largest eigenvalue when properly renormalized
has the Tracy-Widom law.
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The third Hermitian Gaussian ensemble is the Jacobi Ensemble. Let Wa and W ′b be independent
Wishart ensembles of parameters a, b ≥ 1. Then it is known that Wa + W ′b is a Wishart ensemble of
parameter a+ b, and is a.s. invertible (cf. [11, Lemma 2.1]). The associated Jacobi Ensemble is

J = Ja,b = (Wa +W ′b)
− 1

2Wa(Wa +W ′b)
− 1

2 . (5.1)

Such matrices have been studied in the statistics literature for over thirty years; they play a key role
in MANOVA (multivariate analysis of variance) and are sometimes simply called MANOVA matrices.
The joint law of eigenvalues is explicitly known, but the large-N limit is notoriously harder than the
Gaussian Unitary and Wishart Ensembles. In [11], the present first author made the following discov-
ery which led to a new approach to the asymptotics of the ensemble: its joint law can be described by
a product of randomly rotated projections, as follows. (For the sake of making the statement simpler,
we assume a, b are such that aN and bN are integers.)

Theorem 5.1 ([11], Theorem 2.2). Let Ja,b = JNa,b be an N × N Jacobi ensemble with parameters a, b ≥ 1.
Let P,Q ∈ M(a+b)N be (deterministic) orthogonal projections with rank(P ) = bN and rank(Q) = N . Let
U ∈ U(a+b)N be a random unitary matrix sampled from the Haar measure. Then QU∗PUQ, viewed as a
random matrix in MN via the unitary isomorphism MN

∼= QM(a+b)NQ, has the same distribution as Ja,b.

Given two closed subspaces V,W of a Hilbert space H, if P : H → V and Q : H → W are the or-
thogonal projections, then the operator QPQ is known as the operator valued angle between the two
subspaces. (Indeed, in the finite-dimensional setting, the eigenvalues of QPQ are trigonometric poly-
nomials in the principal angles between the subspaces V and W.) Thus, the law of the Jacobi ensemble
records all the remaining information about the angles between two uniformly randomly rotated sub-
spaces of fixed ranks. These observations were used to make significant progress in understanding the
Jacobi Ensemble in statistical applications (cf. [29]), and to generalize many of these results to the full
expected universality class (beyond Gaussian entries) in the limit (cf. [21]).

In terms of the large-N limit: letting α = b
a+b and β = 1

a+b , we have trP = α and trQ = β
fixed as N grows, and therefore there are limit projections p, q of these same traces. The chosen Haar
distributed unitary matrices converge in noncommutative distribution to a Haar unitary operator u
freely independent from p, q, and so the empirical spectral distribution of Ja,b converges to the law
of qu∗puq, which was explicitly computed in [49] as an elementary example of free multiplicative
convolution:

Lawqu∗puq = (1−min{α, β})δ0 + max{α+ β − 1, 0}δ1 +

√
(r+ − x)(x− r−)

2πx(1− x)
1[r−,r+] dx,

where r± = α + β − 2αβ ± 2
√
αβ(1− α)(1− β). Furthermore, it was shown in [29] that the Jacobi

Ensemble has a spectral edge, the rate of convergence of the largest eigenvalue is N−2/3 (as with the
Gaussian Unitary and Wishart Ensembles), and the rescaled limit distribution of the largest eigenvalue
is the Tracy–Widom law of [44].

Simultaneously to these developments, Voiculescu [48] introduced free liberation. Given two sub-
algebras A,B of a W ∗-probability space (A , τ) and a Haar unitary operator u ∈ A that is freely in-
dependent from A,B, the rotated subalgebra u∗Au is freely independent from B. If (ut)t≥0 is a free
unitary Brownian motion freely independent from A,B, it is not generally true that u∗tAut is free from
B for any finite t (in particular when t = 0 we just have A,B), but since the (strong operator) limit
as t → ∞ of ut is a Haar unitary, this process “liberates” A and B. This concept was used to define
several important regularized versions of measures associated to free entropy and free information
theory, and to this days plays an important role in free probability theory. The special case that A,B

31



are algebras generated by two projections has been extensively studied [15, 16, 17, 18, 19, 25, 26, 27], as
the best special case where one can hope to compute all quantities fairly explicitly.

In the first and third authors’ paper [12, Section 3.2], the following was proved.

Theorem 5.2 ([12], Lemmas 3.2–3.6). Let p, q be orthogonal projections with traces α, β, and let (ut)t≥0 be a
free unitary Brownian motion freely independent from p, q. Let µt = Lawqu∗t putq

. Then

µt = (1−min{α, β})δ0 + max{α+ β − 1, 0}δ1 + µ̃t

where µ̃t is a positive measure (of mass min{α, β} − max{α + β − 1, 0}). Let I1, I2 be two disjoint open
subintervals of (0, 1). If supp µ̃t0 ⊂ I1 t I2 for some t0 ≥ 0, then supp µ̃t ⊂ I1 t I2 for |t − t0| sufficiently
small; moreover, µ̃t(I1) and µ̃t(I2) do not vary with t close to t0.

If µ̃t has a continuous density on (0, 1) for t > 0, and xt0 ∈ (0, 1) is a boundary point of supp µ̃t0 , then for
|t − t0| sufficiently small there is a C1 function t 7→ x(t) with x(t0) = xt0 so that x(t) is a boundary point of
supp µ̃t0 .

Finally, in the special case α = β = 1
2 , for all t > 0, µ̃t possesses a continuous density which is analytic on

the interior of its support.

Remark 5.3. (1) It is expected that the final statement, regarding the existence of a continuous density,
holds true for all α, β ∈ (0, 1); at present time, this is only known for α = β = 1

2 . Nevertheless,
the “islands stay separated” result holds in general.

(2) Our method of proof of the regularity of µ̃t involved a combination of free probability, complex
analysis, and PDE techniques. In [28], Izumi and Ueda partly extended this framework beyond
the α = β = 1

2 case; but they were still not able to prove continuity of the measure. They
did, however, give a much simpler proof of the result in the case α = β = 1

2 : here, µ̃t can be
described as the so-called Szegő transform (from the unit circle to the unit interval) of the law of
v0ut, where v0 is determined by the law of qpq. Via this description, the regularity result is an
immediate consequence of Theorem 2.5 above.

(3) Let us note that α = β = 1
2 corresponds to a = b = 1, meaning the “square” Jacobi ensemble.

This is, of course, the case that is least interesting to statisticians: in MANOVA problems the data
sets are typically time series, where there are many more samples than detection sites, meaning
that a, b≫ 1. In fact, it is generally questioned whether the Jacobi Ensemble is a realistic regime
for real world applications, rather than building the Wishart Ensembles out of N ×M Gaussian
matrices where M

N →∞.

Thus, it is natural to consider the corresponding finite-t deformation of the Jacobi Ensemble. The
matrix Jacobi process JNt associated to the projections PN , QN ∈MN , is given by

JNt = QN (UNt )∗PNUNt Q
N (5.2)

where (UNt )t≥0 is a Brownian motion in UN . (Typically PN , QN are deterministic; they may also be
chosen randomly, in which case UNt must be chosen independent from them.) This is a diffusion
process in M[0,1]

N : it lives a.s. in the space of matrices M ∈ MN with 0 ≤ M ≤ 1 (i.e. M is self-adjoint
and has eigenvalues in [0, 1]). Note that the initial value is JN0 = QNPNQN , the operator-valued angle
between the subspaces in the images of PN , QN . In particular, the Jacobi process records (through
its eigenvalues) the evolution of the principal angles between two subspaces as they are continuously
rotated by a unitary Brownian motion.

In the case N = 1, the process (5.2) precisely corresponds to what is classically known as the
Jacobi process: the Markov process on [0, 1] with generator L = x(x − 1) ∂2

∂x2
− (cx + d) ∂

∂x , where
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c = 2 min{α, β} − 1, d = |α − β|. This is where the name comes from, as the orthogonal polynomials
associated to this Markov process are the Jacobi polynomials, cf. [19].

Remark 5.4. Comparing to Theorem 5.1, we have now compressed the projections and the Brownian
motion into MN from the start. We could instead formulate the process as in that theorem by choosing
projections and Brownian motion in a larger space, which would have the effect of using a “corner”
of a higher-dimensional Brownian motion instead of UNt . While this makes a difference for the finite-
dimensional distribution, it does not affect the large-N behavior.

This brings us to our main application. First note that, from our main Theorem 1.4, the Jacobi
process converges strongly.

Corollary 5.5. Let PN , QN be deterministic orthogonal projections in MN , and suppose {PN , QN} converges
strongly to {p, q}. Let (ut)t≥0 be a free unitary Brownian motion freely independent from p, q. Then for each
t ≥ 0 the Jacobi process marginal JNt converges strongly to jt = qu∗t putq. What’s more, if f ∈ C[0, 1] is any
continuous test function, then ‖f(JNt )‖ → ‖f(jt)‖ a.s. as N →∞.

Proof. The strong convergence statement is an immediate corollary to Theorem 1.4, with AN1 = PN ,
AN2 = QN , and n = 2, k = 1. The extension to continuous test functions beyond polynomials is then
an elementary Weierstrass approximation argument.

Example 5.6. For fixed k ∈ N, select two orthogonal projections P,Q ∈Mk. Then define PN , QN ∈MkN

by PN = P ⊗ IN and QN = Q ⊗ IN . (Here we are identifying Mk ⊗MN
∼= MkN via the Kronecker

product.) If F is a noncommutative polynomial in two indeterminates, then

F (PN , QN ) = F (P,Q)⊗ IN

and it follows immediately that {PN , QN} converges strongly to {P,Q} (i.e. the W ∗-probability space
can be taken to be (Mk, tr)). Expanding this space to include a free unitary Brownian motion freely
independent from {P,Q} and setting jt = Qu∗tPutQ, Corollary 5.5 yields that the Jacobi process JkNt
with initial value QNPNQN converges strongly to jt.

Figure 2 illustrates the eigenvalues of JkNt with k = 4, N = 100, and initial projections given by

P =

[
0.2 0.4
0.4 0.8

]
⊗
[

1 0
0 0

]
+

[
0.8 0.4
0.4 0.2

]
⊗
[

0 0
0 1

]
, Q =

[
1 0
0 0

]
⊗ I2

which have been selected so that the initial operator-valued angleQPQ has non-trivial eigenvalues 0.2
and 0.8; this therefore holds as well for QNPNQN for all N . This implies that the subspaces PN (CkN )
and QN (CkN ) have precisely two distinct principal angles.

As is plainly visible in Figure 2, for small time, the eigenvalues (which are fixed trigonometric
polynomials in the principal angles) stay close to their initial values. That is: despite the fact that the
diffusion’s measure is fully supported on M[0,1]

N for every t,N > 0, the eigenvalues move with finite
speed for all large N . That is our final theorem.

Theorem 5.7. For each N ≥ 1, let (UNt )t≥0 be a Brownian motion on UN , let VN and WN be subspaces of CN ,
and suppose that the orthogonal projections onto these subspaces converge jointly strongly as N →∞. Suppose
there is a fixed finite set θ = {θ1, . . . , θk} of angles so that all principal angles between VN and WN are in θ
for all N . Fix any open neighborhood O of θ. Then there exists some T > 0 so that, for all t ∈ [0, T ], with
probability 1, all principal angles between UNt (VN ) and WN are in O for all sufficiently large N .
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Figure 2: The spectral distribution of the Jacobi process JkNt of Example 5.6 with k = 4, N = 100 and
times t = 0.01 (on the left) and t = 0.25 (on the right). The histograms were made with 1000 trials each,
yielding 4× 105 eigenvalues sorted into 1000 bins.

Proof. Let PN andQN be the projections onto VN and WN . Then there is a fixed list λ = {λ1, . . . , λk} in
[0, 1] so that all eigenvalues of QNPNQN are in λ. (The eigenvalues λj are certain fixed trigonometric
polynomials in θ). Let JNt be the Jacobi process associated to PN , QN , and let jt be the associated
large-N limit. By Corollary 5.5, for any t ≥ 0 and any f ∈ C[0, 1], ‖f(JNt )‖ → ‖f(jt)‖ a.s. as N →∞.

Applying this at time t = 0, let λi, λj ∈ λ with λi < λj such that no elements of λ are in the interval
(λi, λj). Now let f be a continuous bump function supported in (λi, λj). Then f(JN0 ) = 0, and it
therefore follows that ‖f(j0)‖ = 0. As this holds for all bump function supported in (λi, λj), it follows
that spec(j0) does not intersect (λi, λj). Thus j0 has pure point spectrum precisely equal to λ.

Now, fix any ε > 0; by (induction on) Theorem 5.2, for sufficiently small t > 0, spec(jt) is contained
in λε (the union of ε-balls centered at the points of λ). Now, suppose (for a contradiction) that, for some
N0, JN0

t possesses an eigenvalue λ ∈ (0, 1) \ λε. Let g be a bump function supported in (0, 1) \ λε that
is equal to 1 on a neighborhood of λ; then ‖g(JN0

t )‖ ≥ 1. But, by Corollary 5.5, we know ‖g(JNt )‖ →
‖g(jt)‖ = 0 a.s. as N → ∞. Thus, for all sufficiently large N , ‖g(JNt )‖ < 1, which implies that λ is
not an eigenvalue. As this holds for any point in (0, 1) \ λε, it follows that spec(JNt ) is almost surely
contained in λε for all sufficiently large N .

The result now follows from the fact that the principal angles between UNt (V) and W are fixed
continuous functions (trigonometric polynomials) in the eigenvalues of JNt .
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