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Abstract

We study the liberation process for projections: (p, q) 7→ (pt, q) = (utpu
∗
t , q) where ut is a free unitary

Brownian motion freely independent from {p, q}. Its action on the operator-valued angle qptq between the
projections induces a flow on the corresponding spectral measures µt; we prove that the Cauchy transform
of the measure satisfies a holomorphic PDE. We develop a theory of subordination for the boundary values
of this PDE, and use it to show that the spectral measure µt possesses a piecewise analytic density for any
t > 0 and any initial projections of trace 1

2 . We us this to prove the Unification Conjecture for free entropy
and information in this trace 1

2 setting.
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1 Introduction

Let V and W be subspaces of a the finite-finite dimensional complex space Cd. From elementary linear algebra,
it follows that dimV ∩W ≥ max{dimV + dimW − d, 0}. In fact, this inequality is almost surely equality:

dim(V ∩W ) = max{dimV + dimW − d, 0} a.s. (1.1)

The almost surely can be interpreted in a number of ways: for example, it can be taken with respect to any
reasonable probability measure on the (product) Grassmannian manifold of subspaces. We will discuss a more
probabilistic interpretation shortly.

When two subspaces satisfy the equality of Equation 1.1, they are said to be in general position. For conve-
nience, we may rewrite this relation as follows. Let P,Q be the orthogonal projections onto V and W respec-
tively, and let P ∧Q denote the orthogonal projection onto V ∩W . The dimension of a subspace is the trace of the
projection onto it, so the subspaces are in general position if and only if Tr (P ∧Q) = max{TrP +TrQ−d, 0}.
Normalizing, letting tr = 1

dTr , two projections (i.e. subspaces) are in general position if and only if

tr (P ∧Q) = max{trP + trQ− 1, 0}. (1.2)

In this language, a good way to express the genericity of general position is as follows: let P,Q be as above,
and let U be a random unitary matrix. If P̃ = UPU∗ (i.e. the projection onto the rotation of the image of P
by U ), then P̃ and Q are in general position almost surely. This statement is valid for all reasonable notions
of random unitary matrix; for example, it holds true if U is sampled from some measure that has a continuous,
strictly positive density with respect to the Haar measure. (Indeed, the subset of the Grassmannian product where
general position fails to hold is a subvariety of lower dimension, and so it is easy to see that any reasonable
measure will assign it probability 0.) Since any neighborhood of the identity has positive measure, it follows
that rotations arbitrarily close to the identity produce projections in general position, agreeing with our intuition.
Note: the same result applies as well even if P,Q are random projections, provided that the random unitary U is
independent from {P,Q}.

An important flow of random unitaries is given by the unitary Brownian motion. The group Ud of unitary d×d
matrices is a compact Lie group, and so its left-invariant Riemannian metric (given by the Hilbert-Schmidt norm
on the Lie algebra ud) gives rise to a heat kernel, which generates a Markov process: Brownian motion Ut. This
stochastic process can be constructed from the standard Brownian motionWt on ud: it satisfies the (Stratonovich)
stochastic differential equation dUt = Ut ◦ dWt. The Lie algebra ud consists of skew-Hermitian matrices; in
random matrix theory, it is more conventional to consider Brownian motion taking values in Hermitian matrices,
so set Xt = −iWt. Making this substitution, and converting the SDE to Itô form, gives

dUt = iUt dXt −
1

2
Ut dt. (1.3)

(Note: this equation corresponds to the normalization E tr (X2
t ) = t where tr is the normalized trace.) The

distribution of Ut is the heat kernel at time t; on any Lie group, this has a strictly positive smooth density for any
t > 0, cf. [29]. Hence, the above discussion proves the following.

Proposition 1.1. Let P,Q be orthogonal projections on Cd. Let Ut be the Brownian motion on the unitary group
Ud, and set Pt = UtPU

∗
t . Then for each t > 0, Pt and Q are almost surely in general position.
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Beyond the question of general position (relating only to dimension), it is interesting to consider the relative
position of the two subspaces, and how it evolves under the Brownian conjugation. The principle angles between
Pt and Q are encoded in the operator-valued angle QPtQ (whose eigenvalues are trigonometric polynomials in
said angles).

The purpose of the present paper is to address the nature of the flow of the operator-valued angle in an
infinite-dimensional context. Let A be a II1-factor – a von Neumann subalgebra of the bounded operators on
some Hilbert space H, with a unique tracial state τ . (For intuition, one may think of a limit as d → ∞ of the
algebra of d × d random matrices. We will make the notion of such a limit precise in Section 1.1; the limit can
always be identified as living in a free group factor.) Let p, q ∈ A be projections, and let p ∧ q be the projection
onto pH ∩ qH. Then p ∧ q is in A , since A is weakly closed. As in the finite dimensional setting, say that p, q
are in general position if

τ(p ∧ q) = max{τ(p) + τ(q)− 1, 0}. (1.4)

Instead of attempting to make sense of a random operator drawn from the unfathomably large group of unitaries
on H, we use the tools of free probability (Section 1.1) to proceed. We may assume that A is rich enough to
possess a free unitary Brownian motion ut (Section 1.3) free from {p, q}, by enlarging A if necessary. The
operator-valued process ut can be thought of as a limit of the Brownian motions Ut in Ud as d→∞ (cf. [3]). In
fact, the analogue of Proposition 1.1 holds true in this context.

Proposition 1.2. Let p, q be projections in a II1-factor (A , τ), and let ut be a free unitary Brownian motion in
A , freely independent from {p, q}. Set pt = utpu

∗
t . Then for each t > 0, pt and q are in general position.

Proof. In [31, Lemma 12.5], it was proved that, for any two projections p̃, q, if the algebras A = C〈p̃〉 and
B = C〈q〉 possess an L1(τ) liberation gradient j(A : B), then p, q are in general position. Letting p̃ = upu∗ for
some unitary free from {p, q}, it was proved in [31, Proposition 8.7] that this liberation gradient exists (in fact
in L2(τ) ⊂ L1(τ)) provided that the law of u possesses an L3-density with respect to the Haar measure on the
circle. In fact, the density of ut is continuous and bounded, with a density that is real analytic on the set where it
is positive, cf. [3] (refined in [31, Corollary 1.7]). This proves the proposition.

Remark 1.3. This argument was not known initially to the authors of the present paper; it was also unknown to
the authors of [2]. Indeed, [2, Thm. 8.2] gave an alternate proof of Proposition 1.2; unfortunately, this proof was
flawed (as will be discussed in Section 1.4). The present paper arose, in part, as an attempt to address this flaw.

The process t 7→ (pt, q) (as t ranges through [0,∞)) is known as the free liberation of the initial pair (p, q).
It was introduced in [31] as a technical tool for the analysis of free entropy and free Fisher information. As
t → ∞, the free unitary Brownian motion ut tends (in the weak sense) to a Haar unitary operator. (This is the
infinite-dimensional version of the statement that the heat kernel measure on the unitary group flows towards
the Haar measure.) Thus, the pair (pt, q) tends towards (upu∗, q) where u is a Haar unitary free from {p, q}.
The two operators upu∗ and q are therefore free (cf. [22]), and so the spectral measure µ of the self-adjoint
operator q1/2upu∗q1/2 = qptq is given by the free multiplicative convolution of the spectral measures of upu∗

and q separately (cf. [33]). Let τ(p) = α and τ(q) = β. Then µupu∗ = µp = (1 − α)δ0 + αδ1 while
µq = (1 − β)δ0 + βδ1. This convolution was calculated explicitly in [33, Ex. 3.6.7], via the Cauchy transform
(cf. Section 1.1): setting µ = µp � µq, the authors show that

Gµ(z) =

∫ 1

0

µ(dx)

z − x
=
z + α+ β − 2−

√
z2 − 2(α+ β − 2αβ)z + (α− β)2

2z(z − 1)
, z ∈ C+. (1.5)

The Stieltjes inversion formula (again see Section 1.1) then shows that

µ = (1−min{α, β})δ0 + max{α+ β − 1, 0}δ1 +

√
(r+ − x)(x− r−)

2πx(1− x)
1[r−,r+] dx, (1.6)
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where r± = α + β − 2αβ ± 2
√
αβ(1− α)(1− β) are the roots of the quadratic polynomial in the radical in

Equation 1.5. It should be noted that this measure is precisely the limit of the empirical eigenvalue distribution of
a Jacobi Ensemble in random matrix theory, which has recently been much studied in part due to its applications
to MANOVA (multivariate analysis of variance) problems in statistics, cf. [8, 9, 10, 11, 12, 14].

The general position rank shows up as the mass of the spectral measure µ concentrated at 1; this is no accident.
By a theorem of von Neumann (cf. [34]), p ∧ q is the weak limn→∞(pq)n, and so

τ(p ∧ q) = lim
n→∞

τ [(pq)n] = lim
n→∞

τ [(qpq)n] = lim
n→∞

∫ 1

0
xn µqpq(dx) (1.7)

which is precisely equal to µqpq{1}. Proposition 1.2 shows that this point mass at 1 is structural: it is present in
the law of qptq for all t > 0.

In the present paper, we study the law µt = µqptq for all t ≥ 0. As the calculation above shows, in the
limit as t → ∞, the operator-valued angle qptq flows towards a universal form determined only by τ(p) and
τ(q). For any t > 0, the law µt completely determines the structure of the von Neumann algebra generated by pt
and q, cf. [17, 18, 25]. Properties of this measure µt are important for the analysis of free entropy in [18]. The
main theorems of this paper relate to the analysis of this flow. Since µ (the weak limit of µt as t → ∞) has a
(structural) mass of 1 − min{α, β} at 0, it is sensible to remove this static singularity from the dynamics. The
first major theorem of this paper shows that this produces a smooth flow equation for the Cauchy transform of
µt; and the Cauchy transform itself is analytic in both z and t.

Theorem 1.4. Let p, q be projections in a II1-factor, and let ut be a free unitary Brownian motion freely inde-
pendent from {p, q}; set pt = utpu

∗
t . Let τ(p) = α and τ(q) = β, and let µt denote the spectral measure of the

operator-valued angle qptq. For t > 0 and z in the upper half-plane C+, let

G(t, z) =

∫ 1

0

µt(dx)

z − x
− 1−min{α, β}

z
. (1.8)

Then the function G is analytic in both z ∈ C+ and t > 0, and satisfies the complex PDE

∂

∂t
G =

∂

∂z

[
z(z − 1)G2 − (az + b)G

]
(1.9)

where a = 2 min{α, β} − 1 and b = |α− β|.

Remark 1.5. PDE 1.9 is qualitatively similar to the complex (inviscid) Burger’s equation, which is a well-known
example exhibiting blow-up in finite time with bounded initial data, as well as shock behavior. There is no reason
to expect the stated analyticity result to follow from the PDE; in fact, our analysis will use tools from PDE,
complex analysis, and from free probability to prove the a priori analyticity (in both variables) of the function G.

A corollary to Theorem 1.4 is the following discontinuity result for the flow of the joint law of (pt, q).

Corollary 1.6. Let p, q be projections and let ut be a free unitary Brownian motion and u∞ a Haar unitary,
both freely independent from {p, q}. Set pt = utpu

∗
t and p∞ = u∞pu

∗
∞. Assume that the support of the spectral

measure of qpq is not equal to [r−, r+] (cf. Equation 1.6). Then, for all sufficiently small t > 0, the law of (p∞, q)
is not absolutely continuous with respect to the law of (pt, q).

Proof. Since the flow G(t, z) of the Cauchy transform of the spectral measure µt of qptq is analytic in t > 0 (cf.
Theorem 1.4), the support of µt flows continuously, and hence cannot equal the support [r−, r+] of the limit free
product measure µp � µq; this proves the result.
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Remark 1.7. This actually shows a somewhat stronger claim: let (Etij)0≤i,j≤1 be the four projections correspond-
ing to pt, q as in Section 4.2 below (E11 = pt ∧ q, E10 = pt ∧ q⊥, etc.). Then, if the initial support of the spectral
measure of qpq is not equal to [r−, r+], it follows that the C∗-algebras

C∗(pt, q, (E
t
ij)0≤i,j≤1) 6∼= C∗(p∞, q, (E

∞
ij )0≤i,j≤1)

for all sufficiently small t > 0.

Section 2 is concerned with the proof of Theorem 1.4. We use free stochastic calculus (Section 1.2) to
find a system of ODEs satisfied by the time-dependent moments τ((qptq)

n) for n ∈ N. These moments are
the coefficients of the Laurent-series expansion of G in a neighbourhood of ∞, and on this domain the ODEs
combine to give PDE 1.9. Analyticity, and continuation to all of C+, is then proved with careful estimates on the
growth of derivatives given by the original ODEs and iteration of the PDE.

Remark 1.8. The papers [1] and [9] consider similar situations, developing PDEs governing the flow of analytic
function transforms of spectral measures associated to the free liberation of two operators; in both cases, the
PDEs are compatible with Theorem 1.4 above. In [1], the two initial operators are assumed to be classically
independent, hence commutative; in this case, the authors were able to solve the PDE explicitly: their solution
is a dilation of the law of the free unitary Brownian motion ut, studied in [3]. The measure analogous to our
µt is given meaning as a t-free convolution, yielding a continuous interpolation from classical independence to
free independence. The paper [9] considers a situation similar to ours, with the assumption that one projection
dominates the other; hence, the scope is similarly less extensive than the general situation we presently treat.
The benefit of these specializations is that they obtain explicit solutions in particular cases, as well as unexpected
algebraic identities.

In principle, the measure µt can be recovered from the function G(t, z) via the Stieltjes inversion formula
(cf. Section 1.1). In practice, understanding the flow of the boundary values of the function from a PDE in the
interior is a very difficult problem in partial differential equations. We are, as yet, unable to complete the analysis
of the measure µt in general; however, in the special case α = β = 1

2 (corresponding to a = b = 0 in PDE 1.9),
we have the following complete analysis.

Theorem 1.9. Let µt = 1
2δ0 + νt be the spectral measure in Theorem 1.4 in the special case α = β = 1

2 . Then
for any t > 0, the measure νt possesses a continuous density ρt on (0, 1). For any t0 > 0, there is a constant
C(t0) so that, for all t ≥ t0,

ρt(x) ≤ C(t0)√
x(1− x)

. (1.10)

Finally, the function ρt is real analytic on the set {x ∈ (0, 1) : ρt(x) > 0}.

Note that the bound on ρt precisely reflects the asymptotic form the measure takes as t → ∞: in the case
α = β = 1

2 , the Jacobi density of Equation 1.6 reduces to the (shifted) arcsine law (2π)−1(x(1 − x))−1/2 on
[0, 1]; thus, we cannot expect any better behavior at the boundary of the interval. Theorem 1.9 shows that the
measure µt does not possess any mass at the endpoints: although it may blow up at x = 1, the singularity is
milder than would reflect the Cauchy transform of a point mass.

The smoothing results of Theorem 1.9 mirror similar properties of the so-called free heat flow: if µ is a
compactly-supported measure on R and σt(dx) = 1

2πt

√
(4t− x2)+ dx is the semicircular law of variance t,

then the free convolution µ � σt possesses a continuous density which is real analytic on the set where it is
> 0, cf. [5]. The techniques used to prove this theorem do not involve any PDEs, but are based on Biane’s
theory of subordination for the Cauchy transform. Motivated by those ideas, our approach to Theorem 1.9 is
to develop an analogous theory of subordination for the liberation process: we show that, changing variables
H(t, z) =

√
z
√
z − 1G(t, z), the flow of H may be encoded by a deformation of the identity in the initial

condition: H(t, z) = H(0, ft(z)) for a subordinate function ft which extends to a homeomorphism from the
closed upper half-plane C+ onto a domain Ωt ⊆ C+.
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Remark 1.10. In the recent preprint [37], Zhong has studied the multiplicative version of Biane’s free heat flow,
using related subordination technology to prove similar smoothness properties of the law of the free unitary
Brownian motion multiplied by a free unitary. These results bear on the very recent related work of Izumi and
Ueda [20], as described below in Remark 1.12 below.

Aside from the motivating question of general position for projections, the main application of the present
results is to Voiculescu’s theory of free entropy. In a (still ongoing) attempt to resolve the free group factor
isomorphism problem, Voiculescu invented free probability as a way to import tools from classical probability,
notably entropy and information theory, to produce invariants to distinguish von Neumann algebras. Motivated
both by Shannon’s original entropy constructions involving spacial microstates, and more sophisticated construc-
tions in information theory (using conjugate variables, for example), he introduced free analogues of entropy,
Fisher’s information, and mutual information of collections of non-commuting random variables, in a series of
six papers from 1993–1996; the most relevant for our purposes is [31]. Classically, there are many relationships
that hold between these information measures; the general question of proving the analogous relationships for
their free counterparts is known as the Unification Conjecture in free probability. In Section 4, we briefly describe
the precise form of the unification conjecture, and prove it in the special case of von Neumann algebras generated
by two projections (of trace 1

2 ). Our main result in this direction is as follows.

Theorem 1.11. Let p, q ∈ (A , τ) be two projections in a II1-factor, with trace τ(p) = τ(q) = 1
2 . Then the free

mutual information of p, q and the free relative entropy of p, q are equal:

i∗(p, q) = −χproj(p, q) + χproj(p) + χproj(q) = −χproj(p, q). (1.11)

The assumption on the traces is in place since it is required for Theorem 1.9; we fully expect techniques similar
to those presently developed will solve the general problem for all traces.

Remark 1.12. Theorem 1.11 was also recently proved in the preprint [20], which was posted to the arXiv seven
months after the first public version of the present manuscript. Indeed, using the Jakowski transform as in [9],
Izumi and Ueda show that µt can be identified with the spectral measure of the product of a free unitary Brownian
motion with a free unitary operator whose distribution is determined by the initial projections (p, q). Thus, the
appropriate smoothing analogues of our Theorem 1.9 follow from [37]. They use this to prove Theorem 1.11
much the same way we do below. They go further, and prove subordination results akin to our Section 3.3 below,
without the restriction that τ(p) = τ(q) = 1

2 , and they use this to give some partial results generalizing Theorem
1.11 beyond the trace 1

2 regime. The present authors find this to be a promising avenue of research.

This paper is organized as follows. The remainder of Section 1 is devoted to the relevant background for the
rest of the work presented: Section 1.1 fixes the basic ideas and notation of free probability; Section 1.2 discusses
the free Itô calculus; Section 1.3 is devoted to the free unitary Brownian motion that is central to this paper; and
Section 1.4 describes the flaw in the proof of the general position result [2, Thm. 8.2] that partly motivated the
present work. The main results of this paper are in Sections 2–4: Section 2 is the proof of Theorem 1.4; Section
3 uses this result to develop local properties of the measure µt, including the proof of Theorem 1.9; and Section
4 presents our main application, proving Theorem 1.11.

1.1 Free Probability

Here we briefly record the basic ideas and notation used in the sequel; the reader is directed to the books [22]
and [33] for a full treatment. The setting of free probability is a non-commutative probability space; we will
work in the richer framework of a W ∗-probability space (A , τ) where A is a von Neumann algebra, and τ
is a normal, faithful tracial state on A . The elements in A are called (non-commutative) random variables.
The motivating example is the space A = EndC(Cd) ⊗ L∞(Ω,F ,P) of all random matrices with bounded
entries (over a probability space (Ω,F ,P)); here the tracial state is τ = 1

dTrd ⊗ E, the expected normalized
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trace. Voiculescu’s key observation was that this W ∗-probability space can be used to approximate (in the sense
of moments) non-commutative random variables in infinite-dimensional von Neumann algebras, and classical
independence combined with random rotation of eigenvectors for random matrices gives rise to a more general
independence notion modeled on free groups.

Definition 1.13. Let (A , τ) be a W ∗-probability space. The ∗-subalgebras A1, . . . , An ⊆ A are called free
or freely independent if, given any centered elements ai ∈ Ai, τ(ai) = 0, and any sequence i1, i2, . . . , im ∈
{1, . . . , n} with ik 6= ik+1 for 1 ≤ j < m, τ(ai1ai2 · · · aim) = 0. Two random variables a, b ∈ A are freely
independent if the ∗-subalgebras they generate are freely independent.

Free independence is a moment-factorization condition. For example, if a and b are freely independent, then
τ(anbm) = τ(an)τ(bm) for any n,m ∈ N, coinciding the classical independence of bounded random vari-
ables; for non-commutating variables, freeness includes more complicated factorizations such as τ(abab) =
τ(a2)τ(b)2 + τ(a)2τ(b2) − τ(a)2τ(b)2. Freeness is modeled on freeness in group theory. Let A = L(Fk)
denote the free group factor with k generators u1, . . . , uk. (L(Fk) is the von Neumann algebra generated by the
left-regular representation of the free group Fk on `2(Fk); i.e. the von Neumann algebra generated by convolu-
tion on the free group.) Then subalgebras generated by disjoint subsets of the generators {u1, . . . , uk} are freely
independent.

If {(An, τn) : 1 ≤ n ≤ ∞} are W ∗-probability spaces, and k ∈ N, a sequence an = (a1
n, . . . , a

k
n) ∈ (An)k

is said to converge in distribution to a = (a1, . . . , ak) ∈ A k
∞ if, for any polynomial P in k non-commuting

indeterminates, τn[P (an)]→ τ∞[P (a)] as n→∞. That is: each mixed moment in an converges to that moment
in a. Such a sequence is said to be asymptotically free if its limit consists of random variables a1, . . . , ak that
are freely independent.

Proposition 1.14 ([22, 33]). Let Xn and Yn be n×n random matrices with all moments finite, and suppose that
each has a limit in distribution separately. Let Un be a unitary matrix sampled from the Haar measure on U(n),
independent from Xn and Yn. Then (Xn, UnYnU

∗
n) are asymptotically free.

Proposition 1.14 asserts that freeness is an asymptotic statement about the eigenvectors of random matrices: free-
ness means that their eigenspaces are independently, uniformly randomly rotated against each other. This result
allows the realization of free random variables and stochastic processes as limits of random matrix ensembles;
more on that in Section 1.2.

If a ∈ (A , τ) is a single self-adjoint random variable, it possesses a spectral resolution Ea taking values in
the projections of A . The composition τ ◦ Ea produces a probability measure µa on the spectrum of a, known
as the spectral measure of a; it is determined by the moments of a:

τ(an) =

∫
R
xn µa(dx).

In general the non-commutative distribution of a random vector a ∈ A k is the set of all traces of non-commutative
polynomials in a; in the case of a single self-adjoint element (k = 1), these moments are encoded by the single
measure µa, coinciding with the law of a classical random variable. In the case of a self-adjoint random matrix
a, µa is the average empirical eigenvalue distribution (the average of the random probability measure placing a
point-mass at each eigenvalue of the matrix).

Definition 1.15. Let µ be a compactly-supported finite positive measure on R. The Cauchy transform Gµ is the
analytic function on the upper half-plane C+ defined by

Gµ(z) =

∫
R

1

z − x
µ(dx). (1.12)

7



The function Gµ is analytic on C− suppµ, but does not have a continuous extension across suppµ. A generally
useful uniform estimate for the Cauchy transform in the upper half-plane is

|Gµ(z)| ≤ µ(R)

|=z|
. (1.13)

Another reason it is customary to restrict it to the upper half-plane is that the measure can be recovered from its
action there, via the Stieltjes inversion formula:

µ(dx) = − 1

π
lim
ε↓0
=Gµ(x+ iε). (1.14)

The limit in Equation 1.14 is a weak limit: if f is a continuous test function, the integral of f against the ε-
dependent measure on the right converges to

∫
f dµ; if µ possesses a sufficiently integrable continuous density,

the limit is also true pointwise for the density. If µ(dx) = ρ(x) dx where ρ ∈ Lp(R) for some p ∈ (0,∞), then
the Hilbert transform

Hρ(x) ≡ 1

π
p.v.

∫
ρ(y)

x− y
dy (1.15)

is also in Lp, and gives the boundary values of the real part of Gµ; that is

− 1

π
lim
ε↓0
=Gµ(x+ iε) = ρ(x),

1

π
lim
ε↓0
<Gµ(x+ iε) = Hρ(x). (1.16)

The Stieltjes inversion formula is also robust under vague limits of measures.

Theorem 1.16 (Stieltjes continuity theorem). Let µn be a sequence of probability measures on R.

(1) If µn → µ weakly, then Gµn → Gµ uniformly on compact subsets of C+.

(2) Conversely, if Gµn → G pointwise on C+, then G is the Cauchy transform of a finite positive measure
µ, and µn → µ vaguely. If it is known a priori that G = Gµ for a probability measure µ, then µn → µ
weakly.

It is possible for mass to escape at∞ in a vague limit; for example, it is possible for Gµn → 0 pointwise. In our
applications, the limit will be directly identified as the Cauchy transform of a probability measure.

Freeness, which is a property of moments (hence of distributions), can be encoded in terms of the Cauchy
transform. Given a compactly-supported probability measure µ, the R-transform Rµ is the analytic function on
a neighborhood of the identity in the upper half-plane determined by the functional equation

Gµ(Rµ(z) + 1/z) = z, z ∈ C+, |z| small. (1.17)

The R-transform in fact determines the Cauchy transform, by analytic continuation, modulo the constraint
lim|z|→∞ zGµ(z) = µ(R) = 1. It is the free analogue of the (log-)Fourier transform: it linearizes freeness.

Proposition 1.17 ([33]). Let a, b be self-adjoint random variables. Then a, b are freely independent if and only if

Rµa+b(z) = Rµa(z) + Rµb(z)

for all sufficiently small z ∈ C+.
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This highlights the fact that free independence yields a free convolution operation on measures. Given two
(compactly-supported) probability measures µ, ν, their (additive) free convolution µ � ν is the measure deter-
mined by Rµ�ν = Rµ + Rν . That is: realize µ and ν as the laws of two free random variables a, b; then µ� ν
is the law of a+ b.

There is a similar notion of (multiplicative) free convolution for positive operators. If a and b are free, then
the law of a1/2ba1/2 is denoted µa � µb. It is determined through another analytic function transform known
as the S -transform. For a compactly-supported probability measure µ, let χµ(z) = 1

zGµ(1
z ) − 1 be its shifted

moment-generating function, defined in a neighborhood of 0. The S -transform Sµ is the analytic function
defined in a neighborhood of 0 by the functional equation

χµ

(
z
z+1Sµ(z)

)
= z, |z| small. (1.18)

Then Sµ�ν(z) = Sµ(z)Sν(z), as shown in [33]. It is through this operation that the free Jacobi law of Equation
1.6 was determined.

1.2 Free Brownian Motion and Free Stochastic Calculus

LetXn(t) denote an n×n Hermitian matrix-valued Brownian motion: the upper-triangular entries [Xn(t)]ij , i <
j are independent complex Brownian motions of total variance t/n; the diagonal does not matter to the limit.
Then there is a W ∗-probability space (A , τ) in which the limit in distribution of any collection of instances of
Xn at different times (Xn(t1), Xn(t2), . . . , Xn(tk)) for 0 ≤ t1 < t2 < · · · < tk may be realized. For fixed
t, Xn(t) is a Gaussian unitary ensemble, whose limit empirical eigenvalue distribution is Wigner’s semicircle
law σt(dx) = 1

2πt

√
(4t− x2)+ dx [35, 36]; hence the limits xt1 , . . . , xtk are semicircular random variables.

Mirroring the isonormal Gaussian process construction of Brownian motion, the limit may be realized in any
W ∗-probability space rich enough to contain an infinite sequence of freely independent identically distributed
semicircular random variables (e.g. any free group factor). The limit xt is a non-commutative stochastic process
with properties analogous to Brownian motion.

Definition 1.18. A(n additive) free Brownian motion in a W ∗-probability space (A , τ) is a non-commutative
stochastic process (xt)t≥0 with the following properties:

(1) The increments of xt are freely independent: for 0 ≤ t1 < t2 < · · · < tk,

xt2 − xt1 , xt3 − xt2 , . . . , xtk − xtk−1

are freely independent.

(2) The process is stationary, with semicircular increments: for 0 ≤ s < t, the law of xt − xs is σt−s.

(3) The A -valued function t 7→ xt is weakly continuous.

Free Brownian motion is the limit of matrix-valued Brownian motion; it can also be constructed as an isonormal
process, or through a Fock space construction, cf. [6]. With the properties of Definition 1.18 in hand, the standard
construction of the Itô integral may be mirrored. If θt is a process adapted to xt (meaning that θt is in the von
Neumann subalgebra generated by {xs}s≤t for each t ≥ 0), then one can define the stochastic integral∫

θt dxt

as an L2(A , τ)-limit of step functions of the form
∑

k θtk(xtk − xtk−1
). The relationship φt =

∫
θt dxt is

abbreviated as dφt = θt dxt. A (left) free Itô process yt is a stochastic process of the form

yt =

∫ t

0
θs dxs +

∫ t

0
φs ds (1.19)
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where θt and φt are adapted processes; here
∫ t

0 θs dxs is short-hand for
∫
θs1[0,t](s) dxs and so forth. Evidently,

a free Itô process is adapted. Equation 1.19 is usually written in the form

dyt = θt dxt + φt dt. (1.20)

This stochastic differential notation is useful, and allows for succinct description of the rules of free Itô calculus.
The most important is the free Itô formula which we will use in product form:

d(ytzt) = (dyt)zt + yt(dzt) + (dyt)(dzt). (1.21)

Here yt and zt are free Itô processes. For example, if dyt = θt dxt + φt dt and dzt = θ′t dxt + φ′t dt, then

yt(dzt) = yt(θ
′
t dxt + φ′t dt) = (ytθ

′
t) dxt + (ytφ

′
t) dt

while
(dyt)zt = (θt dxt + φt dt)zt = θt dxt zt + (θtzt) dt.

The processes are non-commutative, so we must be able to make sense of such terms; moreover, the product
(dyt)(dzt) will contain mixed terms dxt dt and so forth. The rules, akin to standard Itô calculus, for these terms
are as follows:

dxt θt dxt = τ(θt) dt (1.22)

dxt dt = dt dxt = (dt)2 = 0 (1.23)

Equation 1.22 may seem counter-intuitive from classical Itô calculus: for a standard 1-dimensional Brownian
motion Bt, (dBt)

2 = dt. It is easy to calculate, however, that for n × n matrix-valued Brownian motion
Xn(t) and an adapted matrix-valued process Yn(t), the Itô product-rule takes the form dXn(t)Y (t)dXn(t) =
1
nTr (Yn(t)) dt. Therefore, Equation 1.22 follows from standard trace-concentration results, cf. [6]. One final
useful result is that free Itô integrals of adapted processes, like their classical cousins, are centered; i.e.

τ(θt dxt) = 0. (1.24)

The standard approach from classical stochastic calculus (using the Picard iteration technique, for example) can
then be used to solve free stochastic differential equations of the form

dyt = a(t, yt) dxt + b(t, yt) dt (1.25)

for sufficiently smooth and slowly-growing functions a, b : R+ × A → A . The reader is referred to [6, 7] for
details.

Remark 1.19. As the calculations following Equation 1.21 demonstrate, the product of two left free Itô processes
is not, in general, a left free Itô process: it may contain terms like dxt θt in differential form, which is not equal to
θt dxt. A proper treatment of free Itô calculus should be formulated in terms of biprocesses t 7→ ωt ∈ A ⊗A that
can act on the left and the right simultaneously. Biane and Speicher develop this theory in [6]; the corresponding
stochastic integral is denoted ∫

ωt]dxt,

defined as an L2-limit of sums of the form
∑

k θtk(xtk − xtk−1
)φtk where ωt is approximated by

∑
k θtk⊗ φtk .

We have described free Itô calculus in slightly imprecise terms to avoid the new notational complexity; for our
purposes, the more general theory is essentially unnecessary. The interested reader can find a careful overview in
[21].
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1.3 Free Unitary Brownian Motion

Introduced in [3], the free unitary Brownian motion is the solution to the free Itô stochastic differential equation

dut = iut dxt −
1

2
ut dt (1.26)

with initial condition u0 = 1; here, as usual, xt is a(n additive) free Brownian motion. It would, perhaps, be most
accurate to call the solution of this free SDE a left free unitary Brownian motion. To be sure, note that the adjoint
u∗t satisfies

du∗t = (dut)
∗ = −idxt u∗t −

1

2
u∗t dt (1.27)

since xt is self-adjoint. Equation 1.26 is the exact free analogue of Equation 1.3 for the finite-dimensional unitary
Brownian motion. Indeed, this comes from the fact that ut is the limit in distribution of the Brownian motion on
the unitary group, in the same sense that xt is the limit in distribution of the Hermitian-matrix valued Brownian
motion. It is a unitary-valued stochastic process, whose distribution is a continuous function on the unit circle
for each t > 0. Biane calculated the moments of this measure:

τ((ut)
k) = e−kt/2

k−1∑
j=0

(−t)j

j!

(
k

j + 1

)
kj−1, k ≥ 0. (1.28)

Using these moments, it is possible to compute an implicit description of the density of µut (with respect to the
uniform probability measure on the unit circle); for t < 2, the measure is supported in a strict symmetric subset,
and then achieves full support for t ≥ 2.

Analogous to Definition 1.18, and in line with the properties of the Brownian motion on the unitary groups,
the free unitary Brownian motion has the following properties, which can be derived directly from the stochastic
differential equation 1.26.

Proposition 1.20 ([3]). Let νt be the measure on the unit circle possessing the moments on the right-hand-side
of Equation 1.28. Then the free unitary Brownian motion satisfies the following properties.

(1) The multiplicative increments of ut are freely independent: for 0 ≤ t1 < t2 < · · · < tk,

u∗t1ut2 , u
∗
t2ut3 , . . . , u

∗
tk−1

utk

are freely independent.

(2) The process is stationary: for 0 ≤ s < t, the law of the unitary random variable utu∗s is µut−s .

(3) The A -valued function t 7→ ut is weakly continuous.

Comparable statements can be made about the right free unitary Brownian motion u∗t .

1.4 The Flaw in [2, Thm. 8.2]

The final theorem in the first author’s paper [2] claimed to prove the motivating theorem of the present paper:
if p, q are projections in a W ∗-probability space (A , τ), and if and ut is a free unitary Brownian motion, freely
independent from {p, q}, then pt = utpu

∗
t and q are in general position for all t > 0. The idea of the given

proof was as follows. First, by making replacements p ↔ 1− p and q ↔ 1− q if necessary, it suffices to prove
the theorem in the case τ(p), τ(q) ≤ 1

2 , in which case the general position statement is that τ(pt ∧ q) = 0. Let
rt = pt ∧ q, and define a function Ft : R+ → R by

Ft(s) = τ [(rtpsrt − rt)2], s ≥ 0.
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The function Ft is non-negative. Since rt is a projection onto a subspace of the image of pt, rtptrt = pt
and so Ft(t) = 0; hence Ft(s) has a minimum at s = t. The claim is then made that the function Ft is
differentiable, and so F ′t(t) = 0. Free Itô calculus is then applied to calculate the derivative; it is then claimed
that F ′t(t) ≤ −τ(rt)

2τ(p). Thus, F ′t(t) < 0 unless τ(rt) = 0 as required.
There are two flaws with this argument. The first, fairly subtle, is the assumption of differentiability. The

stochastic process s 7→ (rtpsrt − rt)2 is manifestly not adapted to the filtration generated by (us)s≥0: for s < t,
it depends on the value of ut. It is only adapted for s ≥ t, in which case the tools of Itô calculus indeed apply as
stated. Thus, it was correctly demonstrated that the function Ft(s) has a minimum at s = t, and is differentiable
for s ∈ [t,∞) (meaning right-differentiable at s = t). If it were indeed true that α′t(t) ≤ −τ(rt)

2τ(p), the
argument would remain valid: a right-differentiable function cannot have a minimum at a point where the right-
derivative is strictly negative. Unfortunately, there was also a calculation error in the determination of this
derivative. In fact:

Proposition 1.21. The right-derivative of Ft satisfies F ′t(t) = 2τ(rt)(1− τ(p)) ≥ 0.

This produces no contradiction to the possibility that τ(rt) > 0, however: since the function Ft(s) is not known
to be differentiable in a neighborhood of s = t, its right-derivative may well be strictly positive at the minimum
(with behavior akin to the function s 7→ |s − t|, for example). The proof of Proposition 1.21 is delayed until
Section 2.2.

It is possible this proof could be mended using a free version of stochastic calculus for non-adapted processes,
which has yet to be developed. In the classical case, such techniques are based on the Malliavin calculus [23],
which does have an analogue in the world of free probability, developed in [6, 7] and further developed in
the second author’s recent paper [21]. Nevertheless, even if such a non-adapted calculus were applicable and
mirrored the classical behavior, it is likely the function Ft(s) could still not be proved differentiable at the point
s = t, but only on the complement of this point in R+. Thus, to prove the general position claim, fundamentally
different techniques are required; this is part of the impetus for the present paper.

2 The Flow of the Spectral Measure µt
2.1 The Flow of Moments

Let p, q ∈ A be projections with τ(p) = α and τ(q) = β. Let ut be a free unitary Brownian motion, free from
p, q, and (as usual) define pt = utpu

∗
t for t ≥ 0. Our present goal is to understand the moments

gn(t) = τ [(qptq)
n] n ≥ 1, t ≥ 0. (2.1)

We will use stochastic calculus to derive a system of ODEs satisfied by the functions gn on (0,∞). To that end,
we need a generalization of the Itô product rule of Equation 1.21 to products of many adapted processes. An easy
induction argument shows that if a1(t), . . . , an(t) are adapted processes then

d(a1 · · · an) =

n∑
j=1

a1 · · · aj−1 daj aj+1 · · · an +
∑

1≤i<j≤n
a1 · · · ai−1 dai ai+1 · · · aj−1 daj aj+1 · · · an.

(The induction follows from the fact that dai daj dak = 0 for any i, j, k; this follows from repeated applications
of the rules of Equation 1.23.) Specializing to the case a1 = · · · = an = a, we have

d(an) =
n∑
j=1

aj−1 da an−j +
∑

1≤i<j≤n
ai−1 da aj−i−1 da an−j (2.2)
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(Note: Equation 2.2 only makes sense for n ≥ 2.) We will apply this to the adapted process at = qptq, and then
take the trace to find dgn(t). This affords immediate simplifications:

τ [d(an)] =
n∑
j=1

τ [aj−1 da an−j ] +
∑

1≤i<j≤n
τ [ai−1 da aj−i−1 da an−j ]

=
n∑
j=1

τ [an−1 da] +
∑

1≤i<j≤n
τ [an−(j−i)−1 da a(j−i)−1 da]

where we have used the trace property and combined terms on the left. The terms in the first sum do not depend
on the summation variable j, and so this simply becomes nτ [an−1 da]. In the second summation, the summands
depend on the summation variables i, j only through their difference k = j − i which ranges from 1 up to n− 1.
We therefore reindex by this variable, and that sum becomes

∑
1≤i<j≤n

τ [an−(j−i)−1 da a(j−i)−1 da] =
n−1∑
k=1

∑
1≤i<j≤n
j−i=k

τ [an−k−1 da ak−1 da].

For fixed k ∈ {1, . . . , n− 1}, the number of pairs (i, j) with j − i = k is equal to n− k, and so this summation
S becomes

S =
n−1∑
k=1

(n− k)τ [an−k−1 da ak−1 da]. (2.3)

Reindexing j = n− k shows that this sum is also given by

S =
n−1∑
j=1

j τ [aj−1 da an−j−1 da]. (2.4)

Using the trace property, adding Equations 2.3 and 2.4 gives the simplification

2S =

n−1∑
j=1

(n− j + j) τ [an−j−1 da aj−1 da] = n

n−1∑
j=1

τ [an−j−1 da aj−1 da].

Thus, we have

τ [d(an)] = n τ [an−1 da] +
1

2
n
n−1∑
j=1

τ [an−j−1 da aj−1 da]. (2.5)

Now, at = qptq and so (applying the Itô product rule 1.21 twice) dat = qdptq. To evaluate the differential dpt,
the product rule again gives

dpt = d(utpu
∗
t ) = (dut)pu

∗
t + ut[d(pu∗t )] + (dut)[d(pu∗t )],

and since p is constant with respect to time,

dpt = (dut)pu
∗
t + utpdu

∗
t + (dut)p(du

∗
t ).

We now substitute the stochastic differential equations 1.26 and 1.27 to express dpt as

dpt = (iut dxt −
1

2
ut dt)pu

∗
t + utp(−idxt u∗t −

1

2
u∗t dt) + (iut dxt −

1

2
ut dt)p(−idxt u∗t −

1

2
u∗tdt).
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The first two terms simplify to give

iut dxt pu
∗
t − iutp dxt u∗t − utpu∗t dt.

The final term has only one surviving factor: by Equation 1.22

(iut dxt)p(−idxt u∗t ) = utdxt p dxtu
∗
t = utτ(p)u∗t dt = τ(p) dt.

Altogether, then, we have

dpt = −utpu∗t dt+ iut dxt pu
∗
t − iutp dxt u∗t + τ(p) dt. (2.6)

Recalling that τ(p) = α and that utpu∗t = pt, the first and last term combine to (α−pt) dt. For the middle terms,
it is useful to introduce a new process. Let

dyt = iut dxt u
∗
t . (2.7)

While it is easy to see that this SDE has a unique solution yt (satisfying y0 = 0), we need not concern ourselves
with this fact. Indeed, all that is important is that the rules (Equations 1.22 and 1.23) of Itô calculus applied with
yt instead of xt take the following form. If θt is an adapted process, then

dyt θt dyt = (iut dxt u
∗
t )θt(iut dxt u

∗
t ) = −utτ(u∗t θtut)u

∗
t dt = −τ(θt) dt (2.8)

and
dyt dt = dt dyt = (dt)2 = 0. (2.9)

Now, Equation 2.6 can be rewritten as

dpt = (α− pt) dt+ dyt pt − pt dyt. (2.10)

Thus, with at = qptq, it follows that

dat = q dpt q = (αq − at) dt+ q dyt ptq − qpt dyt q. (2.11)

We now simplify the first term in Equation 2.5.

an−1
t dat = an−1

t (αq − at) dt+ an−1
t q dyt ptq − an−1

t qpt dyt q.

By Equation 1.24, the last two terms have trace 0, and so we simply have

τ(an−1
t dat) = τ [an−1

t (αq − at)] dt = [α τ(an−1
t )− τ(ant )] dt (2.12)

where we have simplified an−1
t q = (qptq)

n−1q = (qptq)
n−1 = an−1

t since q2 = q.
For the second term (the summation) in Equation 2.5, it is convenient to make yet another transformation.

Define zt by
dzt = q dyt ptq − qpt dyt q. (2.13)

Again, one can use standard theory to show that there is a unique adapted process with z0 = 0 satisfying this
SDE, but this is not important for present considerations. The following lemma expresses the form of the Itô
calculus in terms of the process zt.

Lemma 2.1. Let zt be defined by Equation 2.13. Then dzt dt = dt dzt = (dt)2 = 0, and if θt is an adapted
process, then

dzt θt dzt = [−2τ(atθt)at + τ(atθt)q + τ(qθt)at] dt. (2.14)
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Proof. Since zt is a stochastic integral, the Itô rules regarding product with dt apply as usual. For Equation 2.14,
we simply expand

dzt θt dzt = (q dyt ptq − qpt dyt q)θt(q dyt ptq − qpt dyt q)
= q dyt (ptqθtq) dyt ptq − q dyt (ptqθtqpt) dyt q − qpt dyt (qθtq) dyt ptq + qpt dyt (qθtqpt) dyt q.

Applying Equation 2.8 to each of these four terms yields

−q · τ(ptqθtq) · ptq dt+ q · τ(ptqθtqpt) · q dt+ qpt · τ(qθtq) · ptq dt− qpt · τ(qθtqpt) · q dt.

Using the trace property, and simplifying with the relations q2 = q, p2
t = pt, and qptq = at, yields

dzt θt dzt = −τ(atθt)at dt+ τ(atθt)q dt+ τ(qθt)at dt− τ(atθt)at dt,

which simplifies to give Equation 2.14.

Refer now to the summands in the second term in Equation 2.5. From Equations 2.11 and 2.13, we have

dat = (αq − at) dt+ dzt.

Hence, for j ∈ {1, . . . , n− 1},

an−j−1
t dat a

j−1
t dat = an−j−1

t [(αq − at) dt+ dzt] a
j−1
t [(αq − at) dt+ dzt].

We may expand this into four terms. However, since dt commutes with everything and, by Lemma 2.1 dt dzt = 0,
and as always (dt)2 = 0, the only surviving term is

an−j−1
t dat a

j−1
t dat = an−j−1

t dzt a
j−1
t dzt.

Employing Equation 2.14 of Lemma 2.1, we therefore have

an−j−1
t dat a

j−1
t dat = an−j−1

t [−2τ(ajt )at + τ(ajt )q + τ(qaj−1
t )at] dt.

Taking the trace, we have

τ(an−j−1
t dat a

j−1
t dat) =

[
−2τ(ajt )τ(an−jt ) + τ(ajt )τ(an−j−1

t q) + τ(qaj−1
t )τ(an−jt )

]
dt. (2.15)

Provided j−1 6= 0 and n−j−1 6= 0 (i.e. n ≥ 4 and j ∈ {2, . . . , n−2}), qaj−1
t = aj−1

t and qan−j−1
t = an−j−1

t ,
as per the discussion following Equation 2.5. So, in this regime, we have

τ(an−j−1
t dat a

j−1
t dat) =

[
−2τ(ajt )τ(an−jt ) + τ(ajt )τ(an−j−1

t ) + τ(aj−1
t )τ(an−jt )

]
dt, 2 ≤ j ≤ n− 2.

(2.16)
The case j = 1 corresponds to τ(an−2

t dat dat), while j = n − 1 corresponds to τ(dat a
n−2 dat). By the

trace property, these are equal. In each case, one of the q-terms is τ(an−2
t q) = τ(an−2

t ), while the other is
τ(a0

t q) = τ(q) = β. So, we have

τ(an−j−1
t dat a

j−1
t dat) =

[
−2τ(at)τ(an−1

t ) + τ(at)τ(an−2
t ) + βτ(an−1

t )
]
dt, j ∈ {1, n− 1}. (2.17)

Hence, the second term in Equation 2.5 is equal to

n[−2τ(at)τ(an−1
t ) + τ(at)τ(an−2

t ) + βτ(an−1
t )] dt

+
1

2
n
n−2∑
j=2

[−2τ(ajt )τ(an−jt ) + τ(ajt )τ(an−j−1
t ) + τ(aj−1

t )τ(an−jt )] dt
(2.18)
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where the summation is taken to be 0 in the case n ≤ 3. Combining Equations 2.12 and 2.18 with Equation 2.5,
and using the notation gn(t) = τ(ant ), we therefore have

dgn = τ [d(an)] = [nα gn−1 − n gn − 2n g1gn−1 + n g1gn−2 + nβ gn−1] dt

+
1

2
n
n−2∑
j=2

[−2gjgn−j + gjgn−j−1 + gj−1gn−j ] dt.
(2.19)

From here we see that gn is actually differentiable, and that Equation 2.19 is a differential equation. One more
simplification is in order. By making the change of index k = n− j, note that

n−2∑
j=2

gjgn−j−1 =

n−2∑
k=2

gn−kgk−1.

Hence, the second and third summands in the second line of Equation 2.19 have the same sum, and we have

g′n = −n gn + n(α+ β)gn−1 − 2n g1gn−1 + n g1gn−2 +
1

2
n

n−2∑
j=2

[−2gjgn−j + 2gj−1gn−j ]. (2.20)

We can then recombine the third and fourth terms (just before the summation) as follows:

− 2n g1gn−1 + n g1gn−2 +
1

2
n

n−2∑
j=2

[−2gjgn−j + 2gj−1gn−j ]

=

−ng1gn−1 − n
n−2∑
j=2

gjgn−j − ngn−1g1

+

ng1gn−2 + n
n−2∑
j=2

gj−1gn−j


=− n

n−1∑
j=1

gjgn−j + n
n−1∑
j=2

gj−1gn−j .

Combining this with Equation 2.20, we are led to the following result.

Proposition 2.2. Let {gn : n ≥ 1} be defined as in Equation 2.1. Then gn is continuous on [0,∞) and
differentiable on (0,∞) for each n. Furthermore, the functions gn satisfy the following infinite system of ordinary
differential equations.

g′1 = −g1 + αβ (2.21)

g′2 = −2g2 + 2(α+ β)g1 − 2g2
1 (2.22)

g′n = −ngn + n(α+ β)gn−1 − n
n−1∑
j=1

gjgn−j + n
n−1∑
j=2

gj−1gn−j , n ≥ 3. (2.23)

Note that similar equations appear in [9] (see also [16, 31]). It will be convenient to define g0 ≡ α+β. With this
convention, Equations 2.22 and 2.23 can be written in the more compact form

g′n = −n

gn − n−1∑
j=1

(gj − gj−1)gn−j

 , n ≥ 2. (2.24)
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2.2 The Proof of Proposition 1.21

Our goal here is to calculate the right-derivative of Ft(s) = τ [(rt − rtpsrt)
2] at s = t. The process s 7→

(rt − rtpsrt)2 is adapted for s ∈ [t,∞), and so we may use the tools of Itô calculus to compute this derivative.
To begin, we expand

(rt − rtpsrt)2 = r2
t − r2

t psrt − rtpsr2
t + (rtpsrt)

2 = rt − 2rtpsrt + rtpsrtpsrt.

Recalling that t is constant, the stochastic differential is

−2rtdpsrt + d(rtpsrtpsrt).

Using the Itô product rule 1.21, the second term expands to

d[(rtpsrt)(psrt)] = (rtdpsrt)psrt + rtpsrt(dpsrt) + d(rtpsrt) · d(psrt)

= rtdpsrtpsrt + rtpsrtdpsrt + rtdpsrtdpsrt.

Combining and taking the trace, this yields

dFt(s) = τ [d(rt − rtpsrt)2] = τ [−2rtdpsrt + rtdpsrtpsrt + rtpsrtdpsrt + rtdpsrtdpsrt].

Using the trace property (and the fact that rt = r2
t ), this simplifies to three terms:

dFt(s) = −2τ(rtdps) + 2τ(rtpsrtdps) + τ(rtdpsrtdps). (2.25)

From Equation 2.10 above, we have dps = (τ(p)− ps) dt+ dys ps − ps dys where the process ys is determined
by fSDE 2.7, and obeys the Itô calculus of Equations 2.8 and 2.9.

We consider now the three terms in Equation 2.25 separately. First:

τ(rtdps) = [−τ(rtps) + τ(p)rt] ds+ iτ(rt dys ps)− iτ(rt ps dys).

The last two terms are 0: each can be expressed in the form τ(θs dxs) where θs is adapted (since s ≥ t), and Itô
integrals are centered. Thus

τ(rtdps) = [−τ(rtps) + τ(p)τ(rt)] ds. (2.26)

Now for the second term in Equation 2.25. Combining with Equation 2.10, we have

τ(rtpsrtdps) = [−τ(rtpsrtps) + τ(rtpsrt)τ(p)] ds+ iτ(rtpsrt dys ps)− iτ(rtpsrtps dys).

Again, the last two terms are of the form τ(θs dxs) for adapted θs, and so we have

τ(rtpsrtdps) = [−τ((rtps)
2) + τ(rtps)] ds. (2.27)

Finally, we come to the third term in Equation 2.25. We must calculate the trace of

(rtdps)
2 = ([−rtps + τ(ps)rt] ds+ rt dys ps − rtps dys)2.

All products involving the ds term vanish, since ds2 = dsdys = 0 (cf. Equation 2.9). Thus, we simply have

(rtdps)
2 = (rt dys ps − rtps dys)2

= (rt dys ps − rtps dys)2 = rtdyspsrtdysps − rtdyspsrtpsdys − rtpsdysrtdysps + rtpsdysrtpsdys.

Now using Equation 2.8, these terms simplify as
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• rtdyspsrtdysps = −τ(psrt)rtps ds

• rtdyspsrtpsdys = −τ(psrtps)rt ds = −τ(psrt)rt ds

• rtpsdysrtdysps = −rtpsτ(rt)ps ds = −τ(rt)rtps ds

• rtpsdysrtpsys = −τ(rtps)rtps ds

Summing and taking the trace we have

τ [(rtdps)
2] = [−2(τ(psrt))

2 + 2τ(rt)τ(psrt)] ds. (2.28)

Combining Equations 2.26, 2.27, and 2.28 with Equation 2.25, we have

dFt
ds

(s) = −2[−τ(rtps) + τ(p)τ(rt)] + 2[−τ((rtps)
2) + τ(rtps)] + [−2(τ(rtps))

2 + 2τ(rt)τ(rtps)]

= 2
(
2τ(rtps) + τ(rt)[τ(rtps)− τ(p)]− [τ((rps)

2) + (τ(rps))
2]
)
.

Evaluating at s = t, we get (using rt = r2
t = rtpt)

1

2

dFt
ds

(t) = 2τ(rtpt) + τ(rt)[τ(rtpt)− τ(p)]− [τ((rpt)
2) + (τ(rpt))

2]

= 2τ(rt) + τ(rt)[τ(rt)− τ(p)]− [τ(rt) + τ(rt)
2]

= τ(rt)− τ(rt)τ(p) = τ(rt)(1− τ(p))

as claimed in the corollary. �

2.3 Smoothness of the Moment Generating Function in t

Our next goal is to prove that the (centered) moment-generating function of µt

ψ(t, w) =
∑
n≥1

gn(t)wn (2.29)

is C∞ jointly in (t, w) for t > 0 and |w| < 1. The moments gn(t) are solutions to Equations 2.21–2.23, which
can, in principle, be solved explicitly. Presently, we only use the fact that the solution has a simple analytic form.

Lemma 2.3. For n ≥ 1, the function gn(t) of Proposition 2.2 is a polynomial in t and e−t.

Proof. To begin, we may solve Equation 2.21 explicitly: g1(t) = g1(0)e−t + αβ(1 − e−t), having the desired
form. We proceed by induction on n. Equations 2.22 and 2.23 give, for n ≥ 2, g′n + ngn = hn where hn is a
polynomial in g1, . . . , gn−1, and is therefore a polynomial in t and e−t by the induction hypothesis. The ODE
can then be written in the form d

dt [e
ntgn(t)] = enthn(t), with solution

gn(t) = e−nt
[∫ t

0
enshn(s) ds+ gn(0)

]
.

Since hn(s) is a polynomial in s and e−s, enshn(s) is a polynomial in s and e±s whose positive degree in es is
≤ n. A separate induction argument and elementary calculus show that the antiderivative of enshn(s) is therefore
also a polynomial in s and e±s whose positive degree in es is ≤ n. Thus gn(t) has the desired form, proving the
corollary.

We can also iterate the ODEs 2.21–2.23 to find a general recurrence form for the kth derivatives.
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Lemma 2.4. Let {gn}n≥1 be defined as in Equation 2.1, with g0 ≡ α+β as in Equation 2.24. Then for all t ≥ 0

and n, k ≥ 1, the kth derivative g(k)
n satisfies

g(k)
n =

k+1∑
s=0

∑
1≤j1,...,js≤n

cn,ks (j1, . . . , js)gj1 · · · gjs (2.30)

for some constants cn,ks (j1, . . . , js) satisfying |cn,ks (j1, . . . , js)| ≤ (4sn2)k.

Proof. When n = 0, g(k)
0 = 0 for k ≥ 1. When n = 1, iterating Equation 2.21 shows that g(k)

1 = (−1)k[g1−αβ],
which has the desired form of Equation 2.30 with c1,k

0 = (−1)k+1αβ, c1,k
1 (1) = (−1)k, and c1,k

s (j1, . . . , js) = 0
for s ≥ 2. For n ≥ 2, we proceed by induction on k. For the base case k = 1, we note that, by Equation 2.24,

g′n = −n

gn − n−1∑
j=1

(gj − gj−1)gn−j

 =
2∑
s=0

∑
1≤j1,...,js≤n

c1
s(j1, . . . , js)gj1 · · · gjs (2.31)

with cn,10 = 0, cn,11 (j) = −nδj,n, and

cn,12 (j1, j2) =


−n, j1 + j2 = n

n j1 + j2 = n− 1

0 otherwise.

Now for the inductive step. Assume that Equation 2.30 holds up to level k − 1. Then

g(k)
n =

d

dt
g(k−1)
n =

k∑
s=1

∑
1≤j1,...,js≤n

cn,k−1
s (j1, . . . , js)

d

dt
(gj1 · · · gjs)

=
k∑
s=1

s∑
`=1

∑
1≤j′1,...,j′s≤n

cn,k−1
s (`; j′1, . . . , j

′
s)g
′
j′1
· gj′2 · · · gj′s , (2.32)

where we have reindexed (j′1, . . . , j
′
s) = (j`, . . . , js, j1, . . . , j`−1), and the new constants cn,k−1

s (`; j′1, . . . , j
′
s)

are reordered accordingly: cn,k−1
s (`; j′1, . . . , j

′
s) = cn,k−1

s (j′s−`+2, . . . , j
′
s, j
′
1, . . . , j

′
s−`+1) (with j′1 in the `th

slot). We now relabel j′r 7→ jr, and do the internal sum over j1 first:

g′j1 = cj1,10 +

j1∑
i=1

cj1,11 (i)gi +
∑

1≤i1,i2≤j1

cj1,12 (i1, i2)gi1gi2

which yields terms of orders s− 1, s, and s+ 1 in the internal sum in Equation 2.32.∑
1≤j1,...,js≤n

cn,k−1
s (`; j′1, . . . , j

′
s) =

∑
1≤j1,...,js≤n

cn,k−1
s (`; j1, . . . , js)c

j1,1
0 · gj2 · · · gjs (2.33)

+
∑

1≤j1,...,js≤n
ck−1
s (`; j1, . . . , js)

j1∑
i=1

cj1,11 (i)gigj2 · · · gjs (2.34)

+
∑

1≤j1,...,js≤n
ck−1
s (`; j1, . . . , js)

∑
1≤i1,i2≤j1

cj1,12 (i1, i2)gi1gi2gj2 · · · gjs . (2.35)
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Reindexing (2.33) and summing over ` gives

∑
1≤j1,...,js−1≤n

(
s∑
`=1

n∑
i=1

cn,k−1
s (`; i, j1, . . . , js−1)ci,10

)
gj1 · · · gjs−1 ≡

∑
1≤j1,...,js−1≤n

dn,ks,−(j1, . . . , js−1)gj1 · · · gjs−1 ,

(2.36)
where in the case s = 1 this is just a constant. Changing the order of summation in (2.34) and summing over `
yields ∑

1≤j2,...,js,i≤n

s∑
`=1

n∑
j1=i

ck−1
s (`; j1, . . . , js)c

j1,1
1 (i)gigj2 · · · gjs ,

or, for convenience exchanging i↔ j1,

∑
1≤j1,...,js≤n

 s∑
`=1

n∑
i=j1

ck−1
s (`; i, j2, . . . , js)c

i,1
1 (j1)

 gj1 · · · gjs ≡
∑

1≤j1,...,js≤n
dn,ks,0 (j1, . . . , js)gj1 · · · gjs .

(2.37)
Finally, in (2.35), we change the order of summation between j1 and {i1, i2},

n∑
j1=1

∑
1≤i1,i2≤n

=
∑

1≤i1,i2≤n

1i2≤i1 n∑
j1=i1

+1i2>i1

n∑
j1=i2


which yields (2.35) in the form

∑
1≤j2,...,js,i1,i2≤n

s∑
`=1

1i2≤i1 n∑
j1=i1

+1i2>i1

n∑
j1=i2

 ck−1
s (`; j1, . . . , js)c

j1,1
2 (i1, i2)gi1gi2gj2 · · · gjs ,

which, after reindexing, gives ∑
1≤j1,...,js+1≤n

dn,ks,+(j1, . . . , js+1)gj1 · · · gjs+1 (2.38)

where

dn,ks,+(j1, . . . , js+1) =

s∑
`=1

1j2≤j1 n∑
i=j1

+1j2>j1

n∑
i=j2

 ck−1
s (`; i, j3, . . . , js)c

i,1
2 (j1, j2). (2.39)

Now, for any s-tuple js = (j1, . . . , js) in [n]s where [n] = {1, . . . , n}, let gjs = gj1 · · · gjs . With this
notation, combining (2.32) with (2.33–2.39), we have

g(k)
n =

k∑
s=1

 ∑
js−1∈[n]s−1

dn,ks,−(js−1)gjs−1 +
∑

js∈[n]s

dn,ks,0 (js)gjs +
∑

js+1∈[n]s+1

dn,ks,+(js+1)gjs+1


=

k+1∑
s=1

∑
js∈[n]s

(
dn,ks−1,+(js) + dn,ks,0 (js) + dn,ks+1,−(js)

)
gjs ,

with the convention that dn,ks,ε = 0 for s /∈ [k] and ε ∈ {−, 0,+}. Hence, if we define

cn,ks (js) ≡ dn,ks−1,+(js) + dn,ks,0 (js) + dn,ks+1,−(js), 1 ≤ s ≤ k + 1,
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we see that g(k)
n has the desired form (2.30), and it remains only to show that the bound |cn,ks (js)| ≤ (4sn2)k is

satisfied.
Let Cn,k−1

s = supjs∈[n]s |c
n,k−1
s (js)|. From (2.33) we have∣∣∣dn,ks,−(js−1)

∣∣∣ =

∣∣∣∣∣
s∑
`=1

n∑
i=1

cn,k−1
s (`; i, js−1)ci,10

∣∣∣∣∣ ≤ sCn,k−1
s

n∑
i=1

Ci,10 ≤ sC
n,k−1
s ,

since Ci,10 = αβ ≤ 1 if i = 1 and is 0 if i > 1. From (2.34) we have

|dn,ks,0 (js)| =

∣∣∣∣∣∣
s∑
`=1

n∑
i=j1

ck−1
s (`; i, j2, . . . , js)c

i,1
1 (j1)

∣∣∣∣∣∣ ≤ sCn,k−1
s

n∑
i=1

Ci,11 ≤ sn
2Cn,k−1

s ,

since Ci,11 ≤ i ≤ n for all i. Finally, from (2.39), we have

|dn,ks,+(js+1)| =

∣∣∣∣∣∣
s∑
`=1

1j2≤j1 n∑
i=j1

+1j2>j1

n∑
i=j2

 ck−1
s (`; i, j3, . . . , js)c

i,1
2 (j1, j2)

∣∣∣∣∣∣ ≤ 2sCn,k−1
s

n∑
i=1

Ci,12 ≤ 2sn2Cn,k−1
s .

Thus,
Cn,ks = sup

js∈[n]s
|cn,ks (js)| ≤ s(3n2 + 1)Cn,k−1

s ≤ 4sn2Cn,k−1
s .

The result now follows from the inductive hypothesis that Cn,k−1
s ≤ (4sn2)k−1.

Next, we use the equations to prove the following family of (blunt) growth estimates for the derivatives of
the moments gn(t).

Lemma 2.5. Let {gn}n≥1 be defined as in Equation 2.1. Then for each k ∈ N, the kth derivative g(k)
n is uniformly

bounded by
|g(k)
n | ≤ (k + 1)k(2n)3k+1.

Proof. For all n ≥ 1, gn(t) is the nth moment of a probability measure µt supported in [0, 1]; hence |gn(t)| ≤ 1.
By the convention used in Lemma, 2.4 g0 ≡ α+β, which is in [0, 2]. Hence, in general |gn(t)| ≤ 2 for all n ≥ 0.
Thus, referring to the recursive form of the derivative given in Equation 2.30 in the previous lemma, we have

|g(k)
n | ≤

k+1∑
s=0

∑
1≤j1,...,js≤n

|cn,ks (j1, . . . , js)||gj1 | · · · |gjs | ≤
k+1∑
s=0

∑
1≤j1,...,js≤n

(4sn2)k · 2s =
k+1∑
s=0

(2n)s(4sn2)k,

and therefore

|g(k)
n | ≤

k+1∑
s=0

(2n)k+1(4(k + 1)n2)k = (k + 1)k(2n)3k+1,

concluding the proof.

Remark 2.6. A more careful estimate is possible, showing that |g(k)
n | = O(n2k) for each k; for example, direct

estimation of Equation 2.23 gives

|g′n| ≤ n

|gn|+ (α+ β)|gn−1|+
n−1∑
j=1

|gj ||gn−j |+
n−1∑
j=2

|gj−1||gn−j |


= n (1 + α+ β + (n− 1) + (n− 2)) ≤ 2n2,

much smaller than the 64n4 bound proved in above. The improvement this bound represents over the bound
proven in Lemma 2.5 is of no consequence to our application, however.
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We now prove the main theorem of this section: that the (centered) moment-generating function ψ(t, w) =∑
n≥1 gn(t)wn is C∞ in both variables.

Proposition 2.7. The function ψ(t, w) of Equation 2.29 is C∞ jointly in both variables, for t > 0 and |w| < 1.

Proof. Since the coefficients gn(t) are uniformly bounded in modulus by 1, the power series ψ(t, ·) converges
uniformly on compact subsets of D, and analyticity is an elementary result from complex variables. Now, for
k ≥ 1 and m ≥ 0 define

ϕk,m(t, w) =

∞∑
n=m

g(k)
n (t) · n(n− 1) · · · (n−m+ 1)wn−m.

Throughout this proof (only), we use the non-standard convention that 00 = 0; thus ϕ0,0 = ψ. For fixed t ≥ 0,
by Lemma 2.5, the coefficients of this power series in w are bounded by

|g(k)
n (t) · n(n− 1) · · · (n−m+ 1)| ≤ (k + 1)k(2n)3k+1 · nm

and so by the root test, the power-series converges uniformly on compact subset of the unit disk D, defining a
function analytic in w. Similarly, for fixed |w| < 1, ϕk,m(t, w) is absolutely summable; it is a series of functions
that are continuous (by Lemma 2.3) and hence, by the Weierstraß M-test, ϕk,m(t, w) is continuous in t. This
shows that ϕk,m ∈ C0(R+ × D).

The uniform convergence of ϕk,m and pointwise convergence of ϕk−1,m (at any single point in D) imply (for
example by [26, Thm. 7.17]) that ϕk,m(·, w) is differentiable for each w and that

∂

∂t
ϕk−1,m(t, w) = ϕk,m(t, w).

By induction on k, this shows thatϕ0,m(t, w) is at leastCk in t for each k, and has time derivatives ∂k

∂tk
ϕ0,m(t, w) =

ϕk,m(t, w). Of course, by elementary complex variables,

ϕk,m(t, w) =
∂m

∂wm

∞∑
n=1

g(k)
n (t)wn =

∂m

∂wm
ϕk,0(t, w);

thus, we have shown that

ϕk,m(t, w) =
∂m

∂wm
∂k

∂tk
ϕ0,0(t, w) =

∂m

∂wm
∂k

∂tk
ψ(t, w)

for m, k ≥ 0. As we have shown that ϕk,m ∈ C0(R+ × D), this proves that ψ is C∞(R+ × D) as required.

Our next goal is to extend this result to analyticity of ψ. Analyticity in the spacial variable w ∈ D follows
immediately from the proof of Proposition 2.7. Analyticity in t is much more involved. It will pay to first translate
the ODEs of Equations 2.21–2.23 into a PDE for the Cauchy transform of µt (which is simply related to ψ(t, ·)),
and then use analytic function techniques in the spacial variable; this is the purpose of the next two sections.

Remark 2.8. The bound of Lemma 2.5 are woefully inadequate to prove analyticity in t using Taylor’s theorem,
since the coefficients grow superfactorially in k. In Section 2.5, we will use more sophisticated techniques to
prove that these Taylor series coefficients are, in fact, exponentially bounded.
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2.4 The Flow of the Cauchy Transform

The moment function ψ(t, w) of Equation 2.29 is closely related to the Cauchy transform of the measure µt,
which concerns us in this paper. Indeed, the coefficients gn(t) are the moments of µt. Since ψ(t, w) converges
uniformly for w ∈ D, taking z = 1/w for w 6= 0, we see that ψ(t, 1/z) converges uniformly for |z| > 1, and
hence by the Fubini-Tonelli theorem,∫ 1

0

∑
n≥1

(x
z

)n
µt(dx) =

∑
n≥1

1

zn

∫ 1

0
xn µt(dx) =

∑
n≥1

gn(t)
1

zn
= ψ(t, 1/z), |z| > 1.

On the other hand, since the support of µt is contained in [0, 1], for |z| > 1 the series
∑

n≥1(x/z)n converges,
and we have

1

z
ψ(t, 1/z) =

1

z

∫ 1

0

(
1

1− x/z
− 1

)
µt(dx) =

∫ 1

0

µt(dx)

z − x
− 1

z
= Gµt(z)−

1

z
, |z| > 1.

Finally, this means that the function G of Equation 1.8 is related to ψ by

G(t, z) = Gµt(z)−
1

z
+

min{α, β}
z

=
1

z
(ψ(t, 1/z) + min{α, β}) . (2.40)

From Equation 2.40 and Proposition 2.7 it follows immediately that

Corollary 2.9. The functionG(t, z) of Equation 1.8 isC∞(R+×(C−D)), and for each t ≥ 0G(t, z) is analytic
in |z| > 1. Moreover, on this domain,

∂

∂t
G(t, z) =

∂

∂t

1

z
ψ(t, 1/z) =

∑
n≥1

g′n(t)

zn+1
. (2.41)

We now combine Equation 2.41 with Equations 2.21–2.23 to deduce a partial differential equation satisfied
by G. To begin,

∂

∂t
G =

∑
n≥1

1

zn+1
g′n =

1

z2
(−g1 + αβ) +

1

z3
(−2g2 + 2(α+ β)g1 − 2g2

1)

+
∑
n≥3

1

zn+1

−ngn + n(α+ β)gn−1 − n
n−1∑
j=1

gjgn−j + n

n−1∑
j=2

gj−1gn−j

 .

By the uniform convergence on the domain |z| > 1, the order of all summations may be interchanged. It is
convenient to recombine the expression into two parts: ∂

∂tG = S1 + S2 where

S1 =
αβ

z2
−
∑
n≥1

ngn
zn+1

+ (α+ β)
∑
n≥2

ngn−1

zn+1

and

S2 = −2g2
1

z3
−
∑
n≥3

n

zn+1

n−1∑
j=1

gjgn−j +
∑
n≥3

n

zn+1

n−1∑
j=2

gj−1gn−j .

To deal with the first sum S1, note (from Equation 2.40) that

G(t, z) =
1

z
(ϕ(t, 1/z) + min{α, β}) =

min{α, β}
z

+
∑
n≥1

gn(t)

zn+1
.
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For convenience, let us define

G1(t, z) =
∑
n≥1

gn(t)

zn+1
= G(t, z)− min{α, β}

z
= Gµt(z)−

1

z
. (2.42)

Then ∂
∂tG1 = ∂

∂tG = S1 + S2. Now,

−
∑
n≥1

n

zn+1
gn =

∂

∂z

∑
n≥1

gn
zn

=
∂

∂z
(zG1) (2.43)

which holds true for |z| > 1. Similarly,

∑
n≥2

ngn−1

zn+1
=
∑
n≥1

(n+ 1)gn
zn+2

=
1

z

∑
n≥1

gn
zn+1

+
∑
n≥1

n

zn+1
gn

 ,

and employing Equations 2.42 and 2.43 this becomes∑
n≥2

ngn−1

zn+1
=

1

z

(
G1 −

∂

∂z
(zG1)

)
= − ∂

∂z
G1. (2.44)

Combining Equations 2.43 and 2.44 and simplifying, this shows that

S1 =
αβ

z2
+

∂

∂z
(zG1)− (α+ β)

∂

∂z
G1

=
αβ

z2
+G1 + (z − α− β)

∂

∂z
G1.

(2.45)

The terms in S2 can similarly be expressed in terms of G1: in fact, in terms of G2
1. For |z| > 1,

(G1)2 =

∑
n≥1

gn
zn+1

2

=
1

z2

∑
n≥2

1

zn

n−1∑
j=1

gjgn−j , |z| > 1.

Whence, for |z| > 1,

∂

∂z
(zG1)2 =

∂

∂z

∑
n≥2

1

zn

n−1∑
j=1

gjgn−j = −
∑
n≥2

n

zn+1

n−1∑
j=1

gjgn−j

= − 2

z3
g2

1 −
∑
n≥3

n

zn+1

n−1∑
j=1

gjgn−j .

(2.46)

Regarding the second term in S2, note that for each n ≥ 3

n−1∑
j=2

gj−1gn−j =
∑

j+k=n−1
j,k≥1

gjgk.

Whence, we can manipulate the sum as

(zG1)2 =
∑
n≥2

1

zn

∑
j,k≥1
j+k=n

gjgk =
∑
n≥3

1

zn−1

∑
j+k=n−1
j,k≥1

gjgk,
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and so
∂

∂z

(
z(G1)2

)
=

∂

∂z

∑
n≥3

1

zn

∑
j+k=n−2
j,k≥1

gjgk = −
∑
n≥3

1

zn+1

n−2∑
j=1

gj−1gn−j (2.47)

holds true for |z| > 1. Combining Equations 2.46 and 2.47, we have

S2 =
∂

∂z
(zG1)2 − ∂

∂z

(
z(G1)2

)
. (2.48)

We have thus proved the following result.

Proposition 2.10. Let G1(t, z) be defined (for t > 0 and |z| > 1) as in Equation 2.42. Then G1 satisfies the
partial differential equation

∂

∂t
G1 =

∂

∂z

(
z(z − 1)(G1)2 + (z − α− β)G1 −

αβ

z

)
. (2.49)

Proof. As noted following Equation 2.42, ∂
∂tG1 = S1 + S2. Simplifying Equation 2.45 reversing the product

rule,

S1 =
αβ

z2
+G1 + (z − α− β)

∂

∂z
G1 =

∂

∂z

(
−αβ
z

+ (z − α− β)G1

)
.

On the other hand, Equation 2.48 immediately yields

S2 =
∂

∂z
(zG1)2 − ∂

∂z

(
z(G1)2

)
=

∂

∂z

(
(z2 − z)G2

1

)
.

Combining these equations, which are valid for |z| > 1, yields Equation 2.49.

Remark 2.11. Since ∂
∂tG1 = ∂

∂tGµt , we can rewrite Equation 2.49 in terms of the Cauchy transform directly; it
is easy to check that the result is

∂

∂t
Gµt =

∂

∂z

(
z(z − 1)(Gµt)

2 + ((1− α) + (1− β)− z)Gµt +
(1− α)(1− β)

z

)
. (2.50)

While we have shown the equation holds only in the regime |z| > 1, we will show below that it actually holds
true on all of C+. Hence, the poor behaviour near z = 0 becomes a technical issue. It is partly for this reason that
the shifted transform G(t, z) = Gµt(z) −

1−min{α,β}
z is useful: it encapsulates the singularity in a static form,

leaving a smooth flow in the vicinity of 0, as demonstrated by the form of Equation 2.51 below.

Corollary 2.12. Let G be the shifted Cauchy transform of Equation 1.8. Then for t > 0 and |z| > 1,

∂

∂t
G =

∂

∂z

[
z(z − 1)G2 − (az + b)G

]
(2.51)

where a = 2 min{α, β} − 1 and b = |α− β|.

Proof. From Equation 2.42, G1 = G− min{α,β}
z . Consider the case α ≤ β, so G1 = G− α

z . We simply change
variables in Equation 2.49, which holds for |z| > 1. As ∂

∂tG1 = ∂
∂tG, we need only transform the quantity
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differentiated with respect to z in Equation 2.49.

z(z − 1)(G1)2 + (z − α− β)G1 −
αβ

z

=z(z − 1)
(
G− α

z

)2
+ (z − α− β)

(
G− α

z

)
− αβ

z

=z(z − 1)

(
G2 − 2α

z
G+

α2

z2

)
+ (z − α− β)G− α+

α(α+ β)

z
− αβ

z

=z(z − 1)G2 + (z − α− β − 2α(z − 1))G+
α2

z
(z − 1) +

α(α+ β)

z
− αβ

z
− α

=z(z − 1)G2 + ((1− 2α)z + α− β)G+ α2 − α.

Differentiating yields Equation 2.51 in the case α ≤ β; the reader may readily verify the formula also holds true
in the case α ≥ β.

Remark 2.13. Without prior knowledge of the structural singularity in the measure µt as t → ∞ (cf. Equation
1.6), one might simply try to change variables by removing a pole of unknown mass at 0: G = G1 + m

z . Easy
calculations show that the only masses m that transform Equation 2.49 to a form without an explicit singularity
at 0 are m = α and m = β; hence, the choice here is natural.

2.5 Analyticity of the Cauchy Transform in t

Our goal in this section is to extend Corollary 2.9 to show that G(t, z) is not only C∞ in t but, in fact, analytic in
t for |z| > 1. To do so, we will actually use the PDE 2.51 proved to hold in Corollary 2.12, together with our a
priori knowledge of analyticity in z.

Remark 2.14. PDE 2.51 is a semilinear complex PDE similar in form to the complex inviscid Burger’s equation.
In general, it exhibits all the hallmark pathological behaviour of nonlinear PDEs: blow-up in finite time, even with
uniformly bounded initial data, and shock formation. Since the equation is non-linear, Holmgren’s uniqueness
theorem does not apply. Thus, although the Cauchy-Kowalewski theorem proves the existence of an analytic
solution with given analytic initial condition, it is only unique amongst potential analytic solutions, and there
may well be non-analytic solutions with the same initial data G(0, z), so the C∞ result of Corollary 2.9 does not
immediately prove analyticity. In this section, we use the form of the PDE, together with the a priori knowledge
of analyticity in z, to show that our particular solution G(t, z) is, indeed, analytic in t as well.

We begin with the following recursion for the t-derivatives of G.

Lemma 2.15. For t > 0 and |z| > 1, and for k ≥ 0, define

Gk =
1

k!

∂k

∂tk
G(t, z).

Let p = p(z) = z(z− 1) and q = q(z) = −(az+ b), cf. Equation 2.51, so that the C∞(R+× (C−D)) function
G satisfies the PDE ∂tG = ∂z[pG

2 + qG] on its domain. Then

(k + 1)Gk+1 =
∂

∂z

p k∑
j=0

GjGk−j + qGk

 , k ≥ 0. (2.52)

Proof. The case k = 0 is the statement of PDE 2.51. Proceeding by induction, since G is C∞ we may commute
t and z derivatives. We have

(k + 2)Gk+2 =
k + 2

(k + 2)!

∂k+2

∂tk+2
G =

∂

∂t

1

(k + 1)!

∂k+1

∂tk+1
G =

∂

∂t
Gk+1, (2.53)
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and so by the inductive hypothesis

(k + 2)Gk+2 =
1

k + 1

∂

∂t

∂

∂z

p k∑
j=0

GjGk−j + qGk

 =
∂

∂z

 p

k + 1

k∑
j=0

∂

∂t
(GjGk−j) +

q

k + 1

∂

∂t
Gk

 .
Shifting the index down one in Equation 2.53 shows that 1

k+1
∂
∂tGk = Gk+1, as desired. For the quadratic term,

we use the product rule. Again utilizing Equation 2.53,

∂

∂t
(GjGk−j) =

∂Gj
∂t

Gk−j +Gj
∂Gk−j
∂t

= (j + 1)Gj+1Gk−j + (k − j + 1)GjGk−j+1.

Thus

k∑
j=0

∂

∂t
(GjGk−j) =

k∑
j=0

(j + 1)Gj+1Gk−j +
k∑
j=0

(k − j + 1)GjGk−j+1

=
k+1∑
i=1

iGiGk−i+1 +

k∑
j=0

(k − j + 1)GjGk−j+1

where we have made the substitution i = j+ 1 in the first sum. Separating off the i = k+ 1 term in the first sum
and the j = 0 term in the second sum, and relabeling j → i in the second sum, this yields

k∑
j=0

∂

∂t
(GjGk−j) = (k + 1)Gk+1G0 +

k∑
i=1

iGiGk−i+1 +
k∑
i=1

(k − i+ 1)GiGk−i+1 + (k + 1)G0Gk+1

which simplifies to

k∑
j=0

∂

∂t
(GjGk−j) = (k + 1)

[
Gk+1G0 +

k∑
i=1

GiGk+1−i +G0Gk+1

]
= (k + 1)

k+1∑
i=0

GiGk+1−i.

Combining with the equation following 2.53 and the following comment yields the result.

We will use the recursion Equation 2.52, in conjunction with analyticity of G, to prove much tighter bounds
on the derivatives Gk(t, z) than those discussed in Remark 2.8, allowing us to prove convergence of the Taylor
series of G(t, z) centered at any t > 0. First we show that the t-derivatives Gk are also analytic.

Lemma 2.16. For each k ≥ 0, and each t ≥ 0, the function Gk(t, ·) from Lemma 2.15 is analytic on C− D.

Proof. First, G0(t, ·) = G(t, ·) is analytic on C − [0, 1] (cf. Equation 1.8 and Definition 1.15), verifying the
claim in this base case. We proceed by induction. Let K be any compact subset of C − D, let t0 > 0 and let
0 < ε < t0. By Corollary 2.9,Gk(t, z) isC∞ for t ≥ 0 and |z| > 1, and thus |Gk+1(t, z)| = 1

(k+1)! |
∂k+1

∂tk+1G(t, z)|
is uniformly bounded on [t0 − ε, t0 + ε]×K. Now, for |h| < ε, the fundamental theorem of calculus asserts that

Gk(t0 + h, z)−Gk(t0, z)
h

=

∫ 1

0

∂

∂t
Gk(t0 + sh, z) ds = (k + 1)

∫ 1

0
Gk+1(t0 + sh, z) ds

with the second equality following from Equation 2.53. Thus we have∣∣∣∣Gk(t0 + h, z)−Gk(t0, z)
h

∣∣∣∣ ≤ (k + 1) sup
z∈K
|t−t0|<ε

|Gk+1(t, z)|. (2.54)

27



Let |hn| < ε be any sequence tending to 0, and let υn(z) = 1
hn

[Gk(t0 + hn, z) − Gk(t0, z)]. By the inductive
hypothesis, υn is analytic on a neighborhood of K, and Inequality 2.54 shows that the family {υn} is uniformly
bounded on K. By Montel’s theorem, there is a subsequence that converges normally to an analytic function on
K. But the sequence υn converges to ∂tGk(t0, ·) = (k + 1)Gk+1(t0, ·). This proves that Gk+1 is analytic on K,
and hence on the domain C− D as claimed.

Before proceeding to the main estimates, we state and prove a lemma which is a version of the Cauchy
estimates from complex analysis.

Lemma 2.17. Let z0 ∈ C and η > 0. If h is analytic on a neighborhood of the closed disk D(z0, η), and
0 < η′ < η, then

|h′(z)| ≤ 1

η − η′
max

ζ∈D(z0,η)
|h(ζ)|, for all z ∈ D(z0, η

′). (2.55)

Proof. From the Cauchy integral formula, if r > 0 is such that h is analytic on a neighborhood of D(z, r), then

h′(z) =
1

2πi

∮
∂D(z,r)

h(ζ)

(ζ − z)2
dζ.

Thus

|h′(z)| ≤ 1

2π

∮
∂D(z,r)

|h(ζ)|
|ζ − z|2

dζ =
1

2πr2

∮
∂D(z,r)

|h(ζ)|dζ ≤ 1

2πr2
· 2πr · max

ζ∈∂D(z,r)
|h(ζ)|. (2.56)

If z ∈ D(z0, η
′), then the closed disk D(z, η − η′) is contained in D(z0, η) where h is holomorphic; so, taking

r = η − η′ in Inequality 2.56 yields

|h′(z)| ≤ 1

η − η′
max

ζ∈∂D(z,η−η′)
|h(ζ)| ≤ 1

η − η′
max

ζ∈D(z0,η)
|h(ζ)|

as desired.

Let us introduce the following maximal functions. For k ≥ 0, t0 > 0, |z0| > 1, and 0 < η < |z0| − 1,

Mk(t0, z0; η) = max
ζ∈D(z0,η)

|Gk(t0, ζ)|, M ′k(t0, z0; η) = max
ζ∈D(z0,η)

|G′k(t0, ζ)|. (2.57)

When the point (t0, z0) is understood from context, we will shorten the notation to Mk(η) ≡ Mk(t0, z0; η) and
M ′k(η) ≡M ′k(t0, z0; η). By the analyticity result of Lemma 2.16, the Cauchy estimates of Lemma 2.17 yield the
following maximal Cauchy estimate:

M ′k(η
′) ≤ Mk(η)

η − η′
. (2.58)

We now use Inequality 2.58, together with the recursion of Equation 2.52, to prove exponential-growth bounds
for Gk inductively. The key idea is to apply the maximal Cauchy estimate repeatedly with an appropriately
chosen η′′ ∈ (η′, η). It is important that η′′ be chosen to minimize the bound for each individual term, or else the
resulting estimates blow up super-exponentially.

Proposition 2.18. Let t0 > 0 and |z0| > 1, and let 0 < η < min{|z0| − 1, 1}, so that the disc D(z0, η) of radius
η centered at z0 is contained in C−D. There is a constant c = c(z0, η) so that, for all 0 < η′ < η and all k ≥ 0,

Mk(η
′) ≤

ck(max{M0(η), 1
2})

k+1

(η − η′)k
. (2.59)
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Remark 2.19. It will be important that the constant c does not depend on t0. Indeed, we will see that c does not
depend on the value of G0 at all; it can be taken to equal 52 times the maximum modulus of the polynomials
p, q, p′, q′ on D(z0, η), with p(z) = z(z − 1) and q(z) = −(az + b).

Proof. The function G0(t0, ·) is analytic on a neighborhood of D(z0, η), so it is uniformly bounded by M0(η) on
the disk, which proves the inequality in the base case k = 0. We proceed by induction. Fix k ≥ 0 and suppose
that we have shown that, for 0 ≤ ` ≤ k, there are constants c` = c`(η, z0) so that

M`(η
′) ≤ c`

(η − η′)`
, 0 ≤ ` ≤ k. (2.60)

Proceeding to k + 1, we use the recursion of Equation 2.52, which we now expand:

(k + 1)Gk+1 =
∂

∂z

p k∑
j=0

GjGk−j + qGk


= p′

k∑
j=0

GjGk−j + 2p
k∑
j=0

G′jGk−j + q′Gk + qG′k.

(2.61)

We will bound each term in this recursion separately. Recall that p(z) = z(z − 1) and q(z) = −(az + b) are
polynomials. Hence there is a constant λ ≥ 1 so that max{|p(z)|, |p′(z)|, |q(z)|, |q′(z)|} ≤ λ for all z ∈ D(z0, η).
Thus, on D(z0, η

′),∣∣∣∣∣∣p′
k∑
j=0

GjGk−j

∣∣∣∣∣∣ ≤ λ
k∑
j=0

|Gj ||Gk−j | ≤ λ
k∑
j=0

Mj(η
′)Mk−j(η

′) ≤ λ
k∑
j=0

cj
(η − η′)j

ck−j
(η − η′)k−j

.

Hence, the first term is bounded by∣∣∣∣∣∣p′
k∑
j=0

GjGk−j

∣∣∣∣∣∣ ≤ 1

(λ− λ′)k
· λ

k∑
j=0

cjck−j ≤
1

(η − η′)k+1
· λ

k∑
j=0

cjck−j , (2.62)

where the final inequality is justified by the assumption that η ≤ 1 so that η − η′ < 1.
For the second term in 2.61, we can make the initial estimate∣∣∣∣∣∣2p

k∑
j=0

G′jGk−j

∣∣∣∣∣∣ ≤ 2λ

k∑
j=0

M ′j(η
′)Mk−j(η

′) ≤ 2λ

k∑
j=0

ck−j
(η − η′)k−j

M ′j(η
′).

Now, for any η′′ ∈ (η′, η), Inequality 2.58 with η′′ in the role of η yields

M ′j(η
′) ≤ Mj(η

′′)

η′′ − η′
. (2.63)

Now applying the inductive hypothesis Inequality 2.60, this time with η′′ in the role of η′, yields

Mj(η
′′) ≤ cj

(η − η′′)j
. (2.64)

Thus, we have the estimate∣∣∣∣∣∣2p
k∑
j=0

G′jGk−j

∣∣∣∣∣∣ ≤ 2λ
k∑
j=0

cjck−j
(η′′ − η′)(η − η′′)j(η − η′)k−j

(2.65)
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which holds for any η′′ ∈ (η′, η). We now optimize the inequality over η′′ separately in each term in the sum. By
elementary calculus, we find that the minimum occurs at η′′ = j

j+1η
′ + 1

j+1η. At this point,

η − η′′ = j
j+1(η − η′), η′′ − η′ = 1

j+1(η − η′).

Thus,

inf
η′<η′′<η

1

(η′′ − η′)(η − η′′)j
=
(
j+1
j

)j
(j + 1)

1

(η − η′)j+1
≤ e · (j + 1)

(η − η′)j+1
. (2.66)

Inserting these estimates into the terms in Inequality 2.65, we have∣∣∣∣∣∣2p
k∑
j=0

G′jGk−j

∣∣∣∣∣∣ ≤ 2λ
k∑
j=0

e · (j + 1) · cjck−j
(η − η′)j+1(η − η′)k−j

=
1

(η − η′)k+1
· 2eλ(k + 1)

k∑
j=0

cjck−j . (2.67)

The third term in 2.61 is straightforward to estimate:

|q′Gk| ≤ λMk(η
′) ≤ λ ck

(η − η′)k
≤ 1

(η − η′)k+1
· λck (2.68)

again using the assumption η − η′ < 1.
For the fourth term, we use the same approach as the second term. First we have |qG′k| ≤ λM ′k(λ

′). Let
λ′′ = k

k+1η
′ + 1

k+1η. Then Inequalities 2.63, 2.64, and 2.66 give

|qG′k| ≤
ck

(η′′ − η′)(η − η′′)k
≤ 1

(η − η′)k+1
· eλ(k + 1)ck. (2.69)

Finally, combining Inequalities 2.62, 2.67, 2.68, and 2.69 with Inequality 2.61 shows that

(k + 1)|Gk+1| ≤
1

(η − η′)k+1
·

λ k∑
j=0

cjck−j + 2eλ(k + 1)

k∑
j=0

cjck−j + λck + eλ(k + 1)ck


and thus

Mk+1(η′) ≤ 1

(η − η′)k+1
· (1 + 2e)λ

 k∑
j=0

cjck−j + ck

 .
This completes the induction to show that Inequality 2.60 holds additionally for ` = k + 1, provided that

ck+1 ≥ (1 + 2e)λ

 k∑
j=0

cjck−j + ck

 . (2.70)

To this end, we now recursively define

ck+1 = 2(1 + 2e)λ

k∑
j=0

cjck−j for k ≥ 0, c0 = max{M0(η), 1
2}. (2.71)

Note that 2c0 ≥ 1 and (by induction) cj ≥ 0 for all j, and so

ck+1 = 2(1 + 2e)λ

 k∑
j=0

cjck−j +
k∑
j=0

cjck−j

 ≥ (1 + 2e)λ

 k∑
j=0

cjck−j + 2c0ck


≥ (1 + 2e)λ

 k∑
j=0

cjck−j + ck


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as desired. Thus, to conclude the proof, it only remains to show that the constants defined by Equation 2.71 are
bounded by the given exponential form. In fact, it is straightforward to verify that the solution to the recursion
Equation 2.71 is given by the scaled Catalan numbers

ck = (2(1 + 2e)λ)k(max{M0(η), 1
2})

k+1Ck,

where Ck = 1
k+1

(
2k
k

)
≤ 4k. Therefore, taking c = 8(1 + 2e)λ proves the result.

This brings us to the main result of this section: that G(t, z) is analytic in t for |z| > 1.

Proposition 2.20. The function G(t, z) of Equation 1.8 is analytic in both variables (t, z) for t > 0 and z ∈ C+

such that |z| > 1.

Proof. Since G(t, ·) is analytic on C − [0, 1] (cf. Equation 1.8 and Definition 1.15), we need only concern
ourselves with (real) analyticity in t. Let z0 ∈ C+ with |z0| > 1, and let t0 > 0. Corollary 2.9 shows that
t 7→ G(t, z0) is C∞, and so it suffices to show that G(t, z0) is the limit of its Taylor series in a neighborhood
of t = t0; i.e. it suffices to show that the remainder term in Taylor’s theorem tends to 0. From Lemma 2.15 and
Taylor’s theorem, we have for any n ∈ N

G(t, z0) =
n∑
k=0

1

k!

∂k

∂tk
G(t0, z0)(t− t0)k +

1

(n+ 1)!

∂n+1

∂tn+1
G(t1, z0)(t− t0)n+1

=
n∑
k=0

Gk(t0, z0)(t− t0)k +Gn+1(t1, z0)(t− t0)n+1, (2.72)

for some time t1 between t0 and t.
Let 0 < η < min{|z0| − 1, 1}, and let 0 < η′ < η; then Inequality 2.59 gives exponential bounds

|Gk(t1, z0)| ≤Mk(t1, z0; η′) ≤
ck(max{M0(t1, z0; η), 1

2})
k+1

(η − η′)k
. (2.73)

From the end of the proof of Proposition 2.18 and Remark 2.19, we can take

c ≤ 52 max
z∈D(z0,η)

max{|z(z − 1)|, |2z − 1|, |az + b|, |a|} ≤ 52(|z0|+ η + 1)2.

On the other hand, M0(t1, z0; η) = max{|G0(t1, z)| : |z − z0| ≤ η} can be estimated from the a priori bound on
G0 = G: it is the Cauchy transform of a sub-probability measure, and hence |G(t1, z)| ≤ 1

=z for z ∈ C+. We
therefore restrict η < 1

2=z0, so that the assumption z0 ∈ C+ implies that |M0(t1, z0; η)| ≤ 2/=z0.
Thence, the t1-independent bound in (2.73) shows that the remainder term in (2.72) tends to 0 for |t− t0| <

(η − η′)/(52(|z0| + η + 1)2) max{2/=z0,
1
2} provided 0 < η′ < η < min{|z0| − 1, 1

2=z0, 1}. This proves the
proposition.

2.6 Analytic Continuation to C+ and the Proof of Theorem 1.4

We have now proven the statement of Theorem 1.4 restricted to C+ − D: G(t, z) is analytic in both t > 0 and
z ∈ C+ subject to the constraint |z| > 1, and it satisfies the PDE 1.9 on this domain (cf. Corollary 2.12). We
knew a priori that G(t, z) is analytic in z for all z ∈ C+ (cf. Equation 1.8 and Definition 1.15); it thus remains
to extend the analyticity in t into the larger z-domain. This is actually quite simple, once we reinterpret t as a
complex variable.
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Lemma 2.21. For each z0 ∈ C+ − D, there is ε = ε(z0) > 0 so that t 7→ G(t, z0) has an analytic continuation
to the strip {t ∈ C : <t > 0, |=t| < ε(z0)}. The tolerance ε(z0) is independent of t.

Proof. This follows immediately from the proof of Proposition 2.20: for t > 0, G(t, z0) is equal to its Taylor
series series centered at t0, with radius of convergence at least (η − η′)/(52(|z0| + η + 1)2) max{2/=z0,

1
2}

provided 0 < η′ < η < min{|z0|−1, 1
2=z0}. We can therefore take η′ ↓ 0 and η ↑ η0 ≡ min{|z0|−1, 1

2=z0, 1},
and therefore define ε(z0) = η0/(52(|z0|+η0 +1)2) max{2/=z0,

1
2} > 0, independent of t0; these power series,

for all base points t0 > 0, define the analytic continuation.

Hence G(t, z) can be viewed as a complex analytic function of two variables. This brings to bear all the tools
of many complex variables. We can now complete the proof of Theorem 1.4, with the help of a lemma of Hartog.

Proof of Theorem 1.4. Fix a point (t0, z0) ∈ R+ × (C+ − D). Let D be the largest disk centered at z0 that does
not intersect [0, 1], and let D′ be the largest disk centered at z0 that does not intersect D (so D′ ⊆ D). Then
G(t, z) is complex analytic in t > 0 for z ∈ D′ by Lemma 2.21. Since G(t, z) is the Cauchy transform of
a positive measure νt = µt − (1 − min{α, β})δ0 of total mass ≤ 1, supported in [0, 1] (cf. Equation 1.8 and
Definition 1.15), it is complex analytic in z for all z ∈ D, and is also uniformly bounded on compact subsets of
C+ (cf. Inequality 1.13). It therefore follows from a lemma of Hartog [19, Lemma 2.2.11] that G(t, z) is jointly
analytic in (t, z) for t > 0 and z in the larger disk D. Applying this at each point of z0 ∈ C+ − D shows that
G(t, z) is analytic on R+ × C+, as desired. Thus, the functions on both sides of PDE 1.9 are analytic on this
domain, and by Corollary 2.12 the are equal on the open set R+ × (C+ − D), it follows that they are equal on
their larger analytic domain R+ × C+, concluding the proof.

3 Local Properties of the Flow µt

In this section, we develop properties of the measure µt directly from the PDE of Theorem 1.4 that determines
its Cauchy transform. Let us define a new positive finite measure νt, supported in [0, 1], by

µt = νt + (1−min{α, β})δ0 (3.1)

so that G(t, z) = Gνt(z) is the Cauchy transform of νt, cf. Equation 1.8. Since µt is a probability measure, the
total mass of νt is

ν([0, 1]) = min{α, β} ≥ 0. (3.2)

3.1 Steady-State Solution

To begin, as a sanity check, note that the steady-state equation (determined by ∂
∂tG(t, z) = 0) takes the form

∂z[z(z − 1)G2 − (az + b)G] = 0.

Due to the analyticity of G on the connected domain C+, this forces z(z−1)G2− (az+ b)G to be constant. The
constant can be determined from the known limit behaviour of the Cauchy transform:

lim
|z|→∞

zG(z) = νt([0, 1]) = min{α, β}.

Thus
lim
|z|→∞

[z(z − 1)G(z)2 − (az + b)G(z)] = min{α, β}2 − amin{α, β}.

Using a = 2 min{α, β} − 1, it follows that the steady state solution G∞ satisfies

z(z − 1)G∞(z)2 − (az + b)G∞(z) = min{α, β}(1−min{α, β})
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This quadratic equation has (simplified) solutions

G∞(z) =
(az + b)±

√
z2 − 2(α+ β − 2αβ)z + (α− β)2

2z(z − 1)
.

The discriminant matches that in Equation 1.5, but the terms outside the radical do not match; of course, that
equation describes the Cauchy transform of the full limit measure µ, while our measures νt have the point mass
at z = 0 removed. Adding it back in,

1−min{α, β}
z

+G∞(z) =
z + α+ β − 2±

√
z2 − 2(α+ β − 2αβ)z + (α− β)2

2z(z − 1)

which precisely matches the Jacobi measure’s Cauchy transform from Equation 1.5, as expected. In other words,
using the Stieltjes continuity Theorem 1.16, we have:

Proposition 3.1. The spectral measure µt of qptq converges weakly to the free Jacobi measure µ of Equation 1.6
as t→∞.

This was already known, as a consequence of the fact that pt, q are asymptotically free as t→∞; it is interesting
that this can be seen directly from PDE 1.9.

3.2 Conservation of Mass and Propagation of Singularities

The support of the measure µt in the limit as t → ∞ is the full interval [0, 1]; however, the initial condition
µ0 is only constrained to have point masses of appropriate magnitudes at the endpoints {0, 1}, cf. Equation 1.6,
and thus suppµ0 may be any closed subset of [0, 1]. It is therefore possible that, for some t > 0, suppµt is
disconnected. The following results deal with the flow of such support “bumps” under PDE 1.9.

Lemma 3.2. Let t0 > 0. Let U1, U2 be two disjoint open subintervals of [0, 1] (with the relative topology), and
let K1 ⊂ U1 and K2 ⊂ U2 be closed subsets. Suppose that suppµt0 ⊆ K1 t K2. Then, for some ε > 0,
suppµt ⊂ U1 t U2 for all t ∈ (t0 − ε, t0 + ε).

Proof. Applying the analytic continuation argument in the proof of Theorem 1.4 (on page 32) to the larger
domain C−U1 t U2 shows that G(t, z) is analytic in both variables for z in this domain, and PDE 1.9 also holds
there in a neighborhood of time t0. The result follows immediately.

In particular, this shows that, if for some t0 > 0 the support of µt0 consists of a finite (or countable) collection
of disjoint closed intervals in [0, 1], the same holds true for all t ≥ t0. Moreover, we can quantify the motion of
the endpoints of these intervals. For the following, we assume that Gνt has a continuous extension to (0, 1) (i.e.
µt has a continuous density); we will prove this assumption holds true for all t > 0 in Section 3.3, at least in the
special case α = β = 1

2 .

Lemma 3.3. Suppose G(t, z) has a continuous extension to z ∈ (0, 1) for all t > 0. Let xt be a point in the
boundary of the support of µt. Then t 7→ xt satisfies the ODE

ẋt = 2G(t, xt)xt(1− xt) + axt + b, t > 0. (3.3)

Proof. The Cauchy transform of a compactly-supported measure is one-to-one on a neighborhood of∞ in C+,
so at least for small w, there is an analytic function K(t, w) so that w = G(t,K(t, w)). To simplify notation,
denote G(t, z) = Gt(z) and K(t, w) = Kt(w); let G′t(z) = ∂

∂zG(t, z) and K ′t(w) = ∂
∂wK(t, w). Noting that

w = Gt(Kt(w)) for small w and differentiating with respect to t, we have

0 =
∂

∂t
Gt(Kt(w)) =

∂Gt
∂t

(Kt(w)) +G′t(Kt(w))
∂Kt

∂t
(w). (3.4)
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Now, PDE 1.9 can be written in the form

∂Gt
∂t

(z) = (2z − 1)Gt(z)
2 + 2z(z − 1)Gt(z)G

′
t(z)− aGt(z)− (az + b)G′t(z),

and so, using Gt(Kt(w)) = w, Equation 3.4 yields

−G′t(Kt(w))
∂Kt

∂t
(w)

= (2Kt(w)− 1)w2 + 2Kt(w)(Kt(w)− 1)wG′t(Kt(w))− aw − (aKt(w) + b)G′k(Kt(w)).
(3.5)

The inverse function theorem shows that G′t(Kt(w)) = 1/K ′t(w). Combining this with Equation 3.5 and simpli-
fying, we have

−∂Kt

∂t
(w) = (2Kt(w)− 1)K ′t(w)w2 + 2Kt(w)(Kt(w)− 1)w − aK ′t(w)w − (aKt(w) + b) (3.6)

which can be written in the form

∂Kt

∂t
(w) =

∂

∂w

[
w2Kt(w)(1−Kt(w)) + awKt(w)

]
+ b. (3.7)

The existence of a continuous extension of Gt to a neighborhood of (0, 1), coupled with standard analytic con-
tinuation arguments, then implies that the PDE 3.6 holds up to the boundary Gt((0, 1)).

Now, let xt be a boundary point of a support interval of νt; then Gt is singular at xt. Let yt = Gt(xt) be the
corresponding singular value; then K ′t(yt) = 0. Hence, with w = yt, equation 3.6 asserts that

−∂Kt

∂t
(yt) = 2Kt(yt)(Kt(yt)− 1)yt − (aKt(yt) + b) = 2xt(xt − 1)yt − (axt + b).

On the other hand,
dxt
dt

=
∂

∂t
Kt(yt) =

∂Kt

∂t
(yt) +K ′t(yt)

dyt
dt

=
∂Kt

∂t
(yt)

since yt is (by assumption) a critical point for Kt. Hence, we have the ODE

ẋt = 2ytxt(1− xt) + (axt + b)

which yields the result, since yt = Gt(xt).

Equation 3.3 gives a precise (implicit) formula for the speed of propagation of singularities on the boundary:
the edges of the support move with finite speed ẋt so long as they stay away from the endpoints {0, 1}, since
G(t, x)x(1−x) is continuous on (0, 1). In the sequel, we will see that, althoughG(t, x) may blow up at x = 0, 1,
the function G(t, x)

√
x(1− x) remains bounded; thus, Equation 3.3 yields further information: as any support

“bump” approaches the endpoints, its speed decreases to 0.

Remark 3.4. Equation 3.3 at first seems to suggest the boundary point xt, which is of course in [0, 1], evolves into
the lower half-plane: indeed, the function G(t, z) takes values in the closed lower half-plane even for z ∈ [0, 1].
However, xt is assumed to be at the boundary of the support of µt which, under the assumption of the lemma,
possesses a continuous density. The Stieltjes inversion formula of Equation 1.14 then shows that =G(t, xt) = 0,
since the density of µt is 0 at a boundary point of the support; hence, G(t, xt) is, in fact, real.

Remark 3.5. If the support of µt is not the full interval, or more generally ifGt possesses a singular point in [0, 1],
this singular point cannot dissipate in finite time; this follows from Hartog’s second theorem and the continuity
principle, cf. [19]. Lemmas 3.2 and 3.3 are in line with this observation: singular points propagate with finite
speed and slow down as they approach the endpoints, therefore never dissipating.
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One final result that follows from this framework is conservation of mass of support “bumps”.

Lemma 3.6. Let t0, U1, U2 be as in Lemma 3.2. The total mass of µt|U1
is preserved for t ∈ (t0 − ε, t0 + ε).

Proof. Since, by Lemma 3.2, supp νt ⊆ suppµt is contained in U1 t U2 for t ∈ (t0 − ε, t0 + ε), the Cauchy
transform G(t, z) = Gνt(z) is analytic for z ∈ C−U1 t U2. Let α1 be a closed C1 curve in C−U1 t U2 which
encloses U1 and has winding number 0 around each point in U2. Then

µt(U1) =
1

2πi

∮
α1

G(t, z) dz. (3.8)

Equation 3.8 holds by the standard Residue Theorem if µt is a discrete measure – a convex combination of point-
masses – supported in U1; any measure may be weakly approximated by discrete measures, and by the Stieltjes
continuity Theorem 1.16 weak convergence of measures implies uniform convergence of the Cauchy transforms
on compact subsets of C− U1 t U2, justifying Equation 3.8.

Lemma 3.2 justifies that PDE 1.9 holds in C− U1 t U2, and the solution is analytic in z and t. In particular,
it follows that the integral on the right-hand-side of Equation 3.8 can be differentiated with respect to t under the
integral, so µt(U1) is differentiable, and PDE 1.9 then gives

∂

∂t
µt(U1) =

1

2πi

∮
α1

∂

∂t
G(t, z) dz =

1

2πi

∮
α1

∂

∂z

[
z(z − 1)G(t, z)2 + (az + b)G(t, z)

]
dz (3.9)

for t ∈ (t0 − ε, t0 + ε). The analyticity of G(t, z) in a neighborhood of the image of α1 now guarantees the
integral on the right-hand-side of Equation 3.9 is 0, by the fundamental theorem of calculus.

Remark 3.7. Of course, if support “bumps” merge in finite time, the total mass combines additively.

3.3 Subordination for the Liberation Process

This section is devoted to the proof of Theorem 1.9. We assume, from this point forward, that α = β = 1
2 .

It is plausible that similar techniques may apply more generally (indeed [20] gives promising progress in this
direction), but that discussion is left to a future publication. The proof is fairly involved: we essentially develop
an analogue in the present context of Biane’s theory of subordination for the additive free convolution. To clarify
the proof, we begin with an outline. The case α = β = 1

2 corresponds to a = b = 0 in Equation 1.9. So νt is a
positive measure of mass 1

2 supported in [0, 1], and its Cauchy transform G(t, z) = Gνt(z) satisfies the PDE

∂

∂t
G(t, z) =

∂

∂z

[
z(z − 1)G(t, z)2

]
, t > 0, z ∈ C+. (3.10)

We begin by making a change of variables. The function z 7→
√
z
√
z − 1 (where we use the standard branch of

the square root function) is analytic on C− [0, 1]. Let

H(t, z) = Ht(z) =
√
z
√
z − 1G(t, z), t > 0, z ∈ C+. (3.11)

Then H(t, z) is analytic in both variables for z ∈ C+ and t > 0, and satisfies the PDE

∂

∂t
H(t, z) =

√
z
√
z − 1

∂

∂z

[
H(t, z)2

]
(3.12)

on its analytic domain. We introduce the auxiliary function M , and the domain S:

M(w) = 1
2e
−2w(e2w + 1

2)2, S = {w = u+ iv ∈ C : u > 1
2 ln 1

2 , 0 < v < π
2 }. (3.13)
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The function M is entire; when restricted to the strip S, M |S is injective, and its image M(S) = C+. Let
L = (M |S)−1; explicitly

L(z) = 1
2 lnM(z) = 1

2 ln
(
z − 1

2 +
√
z
√
z − 1

)
, z ∈ C. (3.14)

In fact L has an analytic continuation to C − (−∞, 1] (given by Equation 3.14), and this extension is injective:
it is the inverse of M on the larger domain S ∪ S̄ (closure union conjugate). On this domain, L′(z) = 1

2
√
z
√
z−1

.
More generally, L extends to a multivalued holomorphic function (on the infinite-sheet Riemann surface covering
the slit plane C− [0, 1]).

Given the solution Ht to PDE 3.12, define the subordinator ft as

ft(z) = M [L(z) + tHt(z)], z ∈ C+. (3.15)

This subordinator is a deformation of the identity: f0(z) = M(L(z)) = z. (One should be wary, however: when
w ∈ C+, L(M(w)) is only equal to w for w ∈ S.) Using the method of characteristics, we will show thatH(t, z)
satisfies the fixed-point equation

Ht(z) = H0(ft(z)). (3.16)

Equation 3.16 transfers the dynamics of PDE 3.12 to a deformation ft of the identity, changing the role of Ht

from active to passive. Immediately from this equation, we see that smoothness is propagated: if H0|C+
happens

to have an analytic continuation to a complex neighborhood of (0, 1), then the same must be true for Ht for all
t > 0.

In fact, we will prove (Theorem 3.19) that, for any initial measure ν0 and any t > 0, ft extends to a home-
omorphism from the closed upper half-plane C+ to a region in C+ bounded by a Jordan curve; it then follows
from Carathéodory’s Theorem (cf. [24, Thm 2.6]) that Ht has a continuous extension to C+. Since the measure
νt is given by the boundary values of Gt, it follows that νt has a density ρt which is continuous (with potential
blow up at {0, 1} due to the factor

√
x(1− x) relating Ht(x) and Gt(x) for x ∈ [0, 1]). Finally, we show that

the extension of Ht actually has an analytic continuation to a complex neighborhood of any point in the interior
of supp νt, concluding the proof of Theorem 1.9.

To begin, we record the relevant properties of the auxiliary function L; the following lemma is a straightfor-
ward exercise.

Lemma 3.8. Let L : C+ → C be defined as in Equation 3.14. Then L is holomorphic and injective, its range is
L(C+) = S, and L satisfies

∂L

∂z
=

1

2
√
z
√
z − 1

, z ∈ C+. (3.17)

The extension of L to a multivalued function satisfies

L[1,∞) = [1
2 ln 1

2 ,∞), L(−∞, 0] = [1
2 ln 1

2 ,∞) + iπ2 , L(0, 1) = 1
2 ln 1

2 + i(0, π2 ). (3.18)

In particular, L has an extension to a holomorphic map on a complex neighborhood of (0, 1).

The first task is to prove the fixed-point Equation 3.16.

Lemma 3.9. Let Ht be the solution in the upper half-plane to PDE 3.12 with initial condition H0 analytic on
C+. Define ft in terms of Ht by Equation 3.15. Then Ht(z) = H0(ft(z)) for z ∈ C+.

Proof. PDE 3.12 is well set-up for applying the method of characteristics, cf. [13]. Writing it in the form

∂H

∂t
(t, z) = 2

√
z
√
z − 1H(t, z)

∂H

∂z
(t, z)
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we see that it is a homogeneous semilinear equation of the form

b(t, z,H(t, z)) · ∇H(t, z) = 0 (3.19)

where b(t, z, w) =
[
1,−2

√
z
√
z − 1w

]
. Fix (t0, z0) ∈ R+ × C+, and define z(t) = (t, z(t)) by the ODE

dz

dt
= b [z(t), H(t, z(t))] (3.20)

passing through the point z(t0) = (t0, z0). Then taking w(t) = H(z(t)) = H(t, z(t)) and applying the chain
rule, Equation 3.19 shows that the characteristic curve (z(t), w(t)) is contained in the graph {(t, z, w) ∈ R+ ×
C+ × C : w = H(t, z)}; moreover, the set of all such curves (for all choices (t0, z0)) traces out the entire graph.
(This follows from the a priori knowledge that H(t, z) is analytic in both variables.) It is customary to write
Equation 3.20 as a system for the separate variables z, w. Because of the homogeneity in Equation 3.19, the
characteristic equations in our case are

dz

dt
= −2

√
z
√
z − 1w, (3.21)

dw

dt
= 0. (3.22)

Thus, w(t) = H(t, z(t)) is constant; so, in particular, we have

H(0, z(0)) = w(0) = w(t0) = H(t0, z(t0)) = H(t0, z0). (3.23)

We can determine the position z(0) of the characteristic at time 0 (given its position z(t0) = z0) from Equation
3.21. Since w = w(t0) is constant, this can be explicitly solved in the upper half-plane, where the function

1
2
√
z
√
z−1

has antiderivative L (cf. Equation 3.17). The solution is

dz
2
√
z
√
z−1

= −w(t0) dt =⇒ L(z(t)) = −w(t0)t+ C

for a constant C, which is determined by the constraint z(t0) = z0; that is, C = L(z0) + w(t0)t0. Thus, at time
0 the curve’s value z(0) is determined by

L(z(0)) = −w(t0) · 0 + L(z0) + w(t0)t0 = L(z0) + t0H(t0, z0) (3.24)

from Equation 3.23. It follows that L(z0) + t0H(t0, z0) ∈ S, and so z(0) = M [L(z0) + t0H(t0, z0)] = ft0(z0)
by definition Equation 3.15. Thus, Equation 3.23 asserts that

H(0, ft0(z0)) = H(t0, z0).

Since (t0, z0) ∈ R+ × C+ was arbitrary, this concludes the proof.

Remark 3.10. The function ft = M ◦ (L + tHt) need not, a priori, satisfy L ◦ ft = L + tHt. Nevertheless,
Equation 3.24 actually clarifies that this further restriction does hold; in other words, since that equation holds
true for all (t0, z0) ∈ R+ × C+, we have ft(z) ∈ L(C+) = S for each z ∈ C+, and

L(ft(z)) = L(z) + tHt(z) = L(z) + tH0(ft(z)), ∀ z ∈ C+. (3.25)

The second equality follows from the statement of Lemma 3.9. It is also worth noting here that the domain of
definition for the function Ht in Lemma 3.9 is C+; as such, the characteristic z(t) passing through z0 at time t0
is necessarily contained in C+, and so ft0(z0) = z(0) ∈ C+. In other words, it follows from the proof that

ft(C+) ⊆ C+, t > 0. (3.26)

This can also be seen from the definition of ft, Equation 3.15, at least for small t > 0, using the Taylor expansion
of M about L(z) together with a small-angle argument in a neighborhood of R in C+; the details are left to the
interested reader.
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Remark 3.11. It is possible to derive the relation H(t, z) = H(0, ft(z)) in the following alternative fashion:
define J(t, z) = H0(ft(z)). Note that J(0, z) = H0(f0(z)) = H0(z). Elementary but laborious calculations
show that J also satisfies PDE 3.12, and is analytic. It therefore follows from the Cauchy-Kowalewski theorem
that J = H , as claimed. We prefer the method of characteristics approach above for two reasons: the calculations
are much shorter, and they avoid some technical difficulties that arise differentiating J(t, z) at points z where
ft(z) happens to be in [0, 1], outside the known analytic domain of H0. These difficulties can be overcome
with restriction and then analytic continuation techniques once continuity is proven; we prefer this more direct
approach, which aids in the proof of continuity. It is worth noting that points z where ft(z) ∈ [0, 1] will play an
important role in what follows.

Remark 3.12. One might hope to use the method of characteristics to similarly deduce the existence of a sub-
ordinator for the solution of the general case, for (α, β) 6= (1

2 ,
1
2), i.e. (a, b) 6= (0, 0). The same change of

coordinates H =
√
z
√
z − 1G transforms the general PDE 1.9 into the inhomogeneous semilinear equation

∂H

∂t
−
[
2
√
z
√
z − 1H − (az + b)

] ∂H
∂z

+
(a+ 2b)z − b

2z(z − 1)
H = 0.

The corresponding characteristic equations are

dz

dt
= −2

√
z
√
z − 1w − (az + b),

dw

dt
=

(a+ 2b)z − b
2z(z − 1)

w.

The inhomogeneity generates a fully intertwined system of ODEs that is not explicitly solvable except in the
special case a = b = 0; this is one demonstration of how the behavior in the case we presently consider is better
than the general case.

We next use the fixed-point equation to show that the solution Ht is bounded for t > 0, uniformly in t away
from 0.

Lemma 3.13. For any compact subset K ⊂ C, there is a constant CK so that

|H(t, z)| ≤ max{CK/t, 1}, z ∈ K ∩ C+.

In particular, it follows that, for any δ > 0,

sup
t≥δ

sup
z∈C+

|H(t, z)| <∞.

Proof. Consider the function H0 ◦ M . For fixed ε > 0, let Bε = B1/2+ε(1/2) be the open ball of radius
1/2 + ε centered at 1/2 (i.e. a complex open ball containing [0, 1]). Since H0(z) =

√
z
√
z − 1G0(z) and

G0(z) = Gν0(z) is the Cauchy transform of a measure supported in [0, 1], H0 is analytic on C− [0, 1] and hence
is bounded on the closed set C−Bε. Thus, H0 ◦M is bounded on L(C−Bε). Since the function L is bounded
on compact sets, there is an ε-dependent constant R so that

C−BR(0) ⊆ L(C−Bε). (3.27)

Now, let K be any compact subset of C. Since supK |L| <∞, we can find a constant CK such that

∀w ∈ C |w|+ sup
K
|L| ≥ CK =⇒ |H0 ◦M(w)| ≤ 1. (3.28)
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To see why, note that we may first choose CK larger thanR−supK |L|; then the set of w in question is contained
in the set C−Bε where H0 ◦M is bounded. Since we also know that the limit as |z| → ∞ of H0(z) is 1/2, and
that |M(w)| → ∞ as |w| → ∞, the estimate follows from the continuity of H0 ◦M on C−BR(0).
Now, for any compact K ⊂ C, suppose there is a z ∈ K − [0, 1] such that |Ht(z)| ≥ CK/t. Set w =
L(z) + tHt(z). Then

|w| = |tHt(z) + L(z)| ≥ t|Ht(z)| − |L(z)| ≥ CK − |L(z)|.

Therefore
|w|+ sup

K
|L(z)| ≥ |w|+ |L(z)| ≥ CK .

From Equation 3.28, it follows that |H0 ◦M(w)| ≤ 1. But the fixed-point Equation 3.16 for Ht then says that,
for z ∈ K ∩ C+,

|Ht(z)| = |(H0 ◦M)[L(z) + tHt(z)]| = |H0 ◦M(w)| ≤ 1.

Thus, for any z ∈ K ∩ C+, if |Ht(z)| ≥ CK/t, then |Ht(z)| ≤ 1. This proves the first statement of the
lemma. For the second, note (as used above) that lim|z|→∞ zG(t, z) = νt[0, 1] = 1

2 for any t ≥ 0, and so
lim|z|→∞Ht(z) = 1

2 . Moreover, the analyticity in t and the convergence to the steady state (Section 3.1) shows
that this convergence is uniform in t ≥ δ. Thus, there is a compact set K and a fixed constant C so that
supt≥δ supz /∈K |H(t, z)| ≤ C. Combining this with the first statement of the lemma proves the second.

With Lemma 3.13 in hand, we now make the following assumption, without loss of generality.

Assumption 1. H0 is bounded. Thus supt≥0 supz∈C+
|H(t, z)| <∞.

This assumption is justified by the semigroup property for the solution Ht of PDE 3.12: given t0 > 0, the
solution Ht0

t of the PDE with initial condition Ht0
0 = Ht0 is equal to Ht0

t = Ht+t0 . So, in each of the following
statements that hold for all t > 0, we may simply begin the proof by selecting some t0 ∈ (0, t) and proving the
theorem instead for t− t0 > 0, then use the semigroup property; in so doing, we translate to initial condition Ht0

which satisfies Assumption 1 by Lemma 3.13. So we may make this assumption without loss of generality, and
freely do so for the remainder of this section.

Remark 3.14. It is important to note that, while Ht satisfies the semigroup property, its subordinator ft does
not. Indeed, if we denote f t0t as the subordinator corresponding to the solution with initial condition Ht0 , then
Equation 3.15 yields

f t0t (z) = M [L(z) + tHt0
t (z)] 6= M [L(z) + (t+ t0)Ht(z)] = ft0+t(z).

We now proceed to demonstrate that the subordinator ft is a homeomorphism. First, we identify its range.

Definition 3.15. For t > 0, define the region Ωt ∈ C+ as follows:

Ωt = {w ∈ C+ : L(w)− tH0(w) ∈ L(C+) = S}. (3.29)

Lemma 3.16. The map ft is a conformal (one-to-one) bijection from C+ onto Ωt.

Proof. Let z1, z2 ∈ C+. If ft(z1) = ft(z2), then by Equation 3.25, it follows that

L(z1) + tH0(ft(z1)) = L(ft(z1)) = L(ft(z2)) = L(z2) + tH0(ft(z2)).

But the assumption ft(z1) = ft(z2) then implies that L(z1) + tH0(ft(z1)) = L(z2) + tH0(ft(z1)) and so
L(z1) = L(z2); so z1 = z2 by Lemma 3.8, and thus ft is one-to-one on C+. By Equation 3.25, for any z ∈ C+,
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L(ft(z)) = L(z) + tH0(ft(z)) which means that (L − tH0)(ft(z)) = L(z) ∈ L(C+). This, coupled with
Equation 3.26, shows that ft(z) ∈ Ωt for all z ∈ C+; and so ft(C+) ⊆ Ωt. Conversely, if w ∈ Ωt, then there
exists z ∈ C+ such that L(w) − tH0(w) = L(z). Equation 3.25 shows that w = ft(z) is a solution to this
fixed-point equation, and moreover the injectivity of L proves that it is the unique solution; hence w = ft(z), so
w ∈ ft(C+); and so Ωt ⊆ ft(C+).

We will next show that ft extends continuously to a homeomorphism C+ → Ωt. Were we to follow the
approach in [5], here we would use the inverse function theorem applied to the putative inverse of ft. Indeed,
Equation 3.25 states that (L − tH0) ◦ ft = L, meaning that the inverse ht of ft, should it exist, must be
ht = M ◦ (L − tH0). A strictly-positive lower-bound on the Lipschitz constant of ht would imply ht extends
to a continuous one-to-one map from Ωt → C+, yielding the corresponding result for ft. Unfortunately, this
approach is not possible in the present context, as the following example illustrates.

Example 3.17. Suppose µ0 is the Bernoulli measure µ0 = 1
2(δ0 + δ1). Hence ν0 = 1

2δ1, and so G0(z) =

1/2(z − 1), and H0(z) =
√
z/2
√
z − 1. Simple calculation shows that ∂

∂w [L(w) − tH0(w)] = 0 at the point
w = wt = 1 − t/2, which is in the unit interval for 0 ≤ t ≤ 2; so h′t(wt) = 0. In fact, this point is also in ∂Ωt

during this time interval. Restricting to t ∈ (0, 1) and letting s = 1− t, we have

L(wt) = 1
2 ln

[
1
2

(
1− t+ i

√
(2− t)t

)]
= 1

2 ln 1
2 + 1

2 ln
[
s+ i

√
1− s2

]
= 1

2 ln 1
2 + 1

2 i tan−1
(√

1−s2
s

)
.

Also
tH0(wt) = t

√
1−t/2√
−t/2

= −i
√

1− s2.

Hence
L(wt)− tH0(wt) = 1

2 ln 1
2 + i · 1

2

[√
1− s2 + tan−1

(√
1−s2
s

)]
.

Elementary calculus shows that, for s ∈ (0, 1), this is in 1
2 ln 1

2 + i(0, π/2) ⊂ L(C+). Thus wt ∈ Ωt, and
h′t(wt) = 0. So there is no strictly positive lower-bound on ‖ht‖Lip(Ωt).

Nevertheless, ft does indeed possess a continuous, one-to-one extension to the boundary. They key issue is
identifying the nature of ∂Ωt.

Lemma 3.18. The boundary ∂Ωt is a Jordan curve in C+.

Proof. To begin, let us note that it suffices to prove the claim for all sufficiently small t > 0, by the semigroup
property of the solution Ht. Consider the fibration of C+ provided by the vertical line-segments y 7→ x+ iy for
y > 0 and fixed x ∈ R. We will prove the following claim.
Claim. For fixed x ∈ R, if x+ iy0 ∈ Ωt then x+ iy ∈ Ωt for any y > y0.
This suffices to prove the lemma: it demonstrates that Ωt is the region above the graph of real-valued function of
x ∈ R. Since Ωt is open, this function is automatically upper semi-continuous, and therefore does not have any
oscillatory discontinuities; hence, by appending vertical line segments to any jump discontinuities, we see that
Ωt is bounded by a Jordan curve.

To prove the claim, we use the convexity of the strip S = L(C+). Indeed, fix two 1
2 -probability measures

ν0, ν1, and let Ω0
t and Ω1

t be the regions corresponding to these measures. Fix s ∈ (0, 1), and set νs = (1 −
s)ν0 + sν1, their convex combination, with corresponding region Ωs

t . Let Hs
0(z) =

√
z
√
z − 1Gνs(z); then

L(z)− tHs
0(z) = L(z)− t

√
z
√
z − 1

∫ 1

0

1

z − u
[(1− s)ν0(du) + sν1(du)]

= L(z)− t[(1− s)H0
0 (z) + sH1

0 (z)]

= (1− s)[L(z)− tH0
0 (z)] + s[L(z)− tH1

0 (z)].
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Now, suppose z ∈ Ωj
t for j = 0, 1. This means (cf. 3.29) that L(z) − tHj

0(z) ∈ L(C+) = S. Since S is
convex, any convex combination of the two points L(z) − tHj

0(z), i = 0, 1, is also in S; thus, we have shown
that L(z)− tHs

0(z) ∈ L(C+), and so z ∈ Ωs
t for 0 < s < 1. It follows immediately that, if the Claim holds for

Ω0
t and for Ω1

t , then it holds for Ωs
t for 0 < s < 1. Since every 1

2 -probability measure is a weak limit of convex
combinations of 1

2 -point masses in [0, 1], it therefore suffices to prove the claim only for the special case that the
initial measure of the form ν0 = 1

2δa for some point a ∈ [0, 1].
The Cauchy transform of 1

2δa is z 7→ 1
2(z−a) ; hence, we must study the function

Ft,a(z) = L(z)− t
√
z
√
z − 1

2(z − a)
=

1

2
ln

(
z − 1

2
+
√
z
√
z − 1

)
− t
√
z
√
z − 1

2(z − a)

To prove the claim, it suffices to show that, for each x ∈ R, the image of the line segment y 7→ x+ iy under Ft,a
intersects the boundary of S at most once for y > 0. The following facts may be verified by elementary calculus.

(1) For x < a, =Ft,a(x+ iy) > 0 for all y > 0.

(2) For x ≥ a, ∂
∂y=Ft,a(x+ iy) > 0 for all y > 0.

(3) For x ∈ [0, 1], ∂
∂y<Ft,a(x+ iy) possesses at most one 0, and is > 0 for large y > 0.

(4) For x /∈ [0, 1], ∂
∂y<Ft,a(x+ iy) > 0 for all y > 0.

Item (1) shows that the image of=Ft,a never intersects the lower boundary y = 0 when x < a, and item (2) shows
that it intersects the lower boundary at most once when x ≥ a. In both cases, since t

√
z
√
z − 1/2(z − a)→ t/2

as |z| → ∞, its imaginary part tends to 0; thus for sufficiently small t (independent of a), =Ft,a never intersects
the upper boundary y = π

2 . As for <Ft,a, when x ∈ [0, 1] note that <Ft(x + i0) = <L(x + i0) = 1
2 ln 1

2
constantly, and so item (3) shows that the image curve y 7→ <Ft,a(x+ iy) may initially dip below this level and
return to intersect the line y = 1

2 ln 1
2 once, or it may stay above this line for all y > 0; in either case, it intersects

the line at most once. Similarly, for x /∈ [0, 1], <Ft,a(x+ i0) > 1
2 ln 1

2 for sufficiently small t > 0 (independent
of a), and so item (4) shows that in this case <Ft,a(x+ iy) > 1

2 ln 1
2 for y > 0.

We have thus shown that, for all sufficiently small t > 0, independent of a ∈ [0, 1], for any x ∈ R, if
Ft,a(x + iy0) ∈ L(C+) then Ft,a(x + iy) ∈ L(C+) for all y > y0. This proves the claim in the case of initial
measure 1

2δa, and thence by the above convexity argument, proves the lemma.

This actually suffices to prove the main result: that ft extends continuously (and, in fact, injectively) to
the boundary. This illustrates the general principle that pathological boundary behavior of conformal maps is
observable in the topology of the image of the boundary.

Theorem 3.19. For t > 0, the subordinator ft : C+ → Ωt extends to a homeomorphism C+ → Ωt.

Proof. Since ft is a conformal map defined on all of C+, and by Lemma 3.18 the boundary of ft(C+) is a Jordan
curve, the result follows immediately from Carathéodory’s Theorem, cf. [24, Thm 2.6].

Remark 3.20. Example 3.17 demonstrates that the continuous extension of the conformal map ft to R need not
be smooth: it can certainly have singularities along the line (at the critical values of f−1

t = ht). We will quantify
exactly where such singularities may occur in Lemma 3.26 below.

Corollary 3.21. For t > 0, the solution Ht to PDE 3.12 possesses a continuous extension to (0, 1).
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Proof. Referring to Equation 3.25, we have L(ft(z)) = L(z) + tHt(z) for z ∈ C+. Thus

Ht(z) =
1

t
[L(ft(z))− L(z)] . (3.30)

Theorem 3.19 shows that ft has a continuous extension to C+, whose range is Ωt, contained in C+. By Lemma
3.8, L possesses an analytic continuation to a complex neighborhood of (0, 1), concluding the proof.

Remark 3.22. From here on, we will use Ht and ft to refer to the extended continuous maps defined on (0, 1).
The continuity of all involved functions and the fact that Equation 3.30 holds on C+ shows that it also holds for
the extensions to (0, 1).

Corollary 3.23. For each t > 0, the measure νt possesses a density ρt, which is continuous on (0, 1), and
satisfies the bound

ρt(x) ≤ C√
x(1− x)

, x ∈ (0, 1)

for some constant C > 0 independent of t.

Proof. By Corollary 3.21, the map Ht has a continuous extension to (0, 1) (which we also refer to as Ht). Thus

Gt(z) =
1

√
z
√
z − 1

Ht(z)

possesses a continuous extension to (0, 1). The Stieltjes inversion Formula 1.14 in pointwise form then shows
that, for x ∈ (0, 1),

ρt(x) = − 1

π
=Gt(x) =

1

π

1√
x(1− x)

<Ht(x) (3.31)

is the density of νt, which is therefore continuous. Finally, Assumption 1 (i.e. Lemma 3.13, together with the
semigroup property) shows that ‖Ht‖L∞(R) < ∞, and so the stated result holds true with C = ‖Ht‖L∞(R)/π.

This proves most of our main Theorem 1.9. Let us also note one more immediate Corollary of Theorem 3.19,
together with Lemma 3.9, that will be useful in Section 4.

Corollary 3.24. Suppose that ν0 has a strictly positive density ρ0. Then the density ρt of νt is strictly positive for
any t > 0.

Proof. From Equation 3.31, ρt(x) is positive at any x ∈ (0, 1) for which <Ht(x) > 0. Equation 3.16 as-
serts that Ht(x) = H0(ft(x)). The harmonic function <H0 is equal to π

√
x(1− x)ρ0(x) ≥ 0 on R and

lim|z|→∞H0(z) = 1
2 so it is strictly positive for large z ∈ C+; by the minimum principle, <H0 > 0 in C+.

Thus, since ft(x) is either in [0, 1] or in C+, the assumption that <H0(y) > 0 for y ∈ [0, 1] implies that
H0(ft(x)) > 0 for all x ∈ (0, 1). Hence ρt(x) > 0.

Having Corollaries 3.21 and 3.23 in hand, we may apply the semigroup property as in Assumption 1, and so we
freely make the following assumption from here forward, without loss of generality.

Assumption 2. H0 has a continuous, bounded extension to (0, 1), and the initial measure ν0 possesses a density
ρ0 which is continuous on (0, 1), for which supx∈R

√
x(1− x)ρ0(x) <∞.

It remains to prove the smoothness claim of Theorem 1.9 for the measure νt. First, we need the following
results on the behavior of the continuous extension of the subordinator ft on the boundary set [0, 1].
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Lemma 3.25. Let t > 0 and x ∈ [0, 1]. If ft(x) ∈ [0, 1], then ρt(x) = 0, and ρ0(ft(x)) = 0.

Proof. If ft(x) ∈ [0, 1], then L(ft(x)) − L(x) is purely imaginary, since <L ≡ 1
2 ln 1

2 is constant on [0, 1], cf.
Lemma 3.8. Hence, by Equation 3.30,

<Ht(x) =
1

t
<[L(ft(x))− L(x)] = 0.

It follows immediately from Equation 3.31 that ρt(x) = 0, as claimed. Also, from Equation 3.16 (extended to
the boundary by continuity) H0(ft(x)) = Ht(x), so the assumption that ft(x) ∈ [0, 1] shows again by Equation
3.31 that ρ0(ft(x)) = 0 in this case.

Lemma 3.26. Let t > 0 and let x ∈ (0, 1). If ρt(x) > 0, then ft is analytic in a neighborhood of x, and
ft(x) ∈ C− [0, 1].

Proof. First, from Lemma 3.25, since ρt(x) 6= 0 it follows that ft(x) /∈ [0, 1], as claimed. Now, from Theorem
3.19, ft : C+ → Ωt is a homeomorphism with inverse ht = M ◦ (L − tH0) on Ωt. In particular, L − tH0 is
one-to-one on this domain, and so (L−tH0)〈−1〉 is well-defined on L(C+). What’s more, since L has an analytic
continuation to a neighborhood of (0, 1), and H0 is analytic on C− [0, 1], the fact that L− tH0 is one-to-one on
all of L(C+) implies that (L − tH0)〈−1〉 is analytic on the complement of (L − tH0)([0, 1]). For x ∈ [0, 1], if
L(x) ∈ (L− tH0)([0, 1]) then there is some y ∈ [0, 1] so that L(x) = L(y)− tH0(y), which is precisely to say
that x = M(L(y) − tH0(y)) = ht(y), and so y = ft(x). Since y ∈ [0, 1], this implies by the first statement of
the lemma that ρt(x) = 0. Hence, if ρt(x) > 0 then (L− tH0)−1 is analytic in a neighborhood of L(x), and so
ft is analytic in a neighborhood of x.

This completes all the elements needed for the proof of Theorem 1.9.

Proof of Theorem 1.9. By Corollary 3.23, the νt possesses a continuous density ρt with the appropriate behavior
at the boundary points {0, 1}. Lemma 3.9 asserts that Ht(z) = H0(ft(z)) for z ∈ C+; the continuity of Ht and
ft on (0, 1) means that this holds for z = x ∈ (0, 1) as well, and so Ht(x) = H0(ft(x)) where ft(x) ∈ C+. Let
x ∈ [0, 1] be a point where ρt(x) > 0. Lemma 3.26 proves that ft is analytic in a neighborhood of x, and that
ft(x) /∈ [0, 1]. Since H0 is analytic on C− [0, 1], the composition Ht(x) = H0 ◦ ft(x) is therefore analytic in a
neighborhood of x.

Thus, νt has continuous density which is analytic except at the boundary of its support. We conclude this
section with a corollary regarding the nature of the zero set of ρt.

Lemma 3.27. For t > 0, let Zt = {x ∈ R : ρt(x) = 0} be the 0-set of the measure νt. Then Zt = f−1
t (Z0).

Note: we are explicitly under Assumption 2 here. The semigroup property has been applied and time has been
shifted some small positive amount so that ν0 possesses a continuous density ρ0. The result does not say that the
topology of supp νt in any way resembles the topology of the support of the original (unliberated) measure µqpq,
which can be any closed set in [0, 1].

Proof. Suppose x ∈ Zt, so ρt(x) = 0. Equation 3.31 shows that <Ht(x) = 0, and Equation 3.16 then yields
<H0(ft(x)) = 0. Now, <H0(y) = π

√
y(1− y)ρt(y) ≥ 0 for y ∈ R, and lim|z|→∞H0(z) = 1

2 > 0, so
<H0 > 0 for |z| sufficiently large in C+. H0 is harmonic in C+, so it follows from the minimum principle
that <H0(z) > 0 for z ∈ C+. Thus, <H0(y) = 0 implies that y ∈ R. Hence, <H0(ft(x)) = 0 implies that
ft(x) = 0, and so by definition ft(x) ∈ Z0. Thus Zt ⊆ f−1

t (Z0).
Conversely, if ft(x) ∈ Z0, then y = ft(x) ∈ R and

0 = ρ0(y) =
1

π
√
y(1− x)

<H0(y) =⇒ 0 = <H0(y) = <H0(ft(x)) = <Ht(x)

which gives ρt(x) = 0 by Equation 3.31 once more. Hence x ∈ Zt, so f−1
t (Z0) ⊆ Zt.
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Remark 3.28. It is tempting to conclude from Corollary 3.27 that supp νt = f−1
t (supp ν0). This is not generally

the case, since ft maps the interior of the support of νt into the upper half-plane C+. The subordinator ft is
continuous and one-to-one, but it is not a map from [0, 1] → [0, 1]. In particular, it does not follow that supp νt
is homeomorphic to supp ν0 – it is perfectly possible for components of the support to merge in finite time.

4 The Unification Conjecture for Projections

This section is devoted to the Unification Conjecture for free entropy and information of projections. We briefly
describe the setting of free entropy and information, and then formulate and prove a special case of the conjecture
in the present context. The reader is directed to the excellent introduction [32], and the papers [31] and [17, 18],
for a detailed treatment of the background.

4.1 Free Entropy, Fisher Information, and Mutual Information

Let x1, . . . , xn be self-adjoint operators in a II1-factor (A , τ). For parameters N,m ∈ N and R, ε > 0, the set
of matricial microstates of these operators, denoted ΓR(x1, . . . , xn;N,m, ε), is the set of self-adjoint N × N
matrices X1, . . . , Xn, with norm ≤ R, all of whose mixed (normalized) trace moments of order ≤ m are within
tolerance ε > 0 of the corresponding mixed τ moments of x1, . . . , xn.

ΓR(x1, . . . , xn;N,m, ε)

=
{
X1, . . . , Xn ∈M sa

N (C) : |trN (Xi1 · · ·Xir)− τ(xi1 · · ·xir)| < ε ∀r ∈ [m], (i1, . . . , ir) ∈ [n]r
}

where [n] = {1, . . . , n}. The volume of this set (in the metric given by the trace norms) grows or decays
exponentially in the square of the dimension N . The (microstates) free entropy χ(x1, . . . , xn) is defined to be

χ(x1, . . . , xn) = sup
R>0

inf
m∈N,ε>0

lim sup
N→∞

1

N2
log Vol (ΓR(x1, . . . , xn;N,m, ε)) . (4.1)

In the n = 1 case of a single self-adjoint operator x, Voiculescu calculated that the free entropy is equal to
the logarithmic energy of the spectral measure µx (up to an additive constant): if µx has a density µx(du) =
ρx(u) du, then

χ(x)− 3

4
− 1

2
ln 2π =

∫
ln |u− v|ρx(u)ρx(v) dudv ≡ Σ(µx). (4.2)

(If µx is singular, χ(x) ≡ −∞.) For several non-commuting operators x1, . . . , xn, there is no analytic formula
for the free entropy; although we will see below that, changing the definition as appropriate, the case of two
projections does afford a closed-form analysis, cf. Equation 4.9.

Let A,B ⊂ A be algebraically free unital ∗-subalgebras; A ∨ B denotes the unital ∗-subalgebra generated
by A ∪B. There is a unique derivation δA:B : A ∨B → (A ∨B)⊗ (A ∨B) determined by{

δA:B(a) = a⊗ 1− 1⊗ a a ∈ A
δA:B(b) = 0 b ∈ B

.

(Uniqueness is guaranteed by the algebraic freeness of A,B; without this assumption, δA:B is not well-defined.
It is important to note that algebraic freeness is not related to free independence in general.) The liberation
gradient of A relative to B, j(A : B), is defined (if it exists) through integration by parts: j(A : B) ∈
L1(W ∗(A ∨B), τ) satisfies

τ [j(A : B)x] = τ ⊗ τ (δA:B(x)) , x ∈ A ∨B. (4.3)
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The (liberation) free Fisher information of A relative to B, ϕ∗(A : B), is the square-L2-norm of the liberation
gradient:

ϕ∗(A : B) ≡ ‖j(A : B)‖22 = τ [j(A : B)∗j(A : B)]. (4.4)

(If j(A : B) does not exist, or exists in L1 but is not in L2, ϕ∗(A : B) ≡ ∞.) This definition precisely
mirrors the conjugate variables approach to classical Fisher information, cf. [32]. As with free entropy, free
Fisher information can rarely be computed explicitly. One important exception is in the case of two projections:
if A = W ∗(p, q), then ϕ∗(W ∗(p) : W ∗(q)) can be computed directly, cf. Equation 4.7 below.

The mutual free information of subalgebras A and B, i∗(A : B), is defined in terms of the mutual free
Fisher information, via the liberation process:

i∗(A : B) =
1

2

∫ ∞
0

ϕ∗(utAu
∗
t : B) dt (4.5)

where ut is a free unitary Brownian motion, freely independent from A ∨ B. This definition is arrived at in [31,
Section 4] from the classical relation between Information and Entropy. Indeed, if S(X1, . . . , Xn) denotes the
Shannon entropy of random variables X1, . . . , Xn, the mutual information I(X : Y ) of a pair is defined to be
I(X : Y ) = −S(X,Y ) +S(X) +S(Y ). Starting here, and using a microstates-free infinitesimal version of free
entropy χ∗, Voiculescu gave a convincing heuristic (modulo continuity issues at t = 0,∞) that if i∗(x : y) ≡
−χ∗(x, y) + χ∗(x) + χ∗(y) then Equation 4.5 should hold for A = W ∗(x) and B = W ∗(y).

At present, it is unknown whether χ = χ∗ in general, and it is similarly unknown whether the heuristic used
in [31] to give the definition of i∗ can be made rigorous. This question (along with the claim that χ = χ∗) is
known as the Unification Conjecture.

Conjecture 4.1 (Unification Conjecture). Let x1, . . . , xn and y1, . . . , yn be self-adjoint operators in a II1-factor
(A , τ), such that χ(x1, . . . , xn), χ(y1, . . . , yn), and χ(x1, . . . , xn, y1, . . . , yn) are all finite. Then

i∗(W ∗(x1, . . . , xn) : W ∗(y1, . . . , yn)) = −χ(x1, . . . , xn, y1, . . . , yn) + χ(x1, . . . , xn) + χ(y1, . . . , yn).

Remark 4.2. One benefit of free mutual information i∗, defined in Equation 4.5, is that it is finite in many
situations where free entropy is not; for this reason, the finiteness assumption on χ is needed for the statement of
Conjecture 4.1 to be plausible.

As noted in [32] and still true today, the result of Conjecture 4.1 is a long way from where the theory is at
present.

4.2 Free Entropy for Projections

In the special case n = 2 and generators p, q that are projections, the abstract quantities of Section 4.1 can be
described more directly. Following [18] and [31, Section 12], denote

E11 = p ∧ q, E10 = p ∧ q⊥, E01 = p⊥ ∧ q, E00 = p⊥ ∧ q⊥

where p⊥ = 1−p and q⊥ = 1−q. DefineE = 1−(E00+E01+E10+E11), and let αij = τ(Eij) for i, j ∈ {0, 1}.
Then Eij (and hence E) are in the center of W ∗(p, q), and so the compression

(
EW ∗(p, q)E, τ |EW ∗(p,q)E

)
is

isomorphic to the 2× 2-matrix-valued L∞ space of a measure ν: the representations EpE ↔ Mp, EqE ↔ Mq

given by

Mp(x) =

[
1 0
0 0

]
Mq(x) =

[
x

√
x(1− x)√

x(1− x) 1− x

]
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identify the compression as W ∗(Mp,Mq) ∼= L∞((0, 1), ν;M2(C)) for a uniquely-defined positive measure on
(0, 1) with mass ν((0, 1)) = 1− (α00 + α01 + α10 + α11). The trace restricted to EW ∗(p, q)E is then given by

τ(a) =

∫ 1

0
tr [Ma(x)] ν(dx).

In this context, the measure ν encodes all the structure of the algebra; we will soon see that ν is indeed related
to the spectral measure of the operator valued projection qpq, our central object of study. In [31, Prop 12.7], it
was shown that the (liberation) free Fisher information of W ∗(p) relative to W ∗(q) can be explicitly computed
in terms of the measure ν.

Proposition 4.3 ([31]). Suppose α00α11 = α10α01 = 0. Suppose that ν(dx) = ρ(x) dx has a density ρ ∈
L3((0, 1), x(1− x) dx). Assume that∫ 1

0

(
α01 + α10

x
+
α00 + α11

1− x

)
ρ(x) dx <∞. (4.6)

Let φ denote the Hilbert transform of ρ, modified by the αij as follows:

φ(x) = Hρ(x) +
α01 + α10

x
+
α00 + α11

1− x
.

Then the (liberation) free Fisher information of W ∗(p) relative to W ∗(q) is given by

ϕ∗(W ∗(p) : W ∗(q)) =

∫ 1

0
φ(x)2ρ(x)x(1− x) dx (4.7)

and is finite.

Remark 4.4. If τ(p) = α and τ(q) = β as in the foregoing, then the assumption α00α11 = α10α01 = 0 is
equivalent to the identifications α11 = max{α+ β − 1, 0}, α00 = max{1− α− β, 0}, α10 = max{α− β, 0},
and α01 = max{β − α, 0}. In particular, in our special case α = β = 1

2 , this assumption is tantamount to
αij = 0, meaning that Eij = 0 for i, j = {0, 1}; thus, the assumption is that p and q are in general position. If
they are not, we cannot expect a simple relationship between the Fisher information and the density. Note that,
in this case, Equation 4.6 holds trivially.

With Proposition 4.3 in hand, we can hope to explicitly verify the Unification Conjecture 4.1 for the case
of two projections. There is a twist, however. Going back to the definition of free entropy in Equation 4.1,
dimension considerations show that, unless p = q = 1, χ(p) = χ(q) = χ(p, q) = −∞; hence, these operators
do not fit the statement of the Unification Conjecture per se. Instead, a modified version of free entropy for
projections, χproj, is required.

Let G(N, k) denote the Grassmannian manifold of rank-k projections on CN . Any projection in G(N, k)
is conjugate to the projection diag(1, 1, . . . , 1, 0, 0, . . . , 0) with k 1s; the conjugating unitary U ∈ U(N) is
only determined up to the block structure of this diagonal projection, and so U is invariant under the action of
U(k)×U(N − k). This gives an identification of G(N, k) ∼= U(N)/(U(k)×U(N − k)) as a symmetric space.
Let πN,k : U(N)→ G(N, k) be the quotient map, and define

γG(N,k) = HaarU(N) ◦ π−1
N,k.

Thus γG(N,k) is the unique unitarily invariant probability measure on the Grassmannian of appropriate dimen-
sion/rank. They key to defining microstates free entropy for projections is to use this measure in place of Eu-
clidean volume: if the rank of the limit projections is not full, then they cannot be properly approximated by
microstates of full rank.
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Fix projections p1, . . . , pn. For 1 ≤ i ≤ n, let (ki(N))∞N=1 be sequences of positive integers with the prop-
erty that ki(N)/N → τ(pi) as N → ∞. Define Γproj(p1, . . . , pn; k1(N), . . . , kn(N);N,m, ε), the projection
microstates, to be the set of projection matrices P1, . . . , Pn with Pi ∈ G(N, ki(N)), all of whose mixed (nor-
malized) trace moments of order ≤ m are within tolerance ε > 0 of the corresponding mixed τ moments of
p1, . . . , pn. That is, Γproj is

{
(P1, . . . , Pn) ∈

n∏
i=1

G(N, ki(N)) : |trN (Pi1 · · ·Pir)− τ(pi1 · · · pir)| < ε ∀r ∈ [m], (i1, . . . , ir) ∈ [n]r
}
.

Following Voiculescu’s remarks in [31, Sect 14], in [17, 18] Hiai and Petz defined the projection free entropy
as follows:

χproj(p1, . . . , pn)

= inf
m∈N,ε>0

lim sup
N→∞

1

N2
log

n⊗
i=1

γG(N,ki(N)) (Γproj(p1, . . . , pn; k1(N), . . . , kn(N);N,m, ε)) .
(4.8)

The value does not depend on the specific sequences ki(N). Note that, when n = 1, all moments trN (Pm) =
trN (P ) = ki(N) and τ(pm) = τ(p), so the microstate space in this case is the full Grassmannian, which means
that χproj(p) = 0 for a single projection. For two projections, χproj can be explicitly calculated using large
deviations results for projections, cf. [16, Thm 3.2, Prop 3.3]. The result is as follows.

Proposition 4.5 ([16]). Suppose α00α11 = α10α01 = 0. There is an explicit constant C(α, β) (where α = τ(p)
and β = τ(q) as usual) such that

χproj(p, q) =
1

4
Σ(ν) +

α10 + α01

2

∫ 1

0
log x ν(dx) +

α11 + α00

2

∫ 1

0
log(1− x) ν(dx)− C(α, β). (4.9)

Remark 4.6. Following Remark 4.4, in the special case α = β = 1
2 the assumption α00α11 = α10α01 = 0 is

equivalent to the assumption that p, q are in general position: τ(p∧ q) = 0. In this case αij = 0 for i, j ∈ {0, 1};
moreover, the complicated constant C(α, β) satisfies C(1

2 ,
1
2) = 0 (cf. [18, Equation 1.2]). Thus, χproj(p, q) =

1
4Σ(ν) in our case.

Thus, a natural extension of Conjecture 4.1 is to ask that it hold for projections, where the free entropy terms
on right-hand-side are replaced with projection free entropy terms, χ→ χproj. We state this formally in the case
n = 1 as follows.

Conjecture 4.7. Let p, q be projections in a II1-factor. Then

i∗(W ∗(p) : W ∗(q)) = −χproj(p, q) + χproj(p) + χproj(q) = −χproj(p, q). (4.10)

The remainder of this paper is devoted to the proof of Conjecture 4.7, in the special case τ(p) = τ(q) = 1
2 ;

i.e. Theorem 1.11.

4.3 The Proof of Theorem 1.11

The theorem is stated on page 6; it asserts that Conjecture 4.7 holds true in the special case α = β = 1
2 . Our

method is to employ Propositions 4.3 and 4.5 to precisely calculate the two sides of Equation 4.10. Note, as
explained in Remarks 4.4 and 4.6, these Propositions require the assumption that p, q are in general position;
otherwise, both sides of Equation 4.10 are −∞.
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The idea for the present proof is essentially due to Hiai and Ueda, and is very briefly outlined in [18, Sect
3.2]. Using the explicit formulas of Equations 4.7 and 4.9, direct calculation demonstrates that d

dtχproj(pt, q) =
1
2ϕ
∗(pt : q). (This is in line with Voiculescu’s original heuristics in defining free Fisher information: a version

of this equality – differentiating entropy along a Brownian perturbation yields Fisher information – does hold
for classical entropy and Fisher information.) Integrating this using Equation 4.5 defining mutual free informa-
tion, the fundamental theorem of calculus shows that i∗(W ∗(p) : W ∗(q)) = − limt↓0 χproj(pt, q); passing the
limit inside χproj is then justified using the work of [15, 18]. The technical difficulties arise in the derivative
calculations; it is here that our main smoothing Theorem 1.9 will play a central role in the analysis.

To begin, we identify the measure ν in Propositions 4.3 and 4.5 with the (continuous part of the) operator-
valued angle studied in Sections 2–3.

Lemma 4.8. Let p, q be projections with trace τ(p) = τ(q) = 1
2 . Let (pt, q)t>0 be their free liberation. Denote

by νt the measure characterizing W ∗(pt, q), cf. the discussion at the beginning of Section 4.2. Then νt = 2νt,
the measure of Theorem 1.4 and 1.9.

Proof. Let νt be as in Theorems 1.4 and 1.9. By Corollary 3.24 and Theorem 1.9, the density ρt of νt is continu-
ous and piecewise real analytic on (0, 1). Let ut, vt be the real and imaginary parts of the Cauchy transform of νt:
G(t, z) = Gνt(x+ iy) = ut(x, y)+ ivt(x, y). Equation 1.16 identifies the density ρt as vt(x, 0) = −πρt(x), and
its (scaled) Hilbert transform φt = −πHρt is φt(x) = Hvt(x, 0) = −ut(x, 0). (We scale the Hilbert transform
by−π here to match up to the notation in [18].) In each interval on which ρt > 0, ρt is analytic, and hence Gt|C+

has an analytic continuation to a neighborhood of this interval. Hence, PDE 3.10 extends to (0, 1), and we have

∂

∂t
vt(x, 0) =

∂

∂t
=Gt(x) =

∂

∂x

[
x(x− 1)=(Gt(x)2)

]
= 2

∂

∂x
[x(x− 1)ut(x, 0)vt(x, 0)] .

Thus
− ∂

∂t
πρt(x) = 2

∂

∂x
[x(x− 1)(−φt(x)πρt(x))].

Dividing by π and and writing this in terms of the scaled functions 2ρt and 2φt yields

∂

∂t
(2ρt(x)) =

∂

∂x
[x(x− 1)2φt(x) · 2ρt(x)]. (4.11)

This is precisely the differential equation for the density of the measure νt, Equation 3.1 in [18], in the case
α = β = 1

2 (so αij = 0 for i, j ∈ {0, 1}) under the assumption that measure has a smooth (enough) density.
Thus, Theorem 1.9 and the Stieltjes inversion formula 1.16 show that 2ρt is indeed the density of the measure νt;
in other words, νt = 2νt.

Remark 4.9. This technique may be carried out for general α, β to show that the measure ν is proportional
to the continuous part of the spectral measure of qpq, provided smoothness may be proved first. It should be
possible to see directly that the two measures are (up to a proportionality constant) equal, since they are both
defined naturally in terms of the operator-valued angle qptq and the intersection pt ∧ q; however, such a direct
identification is not obvious to the authors.

Henceforth, write ρt = 2ρt and φt = 2φt. Thus, Equation 4.11, which is now proved rigorously as a
consequence of Theorems 1.4 and 1.9 and Corollary 3.24, takes the form

∂

∂t
ρt(x) =

∂

∂x
[x(x− 1)φt(x)ρt(x)]. (4.12)

We now wish to use Propositions 4.3 and 4.5 to calculate i∗(pt, q) and χproj(pt, q); to do so, we must verify the
integrability condition of Proposition 4.3.
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Lemma 4.10. For t ≥ 0, ρt ∈ L3(x(1− x) dx).

Proof. This follows immediately from the bound of Equation 1.10:

‖ρt‖3L3(x(1−x) dx) =

∫ 1

0
ρt(x)3x(1− x) dx

≤
∫ 1

0

C(t)3

(x(1− x))3/2
x(1− x) dx = C(t)3

∫ 1

0

dx√
x(1− x)

= C(t)3π <∞.

We now prove the main comparison that will lead to the proof of Theorem 1.11.

Lemma 4.11. For t > 0,
d

dt
χproj(pt, q) =

1

2
ϕ∗(W ∗(pt) : W ∗(q)). (4.13)

In this proof, we make the simplifying assumption that ρt is real analytic on (0, 1). The same proof justifies the
statement in the more general case, that ρt is continuous and real analytic on the set where ρt > 0 (hence Hölder
continuous), with additional notation that obscures the idea of the proof.

Proof. By Proposition 1.2, pt and q are in general position for t > 0. In particular, αij = 0 for i, j ∈ {0, 1}.
Hence, Proposition 4.5 and Remark 4.6 say that

χproj(pt, q) =
1

4
Σ(νt) =

1

4

∫
ln |x− y|ρt(x)ρt(y) dxdy. (4.14)

Now, Equation 4.12 implies that

∂

∂t
(ρt(x)ρt(y)) = ρt(x)

∂

∂t
ρt(y) + ρt(y)

∂

∂t
ρt(x)

= ρt(x)
∂

∂y
[y(y − 1)φt(y)ρt(y)] + ρt(y)

∂

∂x
[x(x− 1)φt(x)ρt(x)].

Integrating against the logarithmic energy kernel, by symmetry we have

1

4

∫
ln |x− y| ∂

∂t
[ρt(x)ρt(y)] dxdy =

1

2

∫
ρt(y) ln |x− y| ∂

∂x
[x(x− 1)φt(x)ρt(x)] dxdy.

Let kt(x) = x(x−1)φt(x)ρt(x). The Hilbert transform interchanges harmonic conjugates; hence, the analyticity
of ρt implies the analyticity of φt, and so kt is analytic on (0, 1). The dependence of the integrand on t is thus
also analytic (cf. Section 2.5), and this easily justifies differentiating under the integral sign. We now integrate
by parts, first writing the integral as a principal value:

d

dt
χproj(pt, q)

=
1

2

∫
ρt(y) ln |x− y| ∂

∂x
kt(x) dxdy

=
1

2

∫ 1

0
ρt(y) dy lim

ε↓0

(∫ y−ε

0
ln |x− y| ∂

∂x
kt(x) dx+

∫ 1

y+ε
ln |x− y| ∂

∂x
kt(x) dx

)
=

1

2

∫ 1

0
ρt(y) dy lim

ε↓0

(
ln ε · kt(y − ε)−

∫ y−ε

0

kt(x)

x− y
dx− ln ε · kt(y + ε)−

∫ 1

y+ε

kt(x)

x− y
dx

)
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where the first equality follows from the continuity of ∂kt(x)/∂x. The boundary terms from the integration by
parts combine to

ln ε[kt(y − ε)− kt(y + ε)] = −ε ln ε
kt(y + ε)− kt(y − ε)

ε
→ 0 uniformly on compact subset of (0, 1)

since kt analytic (so, in particular, C1). Hence, recombining,

d

dt
χproj(pt, q) = −1

2

∫ 1

0
dy lim

ε↓0

(∫ y−ε

0

kt(x)

x− y
dx+

∫ 1

y+ε

kt(x)

x− y
dx

)
= −1

2

∫ 1

0
ρt(y) dy

(
p.v.

∫ 1

0

kt(x)

x− y
dx

)
.

Since ρt is supported in [0, 1], we can write this as

d

dt
χproj(pt, q) = −π

2

∫
R
ρt(y)H(kt)(y) dy.

Write the kernel as kt(x) =
√
x(1− x)φt(x) ·

√
x(1− x)ρt(x); up to factors of π, these are the real and

imaginary parts of Ht(x) (cf. Equation 3.11) which, by Lemma 3.13, is uniformly bounded. Thus kt ∈ L∞ and
is supported in [0, 1]; hence kt ∈ L2(R). The Hilbert transform is self-adjoint on L2(R), cf. [27], and so

d

dt
χproj(pt, q) = −π

2

∫
R
ρt(y)H(kt)(y) dy = −π

2

∫
R
H(ρt)(y)kt(y) dy.

In the proof of Lemma 4.8, we saw that φt = −πHρt; thus, we have shown that

d

dt
χproj(pt, q) =

1

2

∫
R
φt(y)kt(y) dy =

1

2

∫ 1

0
φt(y)x(1− x)φt(y)ρt(y) dy.

By Lemma 4.10, the density ρt is in L3(x(1 − x) dx), and so Proposition 4.3 applies. Hence, Equation 4.7
concludes the proof:

d

dt
χproj(pt, q) =

∫ 1

0
φt(t)2ρt(y)x(1− x) dx = ϕ∗(W ∗(pt) : W ∗(q)).

Corollary 4.12. If p, q are projections of trace 1
2 , then

i∗(W ∗(p) : W ∗(q)) = − lim
t↓0

χproj(pt, q). (4.15)

Proof. Lemma 4.11 shows that t 7→ χproj(pt, q) is differentiable for t > 0, with derivative equal to 1
2ϕ
∗(W ∗(pt) :

W ∗(q)). Equation 4.4 defining the (liberation) Fisher information ϕ∗ shows that it is manifestly ≥ 0, and so the
function t 7→ χproj(pt, q) is non-decreasing. Moreover, Theorem 2.1 in [18] (the main result of that paper) shows
that −χproj(pt, q) ≤ ϕ∗(W ∗(pt) : W ∗(q)) under our assumptions; whence

−
∫ ∞

0
χproj(pt, q) dt ≤

∫ ∞
0

ϕ∗(W ∗(pt) : W ∗(q)) dt = 2i∗(W ∗(p) : W ∗(q)) (4.16)
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by Equation 4.5 defining i∗. Since ϕ∗(W ∗(p) : W ∗(q)) is finite (by Proposition 4.3 and Lemma 4.10), [31,
Prop 10.11(c)] guarantees that i∗(W ∗(p) : W ∗(q)) is finite. Hence, Inequality 4.16 certainly guarantees that
limt→∞ χproj(pt, q) = 0. Ergo, by Lemma 4.11,

i∗(W ∗(p) : W ∗(q)) =
1

2

∫ ∞
0

ϕ∗(W ∗(pt) : W ∗(q)) dt =

∫ ∞
0

d

dt
χproj(pt, q) dt

= lim
t↑∞

χproj(pt, q)− lim
t↓0

χproj(pt, q)

= 0− lim
t↓0

χproj(pt, q).

Finally, this brings us to the proof of Theorem 1.11.

Proof of Theorem 1.11. Note that, as t ↓ 0, (pt, q) converges in non-commutative distribution to (p, q). (Indeed,
for any non-commutative polynomial P in two variables, the function t 7→ τ [P (pt, q)] is C∞[0,∞).) Hence, by
[17, Proposition 1.2(iii)],

−χproj(p, q) ≤ lim inf
t↓0

−χproj(pt, q). (4.17)

On the other hand, by [15, Proposition 4.6], we have the reverse inequality: taking v1 = ut and v2 = 1 (which
are freely independent), it follows that −χproj(p, q) ≥ −χprom(v1pv

∗
1, v2qv

∗
2) = −χproj(pt, q) for all t ≥ 0.

Thus, we have
−χproj(p, q) ≥ lim sup

t↓0
−χproj(pt, q). (4.18)

Equations 4.17 and 4.18 show that −χproj(p, q) = limt↓0−χproj(pt, q). Combined with Corollary 4.12, this
concludes the proof.
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