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Abstract

We prove the Makeenko–Migdal equation for two-dimensional Eu-
clidean Yang–Mills theory on an arbitrary compact surface, possibly with
boundary. In particular, we show that two of the proofs given by the first,
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third, and fourth authors for the plane case extend essentially without
change to compact surfaces.

1 Introduction

The Euclidean Yang–Mills field theory on a surface Σ describes a random con-
nection on a principal bundle over Σ for a compact Lie group K, known as the
structure group. Work of A. Sengupta [Sen1, Sen2, Sen3, Sen4] gave a formula
for the expectation value of any gauge-invariant function defined in terms of
parallel transport along the edges of a graph G in Σ. (Related work was done
by D. Fine [Fine1, Fine2] and E. Witten [Witt1, Witt2].) This theory was then
further developed [Lévy1] and generalized [Lévy2] in the work of T. Lévy. Sen-
gupta’s formula (generalizing Driver’s formula [Dr, Theorem 6.4] in the plane
case) is given in terms of the heat kernel on the group K. (See Section 2.)
One noteworthy feature of the formula is its invariance under area-preserving
diffeomorphisms of Σ.

The typical objects of study in the theory are the Wilson loop functionals,
given by

E{trace(hol(L))}, (1)

where E denotes the expectation value with respect to the Yang–Mills measure,
hol(L) denotes the holonomy of the connection around a loop L traced out
in a graph G, and the trace is taken in some fixed representation of K. The
diffeomorphism-invariance of the theory is reflected in Sengupta’s formula: the
expectation (1) is given as a function (determined by the topology of the graph
and of Σ) of all the areas of the faces of G.

A key identity for calculating Wilson loops is the Makeenko–Migdal equation
[MM, Equation 3] for Yang–Mills theory. For the plane case, the Makeenko–
Migdal equation takes the form (3) below, as worked out by V. A. Kazakov and
I. K. Kostov in [KK, Equation 24] (see also [K, Equation 9] and [GG, Equation
6.4]. We take K = U(N) and we use the bi-invariant metric on U(N) whose
value on the Lie algebra u(N) = Te(U(N)) is a scaled version of the Hilbert–
Schmidt inner product:

〈X,Y 〉 = Ntrace(X∗Y ). (2)

We then express the Wilson loop functionals using the normalized trace,

tr(A) :=
1

N
trace(A).

We now consider a loop L in the plane with simple crossings, and we let
v be one such crossing. We let t1, t2, t3, and t4 denote the areas of the faces
adjacent to v, as in Figure 1. We also let L1 denote the portion of the loop from
the beginning to the first return to v and let L2 denote the loop from the first
return to the end, as in Figure 2. The planar Makeenko–Migdal equation then
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Figure 1: A typical loop L for the Makeenko–Migdal equation

gives a formula for the alternating sum of the derivatives of the Wilson loop
functional with respect to these areas:(

∂

∂t1
− ∂

∂t2
+

∂

∂t3
− ∂

∂t4

)
E{tr(hol(L))} = E{tr(hol(L1))tr(hol(L2))}. (3)

We follow the convention that if any of the adjacent faces is the unbounded face,
the corresponding derivative on the left-hand side of (3) is omitted. Note also
that the faces F1, F2, F3, and F4 are not necessarily distinct, so that the same
derivative may occur more than once on the left-hand side of (3).

The first rigorous proof of (3) was given by Lévy in [Lévy3, Proposition 6.24].
A second proof was given by A. Dahlqvist in [Dahl, Proposition 7.2]. Both of
these proofs proceed by computing the individual time derivatives on the left-
hand side of (3). These formulas involve calculations along a sequence of faces
proceeding from a face adjacent to v to the unbounded face. After taking the
alternating sum of derivatives, both Lévy and Dahlqvist obtain a cancellation
that allows the result to simplify to the right-hand side of (3). In [DHK2], three
of the authors of the present paper gave three new proofs of (3). All of these
proofs were “local” in nature, meaning that the calculations involve only faces
and edges adjacent to the crossing v.

The goal of the present paper is to demonstrate that two of the proofs of
(3) in [DHK2] can be applied almost without change to the case of an arbitrary
compact surface Σ, possibly with boundary. In particular, the local nature of
the proofs in [DHK2] mean we do not require the presence of an unbounded
face.

Let us say that a graph G in Σ is admissible if G contains the entire
boundary of Σ and each component of the complement of G is homeomorphic to
a disk. (Actually, according to Proposition 1.3.10 of [Lévy2], if each component
of the complement is a disk, the graph necessarily contains the entire boundary
of Σ.)
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Figure 2: The loops L1 (black) and L2 (dashed)

Theorem 1 (Makeenko–Migdal Equation for Surfaces) Let Σ be a com-
pact surface, possibly with boundary. Let K = U(N) and let E denote expecta-
tion value with respect to the normalized Yang–Mills measure over Σ, possibly
with constraints on the holonomies around the boundary components. Suppose
that L is a closed curve that can be traced out on an admissible graph G in Σ.
Suppose v is a simple crossing of L in the interior of Σ and let L1 and L2 denote
the two pieces of the curve cut at v. Then we have(

∂

∂t1
− ∂

∂t2
+

∂

∂t3
− ∂

∂t4

)
E{tr(hol(L))} = E{tr(hol(L1))tr(hol(L2))}.

We will actually prove an abstract Makeenko–Migdal equation (generaliz-
ing Proposition 6.22 in [Lévy3]) that applies to an arbitrary structure group
K and that implies Theorem 1 as a special case. As in the plane case, the
abstract Makeenko–Migdal equation allows one to compute alternating sums of
derivatives of other sorts of functions; see Section 2.5 of [DHK2] for examples.

For any fixed N, the Makeenko–Migdal equation in (3) or in Theorem 1 is not
especially helpful in computing Wilson loop functionals. After all, even though
the loops L1 and L2 are simpler than L, the right-hand side of (3) involves
the expectation of a product of traces rather than a product of expectations.
Thus, the right-hand side cannot be considered as a recursively known quantity.
In the plane case, however, it is known that the Yang–Mills theory for U(N)
has a large-N limit, and that in this limit, all traces become deterministic.
(This deterministic limit is known as the master field and was investigated by
various authors, including I. M. Singer [Sing], R. Gopakumar and D. Gross
[GG], and M. Anshelevich and Sengupta [AS]. A detailed proof of the existence
and deterministic nature of the limit was provided by Lévy in [Lévy3, Section
5].) Thus, in the large-N limit in the plane case, there is no difference between
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the expectation of a product and a product of expectations and (3) becomes(
∂

∂t1
− ∂

∂t2
+

∂

∂t3
− ∂

∂t4

)
τ(hol(L)) = τ(hol(L1))τ(hol(L2)), (4)

where τ(·) is the limiting value of E{tr(·)}.
In the plane case, Lévy also establishes the following “unbounded face con-

dition.” If t denotes the area of any face F that adjoins the unbounded face, we
have

∂

∂t
τ(hol(L)) = −1

2
τ(hol(L)), (F adjoins the unbounded face). (5)

(See Axiom Φ4 in Section 0.5 of [Lévy3] and compare Theorem 2 in [DHK2].)
Lévy then shows that the large-N limit of U(N) Yang–Mills theory on the plane
is completely determined by the large-N Makeenko–Migdal equation (4) and
the unbounded face condition (5), together with some continuity and invariance
properties [Lévy3, Section 0.5].

It is currently not rigorously known whether Yang–Mills theory on a compact
surface Σ admits a large-N limit. (However, see for example [DK], where the
large-N limit of Yang-Mills theory on the 2-sphere is explored non-rigorously.)
If the limit does exist and is deterministic (as in the plane case), it is reasonable
to expect that the limiting theory would satisfy (4) (this is assumed in [DK]).
One would have to justify interchanging the derivatives with the large-N limit
in Theorem 1. On the other hand, since Σ does not have an unbounded face,
the unbounded face condition in (5) does not even make sense. Thus, even if (4)
holds for the large-N limit of Yang–Mills theory on Σ, this relation may not allow
for a complete characterization of the limit. Nevertheless, if the large-N limit
on Σ exists and satisfies (4), this relation should contain a lot of information
about the limiting theory.

The authors thank Ambar Sengupta for many useful discussions of Yang–
Mills theory on surfaces.

2 Yang–Mills theory on surfaces

The Yang–Mills measure for a graph G in a surface Σ has been described by
Sengupta, first for closed surfaces in [Sen1] (see also [Sen2]) and then for sur-
faces with boundary [Sen3], possibly incorporating constraints on the holonomy
around the boundary. Related work was done by Fine [Fine1, Fine2] and Witten
[Witt1, Witt2]. Sengupta’s results were further developed and generalized by
Lévy in [Lévy1] and [Lévy2].

We consider a compact, connected surface Σ, possibly with boundary. We do
not require that Σ be orientable. We then consider a connected compact group
K, called the structure group, equipped with a fixed bi-invariant Riemannian
metric. (If K is not simply connected, the Yang–Mills measure as described
below may incorporate contributions from inequivalent principal K-bundles over
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Σ.) We also consider the heat kernel ρt on K at the identity, that is, the unique
function such that

∂ρt
∂t

=
1

2
∆ρt

and such that for any continuous function f on K,

lim
t→0

∫
K

f(x)ρt(x) dx = f(id),

where id is the identity element of K and dx is the normalized Haar measure.

2.1 The unconstrained Yang–Mills measure on a graph

We begin by precisely defining the appropriate notion of a graph in Σ. By
an edge we will mean a continuous map γ : [0, 1] → Σ, assumed to be in-
jective except possibly that γ(0) = γ(1). We identify two edges if they differ
by an orientation-preserving reparametrization. Two edges that differ by an
orientation-reversing reparametrization are said to be inverses of each other. A
graph is then a finite collection of edges (and their inverses) that meet only at
their endpoints. Given a graph G, we choose arbitrarily one element out of each
pair consisting of an edge and its inverse. We then refer to the chosen edges as
the positively oriented edges.

We call a graph G in Σ admissible if G contains the entire boundary of Σ
and each face F of G (i.e., each component of the complement of G in Σ) is
homeomorphic to an open disk. Thus, the boundary of F can be represented by
a single loop in G. To each positively oriented edge e in G we associate an edge
variable x ∈ K, and then correspondingly associate x−1 to the inverse of e. We
then form a measure on Kn, where n is the number of edges, as follows. For
each face F of G, we consider the “holonomy” h, which is just the product of
edge variables (and their inverses) along the boundary of F . We then consider
first an un-normalized measure µ̃ on Kn, given by

dµ̃(x) =

(∏
i

ρ|Fi|(hi)

)
dx,

where dx is the product of the normalized Haar measures in the edge variables.
Note: since the Haar measure on K is symmetric (i.e. invariant under x 7→ x−1),
the measure µ̃ is independent of the choice of which edged in G are positively
oriented.

We consider also the normalized measure

dµ(x) =
1

Z
dµ̃(x),

where

Z =

∫
Kn

(∏
i

ρ|Fi|(hi)

)
dx
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is the partition function of the graph. This formula for µ is Sengupta’s
formula [Sen1, Theorem 5.3], which he derives from a rigorous version of the
usual path-integral formula. (As with µ̃, µ is independent of which edges are
chosen to be positively oriented.) We use the notation E for the expectation
value with respect to the normalized Yang–Mills measure:

E{f} :=

∫
Kn

f(x) dµ(x).

It is known that the partition function Z depends only on the area and
diffeomorphism class of Σ and not on the choice of graph; see Proposition 5.2
in [Sen1]. (For the independence of Z from the graph, it is essential that we use
normalized Haar measures in the definition of the un-normalized measure µ̃.)
If, for example, Σ = S2, then Z is given by

ZS2 = ρA(id),

where A is the area of the sphere and id is the identity element of K. In par-
ticular, for a fixed diffeomorphism class of surface and fixed topological type of
the embedded graph, Z depends only on the sum of the areas ti of the faces of
G.

Although the formula for the Yang–Mills measure on a surface is similar to
the formula [Dr, Theorem 6.4] in the plane case, the two measures behave differ-
ently. In the plane case, the holonomies hi around the bounded faces of a graph
are independent heat-kernel distributed random variables [Lévy3, Proposition
4.4]. For a general compact surface Σ, the hi’s are neither independent nor heat
kernel distributed. For the case of a simple closed curve in S2, for example, we
may represent the curve by a graph with a single edge, with edge variable x.
The holonomies associated to the two faces of the graph are then h1 = x and
h2 = x−1, so that the Yang–Mills measure for this graph is

dµ(x) =
1

ρs+t(id)
ρs(x)ρt(x

−1) dx,

where s and t are the areas of the two faces. (This formula may be interpreted as
saying that the holonomy around the loop is distributed as a Brownian bridge
at time s, where the bridge returns to the identity at time s + t.) Even for
this simple example, there is no easy way to compute the expected trace of the
holonomy around the loop.

Although the Yang–Mills measure on a surface is more difficult to compute
with than the measure on the plane, we will show that two of the proofs of
the Makeenko–Migdal equation given in [DHK2] go through essentially without
change. To illustrate this point, consider the graph in Figure 3, which we regard
as being embedded in S2. If xi is the edge variable associated to the edge ei,
and tj is the area of Fj , the un-normalized Yang–Mills measure takes the form

dµ̃(x) = ρt1(x−12 x1)ρt2(x−13 x6x2)ρt3(x−14 x3)ρt4(x−11 x−15 x4)ρt5(x−16 x5) dx. (6)
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Figure 3: A graph embedded in S2 with five faces

(Note that the boundary of, say, F1 is e1e
−1
2 , but since parallel transport is

order-reversing, the holonomy around F1 is represented as x−12 x1.)
If the graph were embedded in the plane instead of the sphere, we would

simply omit the factor of ρt5(x−16 x5), since in that case, F5 would be the un-
bounded face, which does not contribute to Driver’s formula. We see, then, that
replacing the plane by some other surface does not change the “local” structure
of the un-normalized Yang–Mills measure. If, for example, we wish to estab-
lish the Makeenko–Migdal equation for the central vertex in Figure 3, the first
two proofs in [DHK2] apply without change, since the “local Makeenko–Migdal
equation” in Theorem 6 there can be applied to the integration over the variables
x1, . . . , x4. (In particular, since our proofs in the plane case make no reference
to the unbounded face, the absence of an unbounded face on Σ does not cause
a difficulty.) Once the Makeenko–Migdal equation for the un-normalized mea-
sure is established, it is then a simple matter to establish it for the normalized
measure as well.

2.2 The constrained Yang–Mills measure on a graph

It is possible to modify the construction in the preceding subsection by con-
straining the holonomy around one or more of the boundary components to
lie in a fixed conjugacy class. If the boundary component in question consists
of a sequence e1, . . . , ek of edges with edge variables x1, . . . , xk, the holonomy
around the component will be xkxk−1 · · ·x1, since holonomy is order reversing.
(Note that this boundary component will usually not be the boundary of one
of the faces of G.) To constrain xkxk−1 · · ·x1 to lie in C, we insert a δ-function
δ(xkxk−1 · · ·x1c−1) and then integrate over c ∈ C. Thus, integration with re-
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spect to the un-normalized constrained measure µ̃ takes the form∫
f(x) dµ̃(x) =

∫
Kn

∫
C1

· · ·
∫
CN

f(x)

(∏
i

ρ|Fi|(hi)

)
×
∏
j

δ(xjkjx
j
kj−1 · · ·x

j
1c
−1
j ) dx dvol(c1) · · · dvol(cN ), (7)

where C1, . . . , CN are the conjugacy classes to which various boundary holonomies
are constrained and where dvol is the normalized, Ad-invariant volume measure
on the given conjugacy class. (See Theorem 4 in [Sen3] and compare Section
1.5 of [Lévy1].) In (7), we may interpret δ(·) as the small-ε limit of ρε(·). Alter-
natively, we may think of δ(xkxk−1 · · ·x1c−1) as a rule telling us that instead
of integrating over xk, we simply evaluate xk to (xk−1 · · ·x1c−1)−1.

We may then construct a normalized measure by dividing by a normalization
constant, which we refer to as the constrained partition function. Similarly to
the unconstrained case, the constrained partition function depends only on the
area, the topological type of the surface, and the constraints, but not on the
choice of graph. (See the formula for NT (c) in Theorem 4 of [Sen3] and compare
Proposition 4.3.5 in [Lévy2] in a more general setting.)

In Figure 4, for example, if the holonomy around the boundary of a disk is
constrained to lie in C, the expected trace of the holonomy around the inner
loop would be computed as

1

Z

∫
C

∫
K3

tr(x−1)ρs(x
−1)ρt(y

−1zyx)δ(zc−1) dx dy dz dvol(c)

=
1

Z

∫
C

∫
K2

tr(x−1)ρs(x
−1)ρt(y

−1cyx) dx dy dvol(c)

=
1

Z

∫
C

∫
K

tr(x−1)ρs(x
−1)ρt(cx) dx dvol(c),

where in the last expression, we have used the Ad-invariance of dvol(c) to elim-
inate the y variable. By contrast, if we left the boundary holonomy uncon-
strained, we would integrate tr(x−1)ρs(x

−1)ρt(y
−1zyx) over K3, in which case

the result would simplify to
∫
K

tr(x−1)ρs(x
−1) dx (with no normalization factor

necessary).

3 The Makeenko–Migdal equation for surfaces

Throughout this section, we assume G is an admissible graph in Σ, that is, one
containing the boundary of Σ and such that each face of G is a disk.

3.1 An abstract Makeenko–Migdal equation

Following Lévy [Lévy3, Definition 6.21] for the plane case, we now introduce a
natural invariance property that will be crucial in proving the Makeenko–Migdal
equation.
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Figure 4: The holonomy z around the boundary of the disk is constrained to lie
in C.

Definition 2 Let G be an admissible graph in Σ and let v be a vertex of G in
the interior of Σ having exactly four distinct edges, labeled in cyclic order as
e1, e2, e3, e4 and taken to be outgoing edges. Let f : Kn → C be a function of
the edge variables of G and let a1, a2, a3, a4 be the edge variables associated to
e1, e2, e3, e4. Then f has extended gauge invariance at v if

f(a1, a2, a3, a4,b) = f(a1x, a2, a3x, a4,b) = f(a1, a2x, a3, a4x,b)

for all x ∈ K, where b is the tuple of all edge variables other than a1, a2, a3, a4.

With this definition in hand, we may formulate a general version of the
Makeenko–Migdal equation for Σ, generalizing Proposition 6.22 in [Lévy3] in
the plane case. The result applies to arbitrary structure groups K and to
functions that are not necessarily given as the trace of a holonomy. In what
follows, we allow the areas of the faces to be arbitrary positive real numbers; if
we vary one area with the other areas fixed, we are changing the total area of
the surface.

We consider a graph with four distinct edges e1, . . . , e4 attached to a vertex
v, and we label the four faces surrounding v as F1, . . . , F4, as in Figure 5, with
the labeling chosen so that e1 lies between F4 and F1.

Theorem 3 (Abstract Makeenko–Migdal Equation for Σ) Following the
notation of Definition 2, assume the four faces and four edges adjacent to v are
distinct. Suppose f : Kn → C is a smooth function with extended gauge in-
variance at v. If t1, . . . , t4 denote the areas of the faces of G surrounding v, we
have (

∂

∂t1
− ∂

∂t2
+

∂

∂t3
− ∂

∂t4

)∫
Kn

f dµ = −
∫
Kn

∇a1 · ∇a2f dµ,
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Figure 5: The edges and faces at v

where µ is the normalized Yang–Mills measure, possibly with constraints on
the boundary holonomies. The same result holds with µ replaced by the un-
normalized measure µ̃.

Using the arguments in Section 4 of [DHK2], it is possible to prove this result
also when the faces are not distinct. It is also possible to formulate and prove
a version of the result when the four edges emanating from v are not distinct,
although the definition of extended gauge invariance needs some modification
in this case. See Section 3.3 for more information.

In the theorem, the gradients are left-invariant gradients with respect to a1
and a2 with the other edge variables fixed. Explicitly,

(∇a1 · ∇a2f)(a1, a2, a3, a4,b) =
∑
X

∂2

∂s∂t
f(a1e

sX , a2e
tX , a3, a4,b)

∣∣∣∣
s=t=0

,

where X ranges over an orthonormal basis for the Lie algebra k of K and b
represents the tuple of edge variables other than a1, . . . , a4. Using the extended
gauge invariance of f, it is easy to show that

∇a1 · ∇a2f = −∇a2 · ∇a3f = ∇a3 · ∇a4f = −∇a4 · ∇a1f.

Suppose L is a closed curve traced out in G that has a crossing at v. Specif-
ically, assume L starts at v, leaves v along e1, returns to v along e−14 , leaves
v again along e2, and then finally returns to v along e−13 (with no visits to v
besides those just mentioned). Then since holonomy is order-reversing, we will
have

tr(hol(L)) = tr(a−13 αa2a
−1
4 βa1),
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where α and β are words in the b variables. Any function of the this form is
easily seen to have extended gauge invariance. If K = U(N), we compute that

∇a1 · ∇a2 [tr(a−13 αa2a
−1
4 βa1)] =

∑
X

tr(a−13 αa2Xa
−1
4 βa1X)

= −tr(a−13 αa2)tr(a−14 βa1)

= −tr(L2)tr(L1),

where L1 and L2 are as in Theorem 1, and where we used the elementary identity∑
X XCX = −tr(C)I (e.g., [DHK1, Proposition 3.1]) in the second equality.

This calculation shows that the abstract Makeenko–Migdal equation implies the
Makeenko–Migdal equation for U(N) (Theorem 1).

3.2 The generic case

Let us assume at first that our loop is traced out in an admissible graph G and
that the vertex v is generic, meaning that the edges e1, . . . , e4 and the faces
F1, . . . , F4 are distinct. We then make use of the following result, which was
proven in [DHK2, Theorem 6].

Theorem 4 (Local Abstract Makeenko–Migdal Equation) Suppose f :
K4 → C is a smooth function satisfying the following “extended gauge invari-
ance” property:

f(a1, a2, a3, a4) = f(a1x, a2, a3x, a4) = f(a1, a2x, a3, a4x)

for all a = (a1, a2, a3, a4) in K4 and all x in K. For each fixed α = (α1, α2, α3, α4)
in K4 and t = (t1, t2, t3, t4) in (R+)4, define a measure µα,t on K4 by

dµα,t(a) =ρt1(a−12 α1a1)ρt2(a−13 α2a2)ρt3(a−14 α3a3)ρt4(a−11 α4a4) da,

where da is the normalized Haar measure on K4. Then for all α ∈ K4, we have(
∂

∂t1
− ∂

∂t2
+

∂

∂t3
− ∂

∂t4

)∫
K4

f dµα,t = −
∫
K4

∇a1 · ∇a2f dµα,t.

We now come to the proof of the abstract Makeenko–Migdal equation in
Theorem 3, in the generic case where the four edges e1, . . . , e4 and the four
faces F1, . . . , F4 are distinct.

Proof of Theorem 3. Let b denote the tuple of all edge variables other than
a1, . . . , a4. The holonomies around the adjoining faces Fi, i = 1, . . . , 4, will have
the form

hi = a−1i+1αiai,

where αi is a word in the b variables. Let us first consider integration with re-
spect to the un-normalized Yang–Mills measure, µ̃ with or without constraints
on boundary holonomies. Since v lies in the interior of Σ, the edges e1, . . . , e4 do
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Figure 6: A graph that is non-generic at v (left) and its generic counterpart

not lie on the boundary. Thus, the holonomy around any boundary component
will involve only the b variables. Integration with respect to µ̃ therefore takes
the form of integration over a1, . . . , a4 with respect to µα,t, where α is a func-
tion of the b variables, followed by integration in the b variables and possibly
another layer of integration with respect to the constraint variables cj . In the
un-normalized measure µ̃, the only dependence on t1, . . . , t4 is in the inner layer
of integration. Thus, we may push the time derivatives inside the outer layers
of integration and allow them to hit on the integral over K4. If we then apply
the local result in Theorem 4, Theorem 3 for µ̃ will follow.

For the normalized measure, we must incorporate the partition function Z.
Since Z depends only on the total area of the surface (i.e., the sum the areas of
all the faces), we see that(

∂

∂t1
− ∂

∂t2
+

∂

∂t3
− ∂

∂t4

)
Z = 0.

Thus, Theorem 3 for the normalized measure easily follows from the correspond-
ing result for the un-normalized measure.

3.3 The nongeneric case

Suppose G is an admissible graph and v is a vertex of G having four attached
edges, where we count an edge twice if both ends of the edge are attached to v.
We say that G is nongeneric at v if either the four edges are not distinct or the
four faces surrounding v are not distinct. If G is not generic at v, we can embed
G into another admissible graph G′ that is generic at v, as in Figure 6. If L is
a loop traced out on G with a simple crossing at v, then “the same” loop can
also be traced out on G′. In that case, the expectation values of tr(hol(L)) and
of tr(hol(L1))tr(hol(L2))—where L1 and L2 are as in Theorem 1—are the same
whether we work over G or over G′. This invariance result has two parts. First,
there is invariance under subdividing an edge by adding a vertex in the middle
of that edge, which is very easy to establish, as shown in Section 4.1 of [DHK2].
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(The argument given there applies equally well in the surface case or the plane
case.) Second, there is invariance under keeping the vertex set the same and
adding a new edge. This invariance result is a consequence of Proposition 4.3.4
in [Lévy2], in the case that the Lévy process there is taken to be Brownian
motion on K.

Furthermore, it is not hard to see that area derivatives of expectation val-
ues give the same result whether computed over G or G′. (See Section 4.3 of
[DHK2].) Thus, the U(N) version of the Makeenko–Migdal equation for the
loop in G reduces to the corresponding result for the loop in G′, which in turn
follows from Theorem 3. In the graph on the left-hand side of Figure 6, for
example, F1 coincides with F3. Thus, t3 is just another name for t1 and the
Makeenko–Migdal equation may be written as(

2
∂

∂t1
− ∂

∂t2
− ∂

∂t4

)
E{tr(hol(L))} = E{tr(hol(L1))tr(hol(L2))}.

It is also possible to formulate a version of Theorem 3 itself that holds in the
nongeneric situation. If the edges e1, . . . , e4 are distinct but the faces F1, . . . , F4

are not distinct, Theorem 3 holds with no changes to the statement, and the
arguments in Section 4 of [DHK2] show how this result can be reduced to the
generic case. If the edges (and possibly also faces) are not distinct, the notion of
extended gauge invariance needs some revision [DHK2, Section 4.2], after which
one can reduce the result to the generic case. Since this process of reduction
requires no changes from the arguments in [DHK2], we do not enter into the
details here, but refer the interested reader to Sections 4.2 and 4.3 of [DHK2].
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[Lévy2] T. Lévy, Two-dimensional Markovian holonomy fields, Astérisque
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MA, 1995.

15



[Witt1] E. Witten, On quantum gauge theories in two dimensions, Comm.
Math. Phys. 141 (1991), 153–209.

[Witt2] E. Witten, Two-dimensional gauge theories revisited, J. Geom.
Phys. 9 (1992), 303–368.

16


