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ABSTRACT. We introduce a new form of the Segal–Bargmann transform for a Lie group
K of compact type. We show that the heat kernel (ρt(x))t>0,x∈K has a space-time
analytic continuation to a holomorphic function (ρC(τ, z))Re τ>0,z∈KC , where KC is
the complexification of K. The new transform is defined by the integral

(Bτf)(z) =

∫
K
ρC(τ, zk

−1)f(k) dk, z ∈ KC.

If s > 0 and τ ∈ D(s, s) (the disk of radius s centered at s), this integral defines a
holomorphic function on KC for each f ∈ L2(K, ρs). We construct a heat kernel den-
sity µs,τ on KC such that, for all s, τ as above, Bs,τ := Bτ |L2(K,ρs)

is an isometric
isomorphism from L2(K, ρs) onto the space of holomorphic functions in L2(KC, µs,τ ).
When τ = t = s, the transform Bt,t coincides with the one introduced by the second au-
thor for compact groups and extended by the first author to groups of compact type. When
τ = t ∈ (0, 2s), the transform Bs,t coincides with the one introduced by the first two
authors.
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1. INTRODUCTION

1.1. The Classical Segal–Bargmann Transform. This paper concerns a generalization
of the Segal–Bargmann transform over compact-type Lie groups, to allow the time param-
eter of the transform to be complex. We begin by briefly discussing the history of the
transform. For t > 0 and d ∈ N, let ρt denote the variance-t Gaussian density on Rd:
ρt(x) = (2πt)−d/2 exp(−|x|2/2t). This is the heat kernel on Rd: the solution u of the
heat equation ∂tu = 1

2∆uwith (sufficiently integrable) initial condition f is given in terms
of ρt by

u(t, x) =

∫
Rd
ρt(y)f(y + x) dy. (1.1)

Alternatively using ρt(−x) = ρt(x) and a change of variables, we have

u(t, x) = (ρt ∗ f)(x) =

∫
Rd
ρt(x− y)f(y) dy. (1.2)

The function ρt admits an explicit entire analytic continuation to Cd, which we call
(ρt)C: it is simply the function

(ρt)C(z) = (2πt)−d/2 exp
(
−z · z

2t

)
= (2πt)−d/2 exp

 1

2t

d∑
j=1

z2
j

 .

If f ∈ L1
loc(Rd) and of sufficiently slow growth, then the integral

(Btf)(z) :=

∫
Rd

(ρt)C(z − y)f(y) dy (1.3)

converges and defines an entire holomorphic function on Cd.
The map f 7→ Btf is equivalent to the Segal–Bargmann transform, invented and

explored by the eponymous authors of [1, 2, 38, 39, 40]. Note that neither Segal nor
Bargmann explicitly connected the transform to the heat kernel, nor did they write the
transform precisely as in (1.3). Nevertheless, their transforms can easily be rewritten in the
form (1.3) by simple changes of variable; cf. [20].

We consider also the heat kernel on Cd ∼= R2d (with rescaled variance), which we refer
to as µt:

µt(z) = (πt)−d exp(−|z|2/t).
(Note that the real, positive function µt on Cd is not the same as the holomorphic func-
tion (ρt)C.) The main theorem is that Bt is an isometric isomorphism from L2(Rd, ρt)
onto HL2(Cd, µt) — the reproducing kernel Hilbert space of holomorphic functions in
L2(Cd, µt). For more information about the classical Segal–Bargmann transform, see, for
example, [20, 24].
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1.2. The Segal–Bargmann Transform for Lie Groups of Compact Type. In [18], the
second author introduced an analog of the Segal–Bargmann transform on an arbitrary com-
pact Lie group. Then, in [6], the first author extended the results of [18] to a Lie group
K of compact type (cf. Section 2.2), a class that includes both compact groups and Rd.
The idea of [18] and [6] is the same as in the Rd case: the heat kernel ρt on K (cf. (1.5)
and Theorem 3.12) has an entire analytic continuation (ρt)C to the complexification KC
of K (cf. Section 2.1). The transform Bt is defined by the group convolution formula
generalizing (1.3):

(Btf)(z) =

∫
K

(ρt)C(zk−1)f(k) dk. (1.4)

The theorem is that Bt is an isometric isomorphism from L2(K, ρt) onto the holomorphic
space HL2(KC, µt), where µt is the (time-rescaled) heat kernel on KC. If K = Rd, then
Bt is precisely the classical Segal–Bargmann transform of Section 1.1.

Later, in [10, 19], the authors made a further generalization related to the time parameter
t. One can use a different time s 6= t to measure the functions f in the domain, while still
using the analytically continued heat kernel at time t to define the transform, as in (1.4).
The resulting map,

Bs,t : L
2(K, ρs)→ HL2(KC, µs,t)

is still an isometric isomorphism for an appropriate two-parameter heat kernel density µs,t,
provided 0 < t < 2s. Note that the formula for the transform Bs,t does not depend on s;
this parameter only indicates the inner product to be used on the domain and range spaces.
In the special case that K = Rd, the two-parameter heat kernel density µs,t in the range
is a Gaussian measure with different variances in the real and imaginary directions. (Take
u = 0 in (1.17) below.)

Remark 1.1. For a complex manifold M , let H(M) denote the space of holomorphic
functions on M . If µ is a measure on M having a strictly positive, continuous density with
respect to the Lebesgue measure in each holomorphic local coordinate system, it is not
hard to show that HL2(M,µ) := H(M) ∩ L2(M,µ) is a closed subspace of L2(M,µ)
and is therefore a Hilbert space. Furthermore, the pointwise evaluation map F 7→ F (z)
is continuous for each z ∈ M , and the norm of this functional is locally bounded as a
function of z. (See, for example, Theorem 3.2 and Corollary 3.3 in [7] or Theorem 2.2 in
[20].)

1.3. The Complex-Time Segal–Bargmann Transform. The topic of the present paper
is a new generalization that modifies the transform Bs,t as well; in particular, we show
that the time parameter t can also be extended into the complex plane, and there is still an
isomorphism between real and holomorphic L2 spaces of associated heat kernel measures.
This generalization is natural and, in a certain sense, a completion of Segal–Bargmann
transform theory, as explained below. (See Theorem 4.2.)

LetK be a compact-type Lie group with Lie algebra k, and fix an Ad(K)-invariant inner
product 〈 , 〉k on k (cf. Section 2.2). This induces a bi-invariant Riemannian metric on K,
and an associated Laplace operator ∆K with D(∆K) = C∞c (K) (see Definition 3.20),
which is bi-invariant, elliptic, and essentially self-adjoint in L2(K) with respect to any
right Haar measure (see Section 3.2 for precise statements and proofs of these properties).
There is an associated heat kernel, ρt ∈ C∞(K, (0,∞)), satisfying(

e
t
2 ∆̄Kf

)
(x) =

∫
K

ρt(k)f(xk) dk for all f ∈ L2(K) and t > 0. (1.5)
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(See Definition 3.22.) The key properties of the heat kernel ρt are described in Theorem
3.12 and Corollaries 3.28 and 3.29.

Our first theorem is that the heat kernel can be complexified in both space and time.

Theorem 1.2. Let K be a connected Lie group of compact type, with a given Ad(K)-
invariant inner product on its Lie algebra k, and let (ρt)t>0 be the associated heat kernel.
Let C+ denote the right half-plane {τ = t + iu : t > 0, u ∈ R}. There is a unique
holomorphic function

ρC : C+ ×KC → C
such that ρC(t, x) = ρt(x) for all t > 0 and x ∈ K ⊂ KC.

Theorem 1.2 is proved in Section 5, as part of Theorem 5.13.
Following the pattern described above, for each τ ∈ C+ and “reasonable” function

f : K → C, we would like to define (Bτf)(z) to be the analytic continuation of the
function R+ × K 3 (t, x) → (e

t
2 ∆̄Kf)(x) ∈ C. In order to carry out the analytic

continuation, we use the Ad(K)-invariance assumption to rewrite (1.5) as(
e
t
2 ∆̄Kf

)
(x) =

∫
K

ρt(xk
−1)f(k) dk; (1.6)

see Section 3.5 and in particular Corollary 3.29 below. This equation along with Theorem
1.2 motivates the following notation.

Notation 1.3 (Complex-time Segal–Bargmann transform). For τ ∈ C+ and z ∈ KC,
define

(Bτf) (z) :=

∫
K

ρC(τ, zk−1)f(k) dk for z ∈ KC (1.7)

for all measurable functions f : K → C satisfying∫
K

∣∣ρC(τ, zk−1)f(k)
∣∣ dk <∞. (1.8)

Further let D(Bτ ) denote the vector space of measurable functions f : K → C such that
(1.8) holds for all z ∈ KC and such that Bτf ∈ H(KC).

As defined, D(Bτ ) is a linear subspace of the measurable C-valued functions on K,
and Bτ : D(Bτ ) → H(KC) is a linear map. The main theorem of this paper (Theorem
1.6) identifies L2-Hilbert subspaces of D(Bτ ) and H(KC) which are unitarily equivalent
to one another under the action of Bτ . To describe the relevant subspaces of H(KC) we
need a little more notation.

Definition 1.4. Let s > 0 and τ = t + iu ∈ C. The (s, τ)-Laplacian ∆s,τ on KC is the
left-invariant differential operator

∆s,τ =

d∑
j=1

[(
s− t

2

)
X̃2
j +

t

2
Ỹ 2
j − u X̃j Ỹj

]
(1.9)

where {Xj}dj=1 is any orthonormal basis of k, and Yj = JXj where J is operation of
multiplication by i on kC = Lie(KC). Here X̃ is the left-invariant vector field on KC
whose value at the identity is X .

Remark 1.5. Given s > 0 and τ = t+ iu ∈ C+, from (1.9), it is not difficult to show that
the operator ∆s,τ is elliptic if and only if

α (s, τ) := det

[
s− t/2 −u/2
−u/2 t/2

]
=

1

4
(2st− t2 − u2) > 0. (1.10)
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This can be written equivalently as

2s > t+ u2/t (1.11)

or, more succinctly, as τ ∈ D(s, s) (the disk of radius s, centered at s). Further notice that
D(s, s) ↑ C+ as s ↑ ∞.

If one (and hence all) of the conditions in Remark 1.5 hold, then (by Theorems 3.7
and 3.12 below) ∆s,τ with D(∆s,τ ) := C∞c (KC) is essentially self-adjoint on L2(KC)
(with respect to any right Haar measure), and there exists a heat kernel density µs,τ ∈
C∞(KC, (0,∞)) such that(

e
1
2 ∆̄s,τ f

)
(w) =

∫
KC

µs,τ (z) f(wz) dz for all f ∈ L2(KC).

We are now prepared to state the main theorem of this paper.

Theorem 1.6 (Complex-time Segal–Bargmann transform). LetK be a connected, compact-
type Lie group. For s > 0 and τ ∈ D(s, s), L2(K, ρs) ⊂ D(Bτ ); i.e., Bτf is holomorphic
on KC for each f ∈ L2(K, ρs). The image of Bτ on this domain is Bτ

(
L2(K, ρs)

)
=

HL2(KC, µs,τ ). Moreover,
Bs,τ := Bτ |L2(K,ρs)

is a unitary isomorphism from L2(K, ρs) onto HL2(KC, µs,τ ).

Theorem 1.6 is proved in Section 5. The τ = t ∈ R case of Theorem 1.9 was established
in [10, Theorem 5.3]. (See also [19, Theorem 2.1].)

Remark 1.7. The condition in [10, 19] for the two-parameter Segal–Bargmann transform
Bs,t to be a well-defined unitary map was t > 0 and s > t/2, or equivalently t ∈ (0, 2s). It
is therefore natural that, in complexifying t to τ , the optimal condition is that τ ∈ D(s, s),
whose intersection with R is the interval (0, 2s).

In the case that the group K is compact, there is a limiting s → ∞ variant (Theorem
1.9) of Theorem 1.6. To state this variant, as in [18], we first introduce a one parameter
family of “K-averaged heat kernels.”

Definition 1.8. For t > 0, define the K-averaged heat kernel νt on KC by

νt(z) =

∫
K

µt,t(zk) dk for all z ∈ KC

where dk denotes the Haar probability measure on K.

In fact, one can replace µt,t by µs,τ for any τ ∈ D(s, s) in the above integral, and the
resulting K-averaged density νt is the same: it only depends on t = Re τ ; cf. Lemma 4.11
below.

Theorem 1.9 (Large-s limit). For all s > 0 and τ = t+ iu ∈ D(s, s), we have L2(K) =
L2(K, ρs) and L2(KC, µs,τ ) = L2(KC, νt) (equalities as sets). Furthermore, for all
f ∈ L2(K) and all F ∈ L2(KC, νt), we have

lim
s→∞

‖f‖L2(K,ρs)
= ‖f‖L2(K)

lim
s→∞

‖F‖L2(KC,µs,τ ) = ‖F‖L2(KC,νt)
.

It follows thatB∞,τ := Bτ |L2(K) is a unitary isomorphism fromL2(K) onto HL2(KC, νt).

This theorem is proved in Section 5.3 below.
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Remark 1.10. The unitarity of the map B∞,τ was previously established in [14, Prop.
2.3]. Indeed, this unitarity result follows easily from the unitarity of the “C-version”
Segal–Bargmann transform in [18] and the unitarity of the Schrödinger operator eiu∆/2 :
L2(K) → L2(K). The significance of Theorem 1.9 is that the unitary map B∞,τ is, in a
strong sense, the s→∞ limit of the unitary map Bs,τ .

1.4. An Outline of the Proof. We now give a heuristic proof of the isometricity portion
of Theorem 1.6, in the Euclidean case K = Rd, for motivation. The argument is a gener-
alization of the method used in the appendix of [21]. By (1.7), if we restrict to real time
τ = t > 0 and look at the transform (Bs,tf)(x) at a point x ∈ Rd, we simply have
(Bs,tf)(x) =

∫
Rd ρt(x − y)f(y) dy; in other words, restricted to real time and K, Bs,tf

is just the heat operator applied to f , Bs,tf = e
t
2 ∆f where ∆ is the standard Laplacian

on Rd (cf. (3.18)). Therefore, in general the transform can be described as “apply the heat
operator, then analytically continue in space and time”. But if the function f itself already
possesses a holomorphic extension fC to all of Cd (e.g., if f is a polynomial), then at least
informally we should have

Bs,τf = e
τ
2 ∆fC,

where now ∆ (the sum of squares of the Rd-derivatives) is acting on functions on Cd.
Let F = Bs,τf ; we need to compute |F |2 = FF̄ . Since fC is holomorphic, we have

∂
∂xj

fC = ∂
∂zj

fC, and so ∆fC =
∑d
j=1

∂2

∂z2
j
fC := ∂2fC; similarly ∆f̄C =

∑d
j=1

∂2

∂z̄2
j
f̄C :=

∂̄2f̄C. Again, since fC is holomorphic and f̄C is antiholomorphic, ∂2f̄C = 0 = ∂̄2fC; so
we have

(FF̄ ) = (e
τ
2 ∂

2

fC)(e
τ̄
2 ∂̄

2

f̄C) = e( τ2 ∂
2+ τ̄

2 ∂̄
2)fCf̄C. (1.12)

Now, we measure f in L2(Rd, ρs); setting x = 0 in the (additive-form of) (1.5) defining
the heat operator, we can compute

‖f‖2L2(Rd,ρs) =

∫
Rd
ρs(y)|f(y)|2 dy =

(
e
s
2 ∆|f |2

)
(0) =

(
e
s
2 ∆|fC|2

)
(0). (1.13)

Similarly, we measure F in L2(Cd, µs,τ ), meaning

‖F‖2L2(Cd,µs,τ ) =
(
e

1
2 ∆s,τ |F |2

)
(0). (1.14)

Combining (1.12) and (1.14), and commuting partial derivatives to combine the exponen-
tials, we therefore have

‖Bs,τf‖2L2(Cd,µs,τ ) =
(
e

1
2 ∆s,τ+ τ

2 ∂
2+ τ̄

2 ∂̄
2

|fC|2
)

(0). (1.15)

Comparing (1.13) with (1.15), we see that to prove the isometry in Theorem 1.6, it suffices
to have

s∆ = ∆s,τ + τ∂2 + τ̄ ∂̄2.

Expressing the operators ∂2 and ∂̄2 in terms of real partial derivatives, we can then solve
for ∆s,τ ; this is how (1.9) arises. In the present Euclidean setting, we have

∆s,τ =

d∑
j=1

[(
s− t

2

)
∂2

∂x2
j

+
t

2

∂2

∂y2
j

− u ∂2

∂xj∂yj

]
. (1.16)

As in Remark 1.5, it is easily verified that ∆s,τ is elliptic precisely when τ ∈ D (s, s).
Moreover, by a standard Fourier transform argument, one shows e

1
2 ∆̄s,τ f = f ∗ µs,τ

where

µs,τ (z) = (2π
√
α)−d

(
− t/2

2α
|x|2 − s− t/2

2α
|y|2 − u

2α
x · y

)
, (1.17)
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where z = x+ iy ∈ Rd + iRd = Cd, and α := α (s, τ) as in Eq. (1.10).
When u = 0, the density µs,τ becomes a product of a Gaussian in the x variable and a

Gaussian in the y variable, but with typically unequal variances. If u = 0 and s = t, the
formula for µs,τ reduces to

µt,t(z) = (πt)−de−|z|
2/t,

which is the density for the standard Segal–Bargmann space over Cd.
For a general Lie group K of compact type, we replace the partial derivatives in the

preceding argument with left-invariant vector fields. The heuristic argument then goes
through unchanged, except that we must remember that left-invariant vector fields do not,
in general, commute. Thus, we must also verify that the particular operators involved in
the calculation do, in fact, commute, allowing us to combine the exponents as above. For
this, we need to use an inner product on the Lie algebra of K that is Ad-invariant; this is
the reason for the assumption that K be of compact type.

Most of this paper is devoted to making the above argument rigorous. The key is to
introduce a dense subspace (consisting of matrix entries; cf. Section 3.3) of the domain
Hilbert space on which integration against the heat kernel can be computed rigorously by
a power series in the relevant Laplacian. This argument can be found in Section 5, with
the necessary background about heat kernel analysis on Lie groups in Section 3, and the
analysis of the heat kernel µs,τ and its generator ∆s,τ in Section 4.

The operator ∆s,τ was the starting point for the current investigation. It is the Laplacian
for a left-invariant Riemannian metric on KC for which the corresponding inner product
on the Lie algebra is invariant under the Adjoint action of K. While the Lie algebra of the
complexified Lie group KC does not possess a fully Ad-invariant inner product, it does
possess many inner products that are invariant under the adjoint action of K. These are the
most natural from the perspective of diffusion processes, particularly in high dimension
(cf. [29]). In fact, there is a natural three (real) parameter family of Ad(K)-invariant inner
products on Lie(KC) (see (4.6) for the relation to the Segal–Bargmann transform param-
eters s and τ = t + iu). In the case that K is simple, this is a complete characterization
of all such invariant inner products; this is the statement of Theorem 4.2 below. It was this
fact that led the authors backward to discover the complex-time Segal–Bargmann trans-
form, which is therefore a natural completion of the versions of the transform previously
introduced by Segal, Bargmann, and the first two authors of the present paper.

1.5. Motivation. The Segal–Bargmann transform (Bτf)(z) is computed by integration
of f against the function

χzτ (x) := ρC(τ, x−1z). (1.18)

These functions may be thought of as “coherent states” on K. In the R1 case, coherent
states are often defined as minimum uncertainty states, namely those giving equality in
the classic Heisenberg uncertainty principle. There is, however, a stronger form of the
uncertainty principle, due to Schrödinger [37], which says that

(∆χX)
2

(∆χP )2 ≥ ~2

4
+ |Covχ(X,P )|2 , (1.19)

where ∆χX is the uncertainty of the observable X in state χ, and

Covχ(X,P ) := 〈(XP + PX)/2〉χ − 〈X〉χ 〈P 〉χ
is the quantum covariance. (The classic Heisenberg principle omits the covariance term on
the right-hand side of (1.19).)
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States that give equality in (1.19) are Gaussian wave packets, but where the quadratic
term in the exponent can be complex, as follows:

χ(x) = C exp{iax2 − b(x− c)2 + idx} (1.20)

with a, b, c, d ∈ R and b > 0. This class of states is actually more natural than the usual
ones with a = 0, because the collection of states of the form (1.20) is invariant under the
metaplectic representation; that is, the natural (projective) unitary action of the group of
symplectic linear transformations of R2.

If we specialize the states in (1.18) to the Rd case, we find that they are Gaussian wave
packets, and that if Im τ 6= 0 then the quadratic part of the exponent is complex. We see,
then, that allowing the time-parameter in the Segal–Bargmann transform to be complex
amounts to considering a larger and more natural family of coherent states.

In the s → ∞ version of the transform B∞,t+iu of Theorem 1.9, the domain Hilbert
space is L2(K). Since eiu∆/2 is a unitary map of L2(K) to itself, in this case it is possible
to derive the complex-time transform from the real one B∞,t (denoted as the C-version of
the transform Ct in [18]) by the decomposition e

1
2 (t+iu)∆ = et∆/2eiu∆/2. This possibility

has been exploited, for example, in the papers [13, 14] of C. Florentino, J. Mourão, and
J. Nunes on the quantization of nonabelian theta functions on SL(n,C) = SU(n)C. The
authors show that these functions arise as the image of certain distributions on SU(n) under
the heat operator, evaluated at a complex time, and use the Segal–Bargmann transform
in the complexification process. These papers, then, show the utility of introducing a
complex time-parameter into the (C-version) Segal–Bargmann transform. The present
paper extends this complex time-parameter to the two-parameter transform.

Meanwhile, the Segal–Bargmann transform for K is related to the study of complex
structures on the cotangent bundle T ∗(K). There is a natural one-parameter family of
“adapted complex structures” on T ∗(K) arising from a general construction of Guillemen–
Stenzel [16, 17] and Lempert–Szőke [31, 42]. Motivated by ideas of Thiemann [43],
the second author and W. Kirwin in [25] showed that these structures arise from the
“imaginary-time geodesic flow” on T ∗(K). The Segal–Bargmann transform can then be
understood [11, 12, 22] as a quantum counterpart of the construction in [25].

As observed in [32], the adapted complex structures on T ∗(K) extend to a two-parameter
family, by including both a real and an imaginary part to the time-parameter in the geodesic
flow in [25]. The corresponding quantum construction has been done in [33] and can be
thought of as adding a complex parameter to the C-version of the Segal–Bargmann trans-
form for K. (Compare work of Kirwin and Wu [30] in the Rd case.) The present paper
then extends the complex-time transform to its most natural range, in which the domain
Hilbert space is taken to be L2(K) with respect to a heat kernel measure.

2. COMPACT-TYPE LIE GROUPS AND THEIR COMPLEXIFICATIONS

Let G be a real Lie group. Let e denote the identity element of G; let ι : G → G be
the inversion map, ι(g) = g−1 for all g ∈ G; and for any g ∈ G let Lg, Rg : G → G be
the left and right translation by g maps defined by Lg(x) = gx and Rg(x) = xg for all
x ∈ G. We now choose once and for all a right Haar measure λ = λG on G and usually
simply write dx for λ(dx) and L2(G) for L2 (G,λ). The Lie algebra of G is taken to be
g := TeG and to each X ∈ g we let X̃ denote the unique left-invariant vector field on G
such that X̃(e) = X , i.e., X̃(g) = Lg∗X for all g ∈ G. As usual, for g ∈ G, Adg denotes
the endomorphism of g given by Adg = (Cg)∗, where Cg = LgRg−1 is the conjugation
map on G. Then Ad: G → GL(g) given by g 7→ Adg is a Lie group homomorphism. Its
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derivative is ad = Ad∗, which is a Lie algebra homomorphism from g to End(g). It is
given explicitly by adX(Y ) = [X,Y ].

2.1. Complex Lie Groups and Complexificiation. Suppose G is a complex Lie group,
so that the Lie algebra g of G is a complex Lie algebra. It is convenient, for reasons that
will be apparent shortly, to write the “multiplication by i” map on g as J : g → g. (Thus,
J2 = −I .) Since g is a complex Lie algebra, the bracket on g is bilinear over C, and in
particular

[JX, Y ] = J [X,Y ] (2.1)
for all X,Y ∈ g.

For any X ∈ g, the left-invariant vector field X̃ is given by

(X̃f)(g) =
d

dt
f(getX)

∣∣∣∣
t=0

(2.2)

for any smooth real- or complex-valued function f on G. We may now appreciate the
utility of the notion J for the “multiplication by i” map on g: in general, J̃Xf 6= i X̃f
(for example, if f is real valued). On the other hand, a complex-valued function f on G
is holomorphic if and only if the differential of f at each point g ∈ G is a complex-linear
map from Tg(G) to C. Thus, if f is holomorphic, then for all X ∈ g and g ∈ G, we have

J̃Xf(g) = iX̃f(g) (f holomorphic). (2.3)

We note that if f is holomorphic then X̃f is again holomorphic for all X ∈ g, because
the map g 7→ f(getX) is holomorphic for all t. Furthermore, for all g ∈ G and X ∈ g, the
maps Adg : g→ g and adX : g→ g are complex linear:

Adg J = JAdg and adX J = JadX . (2.4)

Let K be a connected real Lie group. We say that a pair (G,φ) is a complexification
of K if G is a complex Lie group, φ : K → G is a real Lie group homomorphism, and
the following universal property holds: if H is any complex Lie group and Φ: K → H
is a real Lie group homomorphism, there exists a unique holomorphic homomorphism
ΦC : G→ H through which φ factors as Φ = ΦC ◦ φ:

K
φ //

Φ   

G

ΦC~~
H

Proposition 2.1. Let K be a connected Lie group with Lie algebra k, and assume that K
is isomorphic to the direct product of a compact group K0 and Rd for some non-negative
integer d. Then there exists a complexification ofK, and it is unique up to isomorphism; we
refer to it asKC. Moreover,KC is connected, the homomorphism φ : K → KC is injective,
and φ(K) is a closed subgroup of KC. The Lie algebra kC of KC is the complexification of
the Lie algebra of K: kC = k⊗R C = k⊕ Jk. Finally, KC is isomorphic to (K0)C × Cd.

This is a standard result; see, for example, [26, XVII Theorem 5.1] and [4, Theorem
4.1, Propositions 8.4 and 8.6].

Remark 2.2. Actually, every connected Lie group K has a unique complexification. (See
Section 6.10 of Chapter III in [3].) However, in general (if K is not of the special type
in the proposition) the homomorphism φ may not be injective and the Lie algebra of the
complexification may not be isomorphic to k⊗R C.



THE COMPLEX-TIME SEGAL–BARGMANN TRANSFORM 10

Example 2.3. The complexification of Rn is Cn, with φ being the inclusion of Rn into
Cn. The compact Lie groups SO(n,R), SU(n), and U(n) have the following complexifi-
cations:

SO(n,R)C = SO(n,C), SU(n)C = SL(n,C), U(n)C = GL(n,C).

In each case, the homomorphism φ is the standard inclusion of K into KC.

2.2. Lie Groups of Compact Type.

Definition 2.4. Let G be a Lie group, and let K ⊆ G be a Lie subgroup. An inner product
〈·, ·〉g on g is Ad(K)-invariant if, for all X1, X2 ∈ g and all k ∈ K,

〈AdkX1,AdkX2〉g = 〈X1, X2〉g.
If the inner product is Ad(G)-invariant, we simply call it Ad-invariant. A group whose
Lie algebra possesses an Ad-invariant inner product is called compact type.

Every compact Lie group possesses Ad-invariant inner products — simply average any
inner product over the Haar measure on the group — thus explaining the terminology
“compact type”. The simplest examples are closed subgroups of U(n); for any such group
K, the Hilbert–Schmidt inner product 〈X1, X2〉 = Tr(X1X

∗
2 ) is Ad-invariant. (In the

case of the simple group SU(n), this is, up to scale, the only Ad-invariant inner product.)
Note that the existence of an Ad-invariant inner product means that there is a basis in

which Adg is orthogonal for all g; if G is connected, this means det(Adg) = 1 for all g in
this case. It follows (taking g = etX and taking d

dt

∣∣
t=0

) that adX is skew-symmetric, and
thus that Tr(adX) = 0 in this case.

It turns out that the presence of an Ad-invariant inner product nearly forces the group
to be compact.

Proposition 2.5 ([34], Lemma 7.5). If K is a compact-type Lie group with a specified
Ad-invariant inner product, then K is isometrically isomorphic to a direct product group:
K ∼= K0 × Rd for some compact Lie group K0 and some non-negative integer d.

This result shows that every Lie group of compact type has a nice complexification, as
described in Proposition 2.1.

2.3. The Modular Function. Recall that the modular function, m : G → (0,∞), is the
continuous (in fact smooth) group homomorphism determined by (Lg)∗ λ = m(g)λ for
all g ∈ G. It is easy to verify that both ι∗λ and mλ (where mλ denotes the measure
d(mλ) := mdλ) are left-invariant Haar measures on G, and hence ι∗λ = Cmλ for some
C > 0. Applying ι∗ to the equation ι∗λ = Cmλ using ι−1 = ι, ι∗ (mλ) = m ◦ ι−1 · ι∗λ,
and m · m ◦ ι = 1 by the homomorphism property of ι, one easily deduces that λ =
ι2∗λ = C2λ from which it follows that C = 1, i.e., ι∗λ = mλ. The above remarks may be
summarized by the following identities:∫

G

f(gx) dx = m(g)

∫
G

f(x) dx ∀ g ∈ G and∫
G

f(x−1) dx =

∫
G

f(x)m(x) dx (2.5)

which hold for all f ∈ Cc (G).
A Lie group whose modular function is constantly equal to 1 is called unimodular. For

example, compact Lie groups are always unimodular; in fact, m|K ≡ 1 for any compact
subgroup, K ⊆ G. This follows from the fact that m(K) has to be a compact subgroup of
(0,∞) and there is only one such subgroup, namely {1}.



THE COMPLEX-TIME SEGAL–BARGMANN TRANSFORM 11

Proposition 2.6. If K is a connected Lie group of compact type, both K and KC are
unimodular.

Proof. It is well known that a connected Lie group G is unimodular if and only if Adg
has determinant one for all g ∈ G. (See, for example, Exercise 26 in Chapter 2 of [44].)
There is, however, a subtlety: even if G happens to be a complex Lie group, so that Adg is
a complex-linear map on the the Lie algebra, the determinant of Adg should be taken over
R not C. (After all, the complex structure plays no role in the definition of the modular
function.)

Fix an Ad-invariant inner product on k and identify k with Rn using an orthonormal ba-
sis. Then the Adjoint representation of K maps into O(n,R), and actually into SO(n,R),
since K is connected. Thus, Adx has determinant one for all x ∈ K, showing that K is
unimodular.

Now, since the Adjoint representation of K maps into SO(n,R), the Adjoint represen-
tation of KC maps into the complexification of SO(n,R), namely SO(n,C). (That is to
say, the adjoint action of KC preserves the complex-bilinear extension of the chosen inner
product on k.) It follows that for all g ∈ KC, the determinant of Adg , computed over C, is
1. It is then easily verified that the determinant over R of a complex-linear transformation,
viewed as a real linear transformation, is the square of the absolute value of the determi-
nant over C. (Work in a basis over C in which the operator is upper triangular.) Thus, the
determinant of Adg , computed over R, is also 1, showing that KC is unimodular. �

3. HEAT KERNELS ON LIE GROUPS

3.1. Laplacians. We now introduce left-invariant Laplacian operators, which in this con-
text will mean any sum of squares of left-invariant vector fields. The results presented in
this section are well-known; for an excellent presentation of many of them, see [34].

Notation 3.1. To each real subspace V ⊆ g equipped with a real inner product 〈·, ·〉V , let

∆V =

dV∑
a=1

Z̃2
a

where dV = dimR V and {Za}dVa=1 is an orthonormal basis for (V, 〈·, ·〉V ).

By construction ∆V is a left-invariant differential operator on G which (as the next
lemma shows) is well defined, independent of basis.

Remark 3.2. In the case that G is unimodular and V = g, the operator ∆V is the (nega-
tive) Laplace–Beltrami operator on G with respect to the left-invariant Riemannian metric
induced by the given inner product; cf. [8, Remark 2.2].

Lemma 3.3 (Left-Invariant Laplacians). Continuing the notation above, let {Xj}dVj=1 be
any basis for V , and define qij := 〈Xi, Xj〉V (the Gram matrix). If q−1 is the matrix
inverse to q, then (as differential operators on C2(G))∑

i,j

q−1
ij X̃iX̃j =

∑
a

Z̃2
a

where i, j, a all run over {1, 2, . . . , dV }. As a corollary we see that these expressions
are basis independent, i.e., the operators above are associated purely to the inner product
〈·, ·〉V .
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Proof. If we let A`j := 〈Z`, Xj〉V , then

qij = 〈Xi, Xj〉V =
∑
`

〈Xi, Z`〉V 〈Z`, Xj〉V

=
∑
`

A`jA`i = [A>A]ij

from which we easily conclude that Aq−1A> = I . Using this identity, we find∑
i,j

q−1
ij X̃iX̃j =

∑
i,j,a,b

q−1
ij 〈Xi, Za〉V 〈Xj , Zb〉V Z̃aZ̃b

=
∑
i,j,a,b

q−1
ij AaiAbjZ̃aZ̃b =

∑
i,j,a,b

Aaiq
−1
ij A

>
jbZ̃aZ̃b

=
∑
a,b

[
Aq−1A>

]
a,b
Z̃aZ̃b =

∑
a

Z̃2
a ,

as claimed.
�

Notation 3.4. For g ∈ G and any function f : G → C, let R̂gf and L̂gf be the functions
on G defined respectively by(

R̂gf
)

(x) = f(xg) and
(
L̂gf

)
(x) = f(gx) for all x ∈ G.

Note that R̂g and L̂g leave C∞(G), C∞c (G), and L2(G) invariant, and and R̂g acts as
a unitary operator on L2(G). Moreover L̂g acts unitarily on L2(G) whenever m(g) = 1
where m is the modular function on G. Since ∆V is a linear combination of left-invariant
differential operators, ∆V is left invariant over G: ∆V L̂g = L̂g∆V on C∞(G) for all
g ∈ G. On the other hand, ∆V need not be right invariant without further assumptions.

Lemma 3.5. Let K be a Lie subgroup of G, let V ⊆ g be an Ad(K)-invariant subspace
and let 〈·, ·〉V be an Ad(K)-invariant inner product on V . Then ∆V is right-K-invariant;
i.e., for all k ∈ K,

∆V R̂k = R̂k∆V on C∞(G). (3.1)

Proof. For the desired right invariance, we first note that for any g, x ∈ G and Z ∈ g,

Z̃
(
R̂gf

)
(x) =

d

dt

∣∣∣∣
t=0

(
R̂gf

)
(xetZ) =

d

dt

∣∣∣∣
t=0

f(xetZg)

=
d

dt

∣∣∣∣
t=0

f(xgg−1etZg) =
d

dt

∣∣∣∣
t=0

f(xgetAdg−1Z) =
(
Z̃gf

)
(xg)

where Zg = Adg−1Z. In other words, we have shown that

Z̃
(
R̂gf

)
= R̂g

(
Z̃gf

)
.

Thus, if k ∈ K, we have

∆V R̂kf =

dV∑
a=1

Z̃2
aR̂kf =

dV∑
a=1

R̂k

(
Z̃ka

)2

f. (3.2)
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As 〈·, ·〉V is Ad(K)-invariant, we know that {Zka}
dV
a=1 = {Adk−1Za}dVa=1 is still an or-

thonormal basis for (V, 〈·, ·〉V ). By Lemma 3.3,

dV∑
a=1

(Z̃ka )2 = ∆V ,

and thus (3.2) shows ∆V R̂kf = R̂k∆V f as desired. �

Corollary 3.6. Let K be a Lie subgroup of G, let V ⊆ g be an Ad(K)-invariant subspace
and let 〈·, ·〉V be an Ad(K)-invariant inner product on V . Then [∆V , Ã] = 0 for allA ∈ k.

Proof. Taking k = etA in (3.1) and then differentiating the result at t = 0 shows the
desired equality ∆V Ãf = Ã∆V f . �

3.2. Heat Operators and Heat Kernels. We now come to the central objects used in this
paper: heat operators (i.e., heat semigroups) and their integral kernels. The first important
fact is that left-invariant Laplacians are always essentially self-adjoint. If G is unimod-
ular and V = g, the result follows from the well-known essential self-adjointness of the
Laplacian on a complete Riemannian manifold (e.g., Section 2 of [41]). If elements of V
generate g as a Lie algebra, then essential self-adjointness can be proved using methods
of hypoellipticity, as in [27]. We provide a self-contained proof of the general result in
Appendix A which expands on the brief outline given in [9, p. 950]. (The details of this
argument were communicated to the first author by L. Gross.)

Theorem 3.7. For any subspace V ⊆ g, the left-invariant Laplacian ∆V , with domain
D(∆V ) = C∞c (G), is essentially self-adjoint as an unbounded operator on L2(G). More-
over, its closure ∆̄V is non-positive, and the associated heat operators e

t
2 ∆̄V are left-

invariant for each t > 0.

As in Lemma 3.5, the assumption of Ad(K)-invariance makes e
t
2 ∆̄V right-K-invariant

as well. To properly prove this (in Corollary 3.9 below), we first need the following tech-
nical functional analysis lemma, which is also used in the proof of Lemma 4.11.

Lemma 3.8. Let H be a separable Hilbert space, let A and B be two essentially self-
adjoint non-positive operators on H , and suppose Q : H → H is a bounded operator
such QB ⊆ AQ; i.e., Q(D(B)) ⊆ D(A) and QB = AQ on D(B). Then QetB̄ = etĀQ
for all t ≥ 0.

Proof. If f ∈ D(B̄) and fn ∈ D(B) such that fn → f and Bfn → B̄f , then Qfn → Qf
and AQfn = QBfn → QB̄f as n → ∞. Therefore it follows that Qf ∈ D(Ā) and
ĀQf = QB̄f for all f ∈ D(B̄); i.e., QB̄ ⊆ ĀQ. So for any λ ∈ C we may conclude that
(λI − Ā)Qf = Q(λI − B̄)f for all f ∈ D(B̄). If we assume λ > 0 and g ∈H , we may
take f = (λI − B̄)−1g ∈ D(B̄) in the previous identity to find

(λI − Ā)Q(λI − B̄)−1g = Qg.

Multiplying this equation by (λI− Ā)−1 and using the fact that g was arbitrary shows that
Q(λI − B̄)−1 = (λI − Ā)−1Q or, equivalently,

Q(I − λ−1B̄)−1 = (I − λ−1Ā)−1Q for all λ > 0.

A simple induction argument then shows that

Q(I − λ−1B̄)−n = (I − λ−1Ā)−nQ for all λ > 0. (3.3)
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Now, note that limn→∞(1 − y
n )−n = ey and 0 ≤ (1 − y

n )−n ≤ 1 for y ≤ 0; it thus
follows from the spectral theorem and the dominated convergence theorem that

etB̄ = strong− lim
n→∞

(
I − t

n
B̄

)−n
and etĀ = strong− lim

n→∞

(
I − t

n
Ā

)−n
.

Therefore, taking λ = n/t in (3.3) and then letting n → ∞ shows QetB̄ = etĀQ for all
t > 0. This completes the proof for t > 0, and the t = 0 case is immediate. �

Corollary 3.9. If K is a Lie subgroup of G, V ⊆ g is an Ad(K)-invariant subspace, and
〈·, ·〉V is an Ad(K)-invariant inner product on V , then [e

t
2 ∆̄V , R̂k] = 0 for all k ∈ K and

t ≥ 0.

Proof. If Q = R̂k and A = B = ∆V with D(∆V ) = C∞c (G), then by Lemma 3.5
QB = AQ, and Q preserves D(∆V ) in this case. The result now follow by an application
of Lemma 3.8. �

Remark 3.10. We will be careful to always use the explicit closure ∆̄V when applying the
heat operator defined through the spectral theorem for unbounded operators as above. In
later sections, we will often work in a function space (sometimes nearly disjoint from L2)
on which the naı̈ve power series definition of e

t
2 ∆V f converges for each f (cf. Section

3.3). In that case (and that case only), we use the notation e
t
2 ∆V without the closure.

Notation 3.11. If 〈·, ·〉g is an inner product on g, let |x|g denote the Riemannian distance
from e to x in G relative to the unique left-invariant Riemannian metric on G which agrees
with 〈·, ·〉g on TeG.

The next theorem introduces the heat kernel: the integral kernel of e
t
2 ∆̄g . For proofs of

the fundamental properties listed here, we refer the reader to [8, Proposition 3.1, Lemmas
4.2-4.3], [9, Section 3], and the references therein.

Theorem 3.12. Let 〈·, ·〉g be an inner product on g and let ∆g be the associated Laplacian
as in Notation 3.1, with D(∆g) := C∞c (G). Then ∆g is an elliptic differential operator
and there is a smooth function (0,∞)×G 3 (t, x) 7→ ρ

∆g

t (x) ∈ (0,∞) so that

e
t
2 ∆̄g =

∫
G

ρ
∆g

t (x)R̂x dx ∀ t > 0. (3.4)

That is to say: for all g ∈ G and f ∈ f ∈ L2(G),(
e
t
2 ∆̄gf

)
(g) =

∫
G

ρ
∆g

t (x)f(gx) dx.

The function ρ∆g

t is called the heat kernel. It satisfies the following properties.

(1) The measures {ρ∆g

t (x) dx}t>0 are invariant under the inversion map ι : x 7→ x−1.
(2) ρ

∆g

t is conservative: ∫
G

ρ
∆g

t (x) dx = 1. (3.5)

(3) {ρ∆g

t }t>0 satisfies the semigroup property:

ρ
∆g

s+t(x) =

∫
G

ρ∆g
s (xy−1)ρ

∆g

t (y) dy ∀ s, t > 0. (3.6)
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(4) (t, x)→ ρ
∆g

t (x) satisfies the heat equation:

∂tρ
∆g

t (x) =
1

2
∆gρ

∆g

t (x) for t > 0 and x ∈ G.

(5) {ρ∆g

t }t>0 is an approximate identity: for any f ∈ Cc(G) and x ∈ G,

lim
t↓0

∫
G

f(xy−1)ρ
∆g

t (y) dy = lim
t↓0

∫
G

f(xy)ρ
∆g

t (y) dy = f(x). (3.7)

(6) (Gaussian heat kernel bounds) There exists ν ∈ R such that, for T > 0 and
ε ∈ (0, 1], there is a constant C(T, ε) such that, for 0 < s ≤ T and x ∈ G,

ρ∆g
s (x) ≤ C(T, ε)s−d exp{−(|x| − νs)2/(1 + ε)s}. (3.8)

Moreover, if G is unimodular, these estimates hold with ν = 0.
(7) (Exponential integrability) For all κ > 0 and compact intervals J ⊂ (0,∞),∫

G

eκ|x|max
s∈J

ρ∆g
s (x) dx <∞.

(8) (Concentration at the identity) For any s1 > 0,

lim
t↓0

∫
|x|≥1

e|x|
2/s1ρ

∆g

t (x) dx = 0.

3.3. The Heat Operator on Matrix Entries. In the case G = Rd, it is convenient to
do computations with the heat operator on polynomials. Although these functions are not
in L2(Rd), one can naı̈vely make sense of e

t
2 ∆Rd f as a terminating power series for any

polynomial f . It is then an easy matter to verify that the integral formula (3.18) for the
heat operator coincides with its Taylor series: if f is a polynomial on Rd, then∫

Rd
ρ

∆Rd
t (x− y)f(y) dy =

∞∑
n=0

(t/2)n

n!
(∆Rd)nf(x). (3.9)

Equation (3.9) is easy to prove directly; the result is also a special case of Proposition 3.18
below.

We will need a counterpart of polynomial functions on a general (compact-type) Lie
group; these are matrix entries, which we define as follows.

Definition 3.13. Let G be a Lie group. Let (π, Vπ) be a finite-dimensional complex rep-
resentation of G, and let A ∈ End(Vπ) be a fixed endomorphism. The associated matrix
entry function fπ,A on G is the function

fπ,A(x) = Tr(π(x)A).

If G is a complex Lie group and the representation π : G→ GL(Vπ) is holomorphic, then
we refer to fπ,A as a holomorphic matrix entry. In particular, every holomorphic matrix
entry on a complex Lie group is a holomorphic function.

Remark 3.14. A number of comments on matrix entries are in order.
(1) Although some authors might require π to be irreducible in order to call fπ,A

a matrix entry, we make no irreducibility assumption in our definition. If G is
compact, every finite-dimensional representation ofG decomposes as a direct sum
of irreducibles, in which case every matrix entry is a linear combination of matrix
entries for irreducible representations. In general, not every matrix entry (in the
sense of Definition 3.13) will decompose as a sum of matrix entries of irreducible
representations.
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(2) Some authors require a matrix entry to be of the form f(x) = ξ(π(x)v) for some
v ∈ V and ξ ∈ V ∗. This is a special case of Definition 3.13 with f = fπ,A where
A(w) = ξ(w)v, i.e., A = ξ ⊗ v. The more general matrix entries of Definition
3.13 are linear combinations of these more restricted “rank-1 type” entries.

(3) Matrix entries are smooth functions on G.
(4) If G = Rd, all polynomials are matrix entries. Indeed: if q is a polynomial of

degree ≤ n, take the representation space V to be all polynomials p of degree
≤ n, where π(x)p = p( ·+ x). If ξ0(p) = p(0) is the evaluation linear functional,
then ξ0(π(x)q) = q(x), so q is a matrix entry.

(5) Even if G is complex, we will have reason to consider matrix entries associated to
representations of G that are not holomorphic.

Lemma 3.15. For any Lie group G, the set of matrix entries on G forms a self-adjoint
complex algebra.

Proof. It is straightforward to compute that, for λ ∈ C, λfπ,A = fπ,λA, while sums and
products satisfy fπ,A + fσ,B = fπ⊕σ,A⊕B and fπ,Afσ,B = fπ⊗σ,A⊗B . For complex con-
jugation, we must define the complex conjugate of a representation and an endomorphism.
This can be done invariantly, but for our purposes there is no reason not to simply choose
a basis. Given a representation (π, Vπ) of dimension d, choose a complex-linear isomor-
phism ϕ : Vπ → Cd, and let [π(x)] = ϕ ◦ π(x) ◦ ϕ−1 and [A] = ϕ ◦ A ◦ ϕ−1. As d × d
complex matrices, both [π(x)] and [A] have complex conjugates [π(x)] and [A], defined
entry-wise. Then

f̄π,A(x) = Tr(π(x)A) = Tr([π(x)][A]) = Tr([π(x)] [A]). (3.10)

The map [π] : G→ GL(Cd) given by [π](x) = [π(x)] is a representation of G on Cd, and
(3.10) shows that

f̄π,A = f
[π],A

is also a matrix entry of G. This concludes the proof. �

The algebra of matrix entries is also closed under the action of complex left-invariant
differential operators on G; see Lemma 3.16. A generic complex left-invariant differential
operator on G has the form L = P (X̃1, . . . , X̃d) where {X1, . . . , Xd} is a basis for g and
P is a noncommutative complex polynomial in d indeterminates. Note that L naturally acts
as a linear operator C∞(G,C). If G is a complex Lie group then L leaves the subspace
H(G) of holomorphic functions on G invariant.

Lemma 3.16. Let {X1, . . . , Xd} be a basis of g, let P be a noncommutative complex
polynomial in d indeterminates, and let L = P (X̃1, . . . , X̃d) be a complex left-invariant
differential operator on G. For any representation (π, Vπ) of G, define

Lπ := P (π∗(X1), . . . , π∗(Xd)) ∈ End(Vπ).

Then for any endomorphism A of Vπ ,

Lfπ,A = fπ,LπA.

Proof. Given any X ∈ g and x ∈ G, we compute

X̃fπ,A(x) =
d

dt

∣∣∣∣
t=0

fπ,A(xetX) =
d

dt

∣∣∣∣
t=0

Tr(π(x)π(etX)A) = Tr(π(x)π∗(X)A)

= fπ,π∗(X)A(x).

The result now follows for monomials P by induction, and then in general by linearity. �



THE COMPLEX-TIME SEGAL–BARGMANN TRANSFORM 17

If L is any complex left-invariant differential operator as in Lemma 3.16, we may define
the formal exponential eL acting on matrix entries, by a power series

(eLfπ,A)(x) :=

∞∑
n=0

1

n!
Lnfπ,A

= Tr

(
π(x)

∞∑
n=0

(Lπ)
n
A

)
= fπ,eLπA. (3.11)

In particular, we have a “heat operator” e
τ
2 ∆g acting on matrix entries fπ,A by

e
τ
2 ∆gfπ,A = fπ,eτCπ/2A for all τ ∈ C (3.12)

where

Cπ =

d∑
j=1

π∗(Xj)
2 ∈ End (Vπ) . (3.13)

Remark 3.17. Let L1 and L2 be two complex left-invariant differential operators on G as
in Lemma 3.16. If L1 and L2 commute on C∞(G), then by simple finite-dimensional
matrix algebra considerations, eL1eL2 = eL1+L2 as operators on matrix entries.

Even for τ = t > 0, we should not confuse (3.12) with the heat operator e
t
2 ∆̄g of

Theorem 3.7: if the Lie group G is not compact, then the matrix entry functions fπ,A are
not in L2(G), which is where e

t
2 ∆̄g is defined. Nevertheless, there is a link between these

two “heat operators”: both are given by integration against the heat kernel ρ∆g

t . In the
case of e

t
2 ∆̄g , this is part of Theorem 3.12; in the case of the power-series heat operator on

matrix entries, we have the following result.

Proposition 3.18. LetG be a Lie group, with Lie algebra g with a fixed inner product, and
let ρ∆g

t denote the heat kernel of Theorem 3.12. Then for any matrix entry function fπ,A
on G, ∫

G

ρ
∆g

t (y)fπ,A(xy) dy =
(
e
t
2 ∆gfπ,A

)
(x) = fπ,etCπ/2A(x), (3.14)

with absolute convergence of the integral. In particular, the integral of fπ,A against the
heat kernel can be computed as∫

G

ρ
∆g

t (y)fπ,A(y) dy =
(
e
t
2 ∆gfπ,A

)
(e) = fπ,etCπ/2A(e). (3.15)

Proof. The proposition is an immediate consequence of Langland’s theorem (cf. [36, The-
orem 2.1]). See also [18, Lemma 8]. If one assumes it is valid to differentiate under the
integral and to integrate by parts, one can prove the proposition easily; see the proof of [6,
Theorem 2.13]. �

Remark 3.19. If f is a matrix entry on G, then by Lemma 3.15, |f |2 is also a matrix entry.
Thus, the absolute convergence of the integral in Proposition 3.18 tells us that f belongs to
L2(G, ρ

∆g

t ).



THE COMPLEX-TIME SEGAL–BARGMANN TRANSFORM 18

3.4. Heat Kernels and Lie Subgroups. Let us now suppose that K is a proper Lie sub-
group of G, k := Lie (K) is the Lie algebra of K which we identify with i∗k ⊂ g where
i : K ↪→ G is the inclusion map. For X ∈ k ⊆ g, we continue to let X̃ to be the associated
left invariant vector field on G be as described in (2.2). However, we now also let X̃K

be the associated left-invariant vector field on K; i.e., X̃K(k) := Lk∗X ∈ TkK for all
k ∈ K. For the rest of this section we suppose that 〈·, ·〉k is a given (real) inner product on
k.

Definition 3.20. Continuing the notation above let ∆k be the differential operator acting
on C∞(G) described in Notation 3.1 with V = k. On the other hand, let ∆K denote
the associated Laplacian acting on C∞(K) defined by ∆K :=

∑dimK
a=1 (X̃K

a )2 where
{Xa}dimK

a=1 is an orthonormal basis for (k, 〈·, ·〉k).

Explicitly the operators ∆k and ∆K in Definition 3.20 are given by

(∆kf) (g) =

dimK∑
a=1

d2

dt2

∣∣∣∣
t=0

f(getXa) for g ∈ G, f ∈ C∞(G),

(∆Kv) (k) =

dimK∑
a=1

d2

dt2

∣∣∣∣
t=0

v(ketXa) for k ∈ K, v ∈ C∞(K).

The operators ∆k and ∆K are not the same; they act on very different spaces. They are,
of course, closely connected, as the following integration-by-parts formula attests.

Lemma 3.21. If K is a closed Lie subgroup of G, v ∈ C∞(K), f ∈ C∞c (G), and g ∈ G,
then ∫

K

(∆Kv) (k)f(gk) dk =

∫
K

v(k) (∆kf) (gk) dk.

Proof. Since the translated functionK 3 k → f(gk) has support equal toK∩
(
Lg−1supp(f)

)
,

and since K is closed, it follows that this support set is compact. Therefore∫
K

(∆Kv) (k)f(gk) dk =

dimK∑
a=1

d2

dt2

∣∣∣∣
t=0

∫
K

v(ketXa)f(gk) dk

=

dimK∑
a=1

d2

dt2

∣∣∣∣
t=0

∫
K

v(k)f(gke−tXa) dk

=

dimK∑
a=1

d2

dt2

∣∣∣∣
t=0

∫
K

v(k)f(gke−tXa) dk

=

∫
K

v(k) (∆kf) (gk) dk.

�

As guaranteed by Theorem 3.7, ∆̄k := ∆k|C∞c (G) is a self-adjoint operator in L2(G)

and ∆̄K = ∆K |C∞c (K) is a self-adjoint operator in L2(K).

Definition 3.22 (The heat kernel on K). For t > 0, let ρ∆K
t ∈ C∞ (K, (0,∞)) be the

heat kernel on K as constructed in Theorem 3.12 with G replaced by K everywhere.
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Notice that the operator ∆K is elliptic and so the construction in Theorem 3.12 applies.
On the other hand, unless K = G, ∆k acting on C∞ (G) is not elliptic (or even hypoel-
liptic) and hence we can not apply Theorem 3.12 in order to find a heat kernel density
ρ∆k
t on G associated to ∆k. In fact, et∆̄k/2 is not representable as convolution against a

smooth heat kernel density on G. Nevertheless, in Proposition 3.25 we will see that et∆̄k/2

may still be represented as a convolution operator associated to the measure ρ∆K
t (k) dk

(thought of as a measure on G supported on K).

Notation 3.23. For a probability measure γ on G, denote Γγ =
∫
G
R̂x γ(dx). If µ is

another probability measure on G, let γ ∗ µ (the convolution of the measures over G)
denote the new probability measure determined by∫

G

f d(γ ∗ µ) =

∫
G×G

f(xy)γ(dx)µ(dy), ∀ f ∈ Cc(G).

Here,
∫
G
R̂x γ(dx) is the unique bounded operator Γγ on L2(G) with the property that

〈f1,Γγf2〉L2(G) =

∫
G

〈f1, R̂xf2〉 γ(dx)

for all f1, f2 in L2(G). The following lemma is straightforward to verify from the defini-
tions.

Lemma 3.24. For any probability measure γ on G, Γγ acts as a bounded operator on
L2(G). Its adjoint is given by

Γ∗γ =

∫
G

R̂x−1 γ(dx).

Moreover, Γ converts convolution into multiplication: if µ is another probability measure
on G, then ΓγΓµ = Γγ∗µ.

Proposition 3.25. If K is a closed Lie subgroup of G and 〈·, ·〉k is an inner product on
k = Lie(K), then the semigroup {e t2 ∆̄k}t≥0 on L2(G) may be expressed as

e
t
2 ∆̄k =

∫
K

ρ∆K
t (k) R̂k dk.

Proof. Let Tt :=
∫
K
ρ∆K
t (k)R̂k dk. It is straightforward to verify that {Tt}t>0 is a self-

adjoint contraction semigroup. Specifically, the self-adjointness of Tt follows from Point
1 of Theorem 3.12 (applied with G replaced by K), the contractivity of Tt follows from
Point 2 of Theorem 3.12, and the semigroup property follows from Point 3 of Theorem
3.12 and Lemma 3.24. The strong continuity of Tt is easily verified on Cc(G) and then
follows in general by the contractivity of Tt.

Furthermore, if f ∈ C∞c (G), then for each fixed x ∈ G,
d

dt
(Ttf) (x) =

d

dt

∫
K

ρ∆K
t (k)f(xk) dk

=

∫
K

(
d

dt
ρ∆K
t

)
(k)f(xk) dk =

∫
K

1

2

(
∆Kρ

∆K
t

)
(k) · f(xk) dk

=

∫
K

ρ∆̄K
t (k)

1

2
(∆kf) (xk) dk =

1

2
Tt (∆kf) (x), (3.16)

wherein we have used Lemma 3.21 in the fourth equality. Hence it follows that

(Ttf) (x)− f(x)

t
− 1

2
∆kf(x) =

1

2t

∫ t

0

[Ts(∆kf)(x)− (∆kf)(x)] ds
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and therefore∥∥∥∥Ttf − ft
− 1

2
∆kf

∥∥∥∥
L2(G)

≤ 1

2t

∫ t

0

‖Ts(∆kf)−∆kf‖L2(G) ds→ 0 as t ↓ 0.

Hence, if A is the self-adjoint generator of the semigroup {Tt}t≥0 acting on L2(G), we
have just shown that 1

2∆k ⊆ A and hence 1
2∆̄k ⊆ A. By Theorem 3.7, 1

2∆̄k is also
self-adjoint and so taking adjoints of the inclusion, 1

2∆̄k ⊆ A shows A = 1
2∆̄k. Thus

A = 1
2∆̄k, and consequently Tt = etA = e

t
2 ∆̄k , completing the proof. �

If K is compact, it is automatically closed in G; but if K is compact type but not com-
pact (e.g., K ∼= Rk) then it may not be closed in G. Nevertheless, the result of Proposition
3.25 still holds in general. We include a proof of this fact below for completeness.

Proposition 3.26 (Stochastic proof of (3.16)). Let K be a Lie subgroup of G and 〈·, ·〉k be
an inner product on k = Lie(K). If f ∈ C∞c (G) and x ∈ G then

d

dt

∫
K

ρ∆K
t (k)f(xk) dk =

∫
K

ρ∆K
t (k)

1

2
(∆kf) (xk) dk.

That is, (3.16) is valid without assuming that K is closed. Therefore, Proposition 3.25
holds for general K ⊆ G.

Proof. First, note that the only place where the assumption that K ⊆ G is closed is used
in the proof of Proposition 3.25 is in the use of the integration by parts formula of Lemma
3.21 (which, as proved, requires K to be closed) to deduce (3.16). Hence, the following
proof of (3.16), which does not require K to be closed, suffices to establish Proposition
3.25 in general.

Let (bt)t≥0 be a k-valued Brownian motion, (kt)t≥0 be theK-valued Brownian motion,
which is the solution of the stochastic differential equation

dkt = kt ◦ dbt with k0 = e ∈ K.

Then by Itô’s lemma,

f(xkt) = f(x) +

∫ t

0

(∂dbsf) (xks) +

∫ t

0

1

2
(∆kf) (xks) ds.

Taking expectations of this identity implies that∫
K

ρ∆K
t (k)f(xk) dk = E [f(xkt)] = f(x) + E

∫ t

0

1

2
(∆kf) (xks) ds

= f(x) +

∫ t

0

E
[

1

2
(∆kf) (xks)

]
ds

wherein we have used the fact that derivatives of f are bounded to see that
∫ t

0
(∂dbsf) (xks)

is an L2-martingale and to justify the use of Fubini’s theorem. Differentiating the last
displayed equation with respect to t then gives the desired result:

d

dt

∫
K

ρ∆K
t (k)f(xk) dk = E

[
1

2
(∆kf) (xkt)

]
=

∫
K

ρ∆K
t (k)

1

2
(∆kf) (xk) dk.

�
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3.5. Heat Kernels under Ad(K)-invariance. In this section we assume that K is a
proper Lie subgroup of G, k := Lie(K) and 〈·, ·〉g is an inner product on g which is
Ad(K)-invariant. We will further assume that m (k) = 1 for all k ∈ K, where m is the
modular function on G.

Remark 3.27. For our purposes later, G will be equal to KC and is therefore unimodular
by Proposition 2.6 in which case m|K = 1 certainly holds. Moreover, if K is actually
compact (not just compact type), then the condition that the modular function of G equals
1 on K is automatic for any G, as noted just above Proposition 2.6.

Under the above assumptions, e
t
2 ∆̄g is a right-K-invariant operator and the heat kernel

is K-conjugate invariant.

Corollary 3.28. Let K ⊆ G be a compact type subgroup, and suppose that 〈·, ·〉g is
Ad(K)-invariant. Suppose further that the modular function m of G is identically equal
to 1 on K. Then

[e
t
2 ∆̄g , R̂k] = 0 and ρ

∆g

t

(
kxk−1

)
= ρ

∆g

t (x) (3.17)

for all t > 0, k ∈ K, and x ∈ G.

Proof. The first identity in (3.17) follows from Corollary 3.9 with V = g. To prove the
second identity in (3.17), let f ∈ Cc(G) be given. Applying Theorem 3.12 to R̂kf for
k ∈ K, the first identity in (3.17) gives∫

G

ρ
∆g

t (x)R̂xR̂kf dx = R̂k

∫
G

ρ
∆g

t (x)R̂xf dx.

Both sides of this L2-identity are continuous functions; hence we may evaluate both sides
at e ∈ G to find ∫

G

ρ
∆g

t (x)f(xk) dx =

∫
G

ρ
∆g

t (x)f(kx) dx.

Making the change of variables x 7→ xk−1 on the left and x 7→ k−1x on the right, and
using the fact that the modular function is equal to 1 on K, we have∫

G

ρ
∆g

t (xk−1)f(x) dx =

∫
G

ρ
∆g

t (k−1x)f(x) dx

for all f ∈ Cc(G). It follows that ρ∆g

t (xk−1) = ρ
∆g

t (k−1x) for all x ∈ G and k ∈ K; the
result follows by substituting x 7→ kx. �

Corollary 3.29. Let K be a compact-type Lie group and fix an Ad(K)-invariant inner
product on k. The heat operator e

t
2 ∆̄K on L2(K) is then given by the convolution formula(

e
t
2 ∆̄Kf

)
(x) =

∫
K

ρ∆K
t (xk−1)f(k) dk. (3.18)

Proof. From Theorem 3.12, we have(
e
t
2 ∆̄Kf

)
(x) =

∫
K

ρ∆K
t (k)f(xk) dk.

By item (1) of that theorem, the heat kernel measure ρ∆K
t (k) dk is invariant under k 7→

k−1; hence the integral is equal to∫
K

ρ∆K
t (k)f(xk−1) dk.
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Now make the change of variables k 7→ kx; the integral is thus equal to∫
K

ρ∆K
t (kx)f(k−1) dk.

Since K is unimodular (Proposition 2.6), the further change of variables k 7→ k−1 then
shows (via (2.5)) that (

e
t
2 ∆̄Kf

)
(x) =

∫
K

ρ∆K

k (k−1x)f(k) dk.

Finally, by Corollary 3.28, ρ∆K
t (k−1x) = ρ∆K

t (xk−1), concluding the proof. �

The next result, which is the final theorem of this section, regards the interaction of ∆g

and ∆k. In the presence of Ad(K)-invariance, these two Laplacians commute, as do their
closures and heat operators. The precise statement and proof follows the second author’s
paper [18, pp. 124-125].

Theorem 3.30. Suppose that K is a compact-type Lie subgroup of G, 〈·, ·〉k is an inner
product on k = Lie(K), and 〈·, ·〉g is an Ad(K)-invariant inner product on g. Then

(1) [e
t
2 ∆̄k , e

s
2 ∆̄g ] = 0 for all s, t > 0,

(2) e
t
2 ∆̄ke

t
2 ∆̄g = e

t
2 (∆k+∆g), and

(3) the heat kernel ρ∆k+∆g

t for ∆k + ∆g may be expressed as

ρ
∆k+∆g

t (x) =

∫
K

ρ
∆g

t (xk−1) ρ∆K
t (k) dk (3.19)

=

∫
K

ρ
∆g

t (k−1x) ρ∆K
t (k) dk. (3.20)

Proof. We take each item in turn.

(1) By Corollary 3.28, [e
t
2 ∆̄g , R̂k] = 0 for all k ∈ K, and hence using Proposition

3.25,

[e
t
2 ∆̄g , e

s
2 ∆̄k ] =

[
e
t
2 ∆̄g ,

∫
K

ρ∆k
s (k) R̂k dk

]
=

∫
K

ρ∆k
s (k)[e

t
2 ∆̄g , R̂k] dk = 0.

(2) Since {e t2 ∆̄k}t>0 and {e t2 ∆̄g}t>0 are two commuting (strongly continuous) self-
adjoint contraction semigroups, it follows that Tt := e

t
2 ∆̄ke

t
2 ∆̄g for t > 0 is also

a self-adjoint contraction semigroup. Moreover if f ∈ D(∆̄k) ∩D(∆̄g), then

Ttf − f
t

= e
t
2 ∆̄g

e
t
2 ∆̄kf − f

t
+
e
t
2 ∆̄gf − f

t
→ 1

2

(
∆̄kf + ∆̄gf

)
as t ↓ 0. Therefore 1

2 (∆k + ∆g) ⊆ 1
2

(
∆̄k + ∆̄g

)
⊆ A, where A is the generator

of {Tt}t>0. Hence from Theorem 3.7 (as in the proof of Proposition 3.25), we
have A = 1

2∆k + ∆g. Item (2) follows.
(3) Theorem 3.12, Lemma 3.24, and Proposition 3.25 show that the statement of item

(2) is equivalent to

Γ
ρ

∆k+∆g
t λG

= Γ
ρ

∆g
t λG

Γ
ρ

∆K
t λK

= Γ
(ρ

∆g
t λG)∗(ρ∆K

t λK)
(3.21)

where λG is the right-invariant Haar measures on G and λK is the right Haar
measure on K thought of as a measure on G which is supported on K. The
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identity (3.21) is, in turn, equivalent to (3.19) since, for all f ∈ Cc(G), we have∫
f d((ρ

∆g

t λG) ∗ (ρ∆K
t λK)) =

∫
G×K

f(xk)ρ
∆g

t (x) ρ∆K
t (k) dx dk

=

∫
G×K

f(x)ρ
∆g

t (xk−1) ρ∆K
t (k) dx dk

=

∫
G×K

f(x)

[∫
K

ρ
∆g

t (xk−1) ρ∆K
t (k) dk

]
dx.

Equation (3.20) follows directly from (3.19) and Corollary 3.28.

�

3.6. An Averaging Theorem. In this section, we prove a regularity property of heat ker-
nels on G associated to Ad(K)-invariant Laplacians, for K ⊆ G compact. A version of
this theorem was proved in [18], in a context that applied to the case G = KC. We give a
proof here that shows explicitly that the result (which is of independent interest) does not
depend on any complex structure on G, or any special relationship between K and G other
than that the inner product on g is Ad(K)-invariant. Throughout the section, we assume
that K is actually compact, not just compact type.

To begin, we need the following lemma, which can also be found as [34, Lemma 7.4].

Lemma 3.31. Let G be a Lie group with Lie algebra g, and let K ⊆ G be a compact Lie
subgroup with Lie algebra k ⊆ g. Suppose 〈·, ·〉 = 〈·, ·〉g is Ad(K)-invariant (such inner
products always exists by averaging sinceK is compact), and let k⊥ ⊆ g be the orthogonal
complement of k. Then both k and k⊥ are invariant subspaces for Adk for each k ∈ K.

Proof. Since k is the Lie algebra of K, it is automatically invariant under Adk for each
k ∈ K (sinceK is invariant under conjugation by k ∈ K). Now, let Ad∗k denote the adjoint
of the operator Adk with respect to the given inner product. For X ∈ k and Y ∈ k⊥,

〈Ad∗k(Y ), X〉 = 〈Y,Adk(X)〉 = 0

since Adk(X) ∈ k. This shows that Adk(Y ) ∈ k⊥, so k⊥ is invariant under Ad∗k for
each k ∈ K. Since the inner product is Ad(K)-invariant, Adk is unitary, and so Ad∗k =
Ad−1

k = Adk−1 . As this holds for all k ∈ K, it follows that k⊥ is invariant under Adk for
each k ∈ K, as desired. �

Notation 3.32. If v1 and v2 are two positive functions on G and C ≥ 1, let us write
v1 �C v2 as short hand for C−1v2 ≤ v1 ≤ Cv2, i.e.,

C−1v2(x) ≤ v1(x) ≤ Cv2(x) for x ∈ G.

The reader may easily verify that v1 �C v2 iff v2 �C v1, and if v3 is another positive
function on G and K ≥ 1 such that v2 �K v3, then v1 �CK v3.

Theorem 3.33 (Averaging Theorem). Let G be a connected Lie group with Lie algebra
g, and let K be a compact connected Lie subgroup of G. Fix an Ad(K)-invariant inner
product on g, let ∆g be the associated Laplacian, and let ρ∆g

t be the associated heat kernel.
Given a probability measure γ on K, let γt : G → (0,∞) be the γ-averaged heat kernel
defined by

γt(x) =

∫
K

ρ
∆g

t (xk) γ(dk).
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Then for each t > 0, there is a constant C(t) ∈ (1,∞) (see (3.24) below) such that
γt �C(t) ρ

∆g

t , i.e.,

C(t)−1γt(x) ≤ ρ∆g

t (x) ≤ C(t)γt(x), for all x ∈ G. (3.22)

Proof. Let k ⊆ g denote the Lie algebra ofK. Denote by 〈·, ·〉g the given Ad(K)-invariant
inner product on g. Denote the dimensions of G and K as dG and dK respectively. Fix
an orthonormal basis {X1, . . . , XdG} for g with the property that {X1, . . . , XdK} is an
orthonormal basis for k. Define four operators

∆k :=

dK∑
j=1

X̃2
j , ∆k⊥ :=

dG∑
j=dK+1

X̃2
j ,

∆g := ∆k + ∆k⊥

∆′g := 1
2∆k + ∆k⊥ .

By Theorem 3.7, all four operators are essentially self-adjoint in L2(G), with C∞c (G) as a
common core. The operator ∆g is the Laplacian on G determined by 〈·, ·〉g. Also notice
that ∆g = 1

2∆k+∆′g, and that ∆′g is the Laplacian associated to the modified inner product
〈·, ·〉′g defined as follows: for X1, X2 ∈ k an Y1, Y2 ∈ k⊥,

〈X1 + Y1, X2 + Y2〉′g :=
1

2
〈X1, X2〉g + 〈Y1, Y2〉g.

Using Lemma 3.31, it is straightforward to verify that 〈·, ·〉′g is also Ad(K)-invariant.
Its restriction to k is just 1

2 times the original inner product, and 1
2∆k is the Laplacian

associated to this scaled inner product on k (considered here as an operator on G; cf.
Proposition 3.25). Thus, by Theorem 3.30 in this context,

ρ
∆g

t (x) =

∫
K

ρ
∆′g
t (xk−1) ρ

1
2 ∆K

t (k) dk for all t > 0, x ∈ G. (3.23)

Let

νt(x) :=

∫
K

ρ
∆′g
t (xk−1) dk for all x ∈ G

and

C(t) :=

[
max
k∈K

ρ
1
2 ∆K

t (k)

]2

∨
[
min
k∈K

ρ
1
2 ∆K

t (k)

]−2

. (3.24)

The constant C(t) is finite and locally bounded in t because the heat kernel ρ
1
2 ∆K

t (k) is a
continuous positive function of (t, k) ∈ (0,∞) ×K; cf. Theorem 3.12. Using (3.23) and
the bi-invariance of the Haar measure on K, it is readily verified that

ρ
∆g

t �√
C(t)

νt, and νt ◦Rk = νt for all k ∈ K.

Hence, for any k ∈ K, we have both ρ∆g

t �√
C(t)

νt and ρ∆g

t ◦Rk �√C(t)
νt ◦Rk = νt.

Thus
ρ

∆g

t ◦Rk �C(t) ρ
∆g

t . (3.25)

The result follows now by integrating (3.25) against γ(dk). �

Remark 3.34. The constant C(t) in Theorem 3.33 (in (3.24)) depends on the restriction of
the inner product to K. As noted in the proof, C(t) is bounded for t in compact subsets of
(0,∞).
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Remark 3.35. Equation (3.25), used in the proof of Theorem 3.33, is in fact equivalent to
the statement of the theorem. Indeed, (3.25) follows from Eq. (3.22) with γ = δk where
δk is the unit point-mass measure concentrated at k ∈ K. In light of this observation,
Theorem 3.33 may be interpreted as saying that the heat kernel measure ρ∆g

t (x) dx is
“uniformly quasi-invariant” under right multiplication by K. That is,

C(t)−1ρ
∆g

t (xk) ≤ ρ∆g

t (x) ≤ C(t)ρ
∆g

t (xk) for all k ∈ K and x ∈ G.
The K-averaged heat kernel will be used to determine the range of the complex-time

Segal–Bargmann transform in Section 4.3 and it will also play a role in Section 5.3.

4. INVARIANT METRICS AND MEASURES ON KC

If G is a Lie group and K ⊆ G is a compact Lie subgroup with Lie algebra k, then
one can produce an Ad(K)-invariant inner product on Lie(G) by averaging any inner
product over the Adjoint representation of K, as above. This raises the question: how
many Ad(K)-invariant inner products does G possess? We now answer this question in
the case that K is simple (and compact type), and G = KC is the complexification of K.

4.1. Invariant Inner Products and Laplacians on KC. Fix a compact-type Lie group
K, and an Ad(K)-invariant inner product 〈·, ·〉k on its Lie algebra k. Let KC denote the
complexification of K (cf. Section 2.1); in particular kC ≡ Lie(KC) = k ⊕ Jk. So every
vector Z ∈ kC has a unique decomposition Z = X + JY for X,Y ∈ k.

Consider the following three-parameter family of inner products on KC:

〈X1 +JY1, X2 +JY2〉a,b,c := a〈X1, X2〉k+b〈Y1, Y2〉k+c(〈X1, Y2〉k+〈X2, Y1〉k) (4.1)

for X1, X2, Y1, Y2 ∈ k, where a, b > 0 and c2 < ab. It is straightforward to verify that the
symmetric bilinear forms in (4.1) are real inner products on kC (precisely under the condi-
tions on a, b, c stated below the equation), and are all Ad(K)-invariant. The main theorem
of this section is that, in the case that K is simple, this is a complete characterization of all
Ad(K)-invariant inner products on KC. First, recall:

Definition 4.1. A Lie group K is called simple if dimK ≥ 2, and the Lie algebra k of K
has no nontrivial ideals.

Theorem 4.2. If K is a simple (or 1-dimensional) compact type real Lie group, then k has
a unique (up to scale) Ad-invariant real inner product 〈·, ·〉k, and all Ad(K)-invariant real
inner products on kC have the form (4.1).

Remark 4.3. For example, K = SU(n) is simple, with complexification KC = SL(n,C).
Hence (4.1) characterizes all Ad(SU(n))-invariant inner products on SL(n,C), where
〈X,Y 〉su(n) = Tr(XY ∗) = −Tr(XY ) is the unique (up to scale) Ad-invariant inner
product on su(n). In that case, the family can be written explicitly in terms of the trace as

〈A,B〉a,b,c =
1

2
(b+ a)Re Tr(AB∗) +

1

2
Re [(b− a+ 2ic)Tr(AB)] . (4.2)

Extending to U(n) and its complexification GL(n,C), it is easy to compute that all
Ad(U(n))-invariant inner products on gl(n,C) are of the form (4.1) plus one more term,
involving the 1-dimensional subspace spanned by the identity matrix; extending (4.2), there
is one more term involving Tr(A)Tr(B). In [5, 28, 29], the third author studied the large-n
limits of the diffusion processes on GL(n,C) invariant with respect to the inner products
〈 , 〉a,b,0. Part of the motivation for the present work was the question of whether those were
the largest class of appropriately invariant diffusions; the answer provided by Theorem 4.2
is no, and the associated diffusions will be explored in a future publication.



THE COMPLEX-TIME SEGAL–BARGMANN TRANSFORM 26

Remark 4.4. The first statement of Theorem 4.2, that the Ad-invariant inner product on K
is unique up to scale when K is simple, is well-known; it was proved, for example, in [34,
Lemma 7.6].

We will use Schur’s lemma as a tool in the proof of Theorem 4.2, but this is complicated
by the fact that the inner products in question are real. We must therefore be careful about
how and when we complexify.

Lemma 4.5. If K is a simple (real) Lie group with Lie algebra k, then the (real) Adjoint
representation ofK on k is irreducible. Moreover, ifK is compact type, then the (complex)
Adjoint representation of K on kC is also irreducible.

Proof. If I ⊆ k is an invariant real subspace for Ad(K), then AdetX (Y ) ∈ I for all t ∈ R,
X ∈ k, and Y ∈ I. Taking the derivative at t = 0 shows that adX(Y ) = [X,Y ] ∈ I for all
X ∈ k and Y ∈ I, which means I ⊆ k is an ideal in k. Thus I ∈ {0, k}, yielding the first
statement of the lemma.

Now, [23, Theorem 7.32] states that the simplicity of k implies that kC is also simple as
a complex Lie algebra. (The statement given there assumes K is compact, but the proof
only uses the fact that it is compact type.) So, let J ⊆ kC be an invariant complex subspace
for Ad(K). The same argument above shows that [X,W ] ∈ J for all X ∈ k and W ∈ J.
Any Z ∈ kC has the form Z = X + JY for X,Y ∈ k, and by (2.1), we therefore have

[Z,W ] = [X + JY,W ] = [X,W ] + J [Y,W ] ∈ J + JJ = J, ∀ Z ∈ kC,W ∈ J

where the final equality follows from the fact that J is a complex subspace. Hence J is a
complex ideal in kC, and therefore J ∈ {0, kC}. This concludes the proof of the second
statement. �

We now prove the algebraic result that constitutes most of the proof of Theorem 4.2.

Proposition 4.6. Let K be a simple (or 1-dimensional) real compact-type Lie group, and
fix an Ad-invariant inner product 〈·, ·〉k on its Lie algebra k. If B : kC × kC → R is an
Ad(K)-invariant symmetric bilinear form, then B has the form (4.1) for some a, b, c ∈ R.

Proof. The result is straightforward when K is 1-dimensional, so we focus on the case
that K is simple. We use the inner product 〈·, ·〉1,1,0 (cf. (4.1)) as a reference; there is then
some endomorphism M : kC → kC such that

B(Z,W ) = 〈Z,M(W )〉1,1,0 ∀ Z,W ∈ kC.

The symmetry of B forces M to be self-adjoint. By Proposition 2.1, kC = k⊕Jk; we view
this as isomorphic to k⊕ k (and so view the inner product on this space as well). Thus we
can decompose the endomorphism M in block diagonal form

M =

[
A C
C> B

]
(4.3)

where A and B are symmetric matrices.
Now, by (2.4), the Adjoint representation of K commutes with J ; it follows that, under

the isomorphism kC ∼= k ⊕ k, Adk acts diagonally for all k ∈ K. Using the fact that both
the inner product 〈·, ·〉1,1,0 and the bilinear form B are Adk-invariant, it is straightforward
to compute that the matricesA, B, C, and C> all commute with Adk for each k ∈ K. The
same therefore applies to the complex-linear extensions of these endomorphisms to kC. It
then follows from Lemma 4.5 and Schur’s lemma that there are constants a, b, c ∈ C with
A = aI , B = bI , and C = C> = cI . Since each of the endomorphisms preserves the real
subspace k, it follows that a, b, c ∈ R.
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Hence, for Z = X +JY ∈ kC, (4.3) yields M(Z) = (aX + cY ) +J(cX + bY ). From
the definition of the inner product 〈·, ·〉1,1,0, we therefore have

B(X1 + JY1, X2 + JY2) = 〈X1 + JY1, aX2 + cY2 + J(cX2 + bY2)〉1,1,0
= 〈X1, aX2 + cY2〉k + 〈Y1, cX2 + bY2〉k
= a〈X1, X2〉k + c〈X1, Y2〉k + c〈Y1, X2〉k + b〈Y1, Y2〉k
= 〈X1 + JY1, X2 + JY2〉a,b,c

concluding the proof. �

The proof of Theorem 4.2 now follows quite easily.

Proof of Theorem 4.2. Let 〈·, ·〉k and 〈·, ·〉′k denote two Ad-invariant inner products on K.
We may view the second inner product as a symmetric (degenerate) bilinear form on kC,
which is Ad(K)-invariant. By Proposition 4.6, it follows that 〈·, ·〉′k = a〈·, ·〉k for some
a ∈ R (the other terms in (4.1) are 0); the fact that both are inner products forces a > 0.
This proves the uniqueness, up to scale, of the Ad-invariant inner product on K.

Now, any real inner product 〈·, ·〉 on kC is a symmetric bilinear form on kC, and so by
Ad(K)-invariance, Proposition 4.6 shows that it has the form (4.1) for some a, b, c ∈ R.
Since it is an inner product, it follows that the matrix M of (4.3) is positive definite, and
given its block diagonal form, this is equivalent to a, b > 0 and ab−c2 > 0. This concludes
the proof. �

We now turn to the Laplacian on kC associated to the inner product (4.1). The notation
∆kC for this Laplacian (cf. Section 3.1) is lacking, as it depends upon the specified inner
product on kC without notation to refer to it. Thus, we refer to the Laplacian in this case as
La,b,c. Lemma 3.3 allows us to compute it quickly.

Proposition 4.7. Let La,b,c denote the Laplacian on C2(KC) associated to the inner prod-
uct 〈·, ·〉a,b,c of (4.1). Fix any basis {Xj}dj=1 of k orthonormal with respect to the given
Ad(K)-invariant inner product on k, and let Yj = JXj . Then

La,b,c =
1

ab− c2
d∑
j=1

[
bX̃2

j + aỸ 2
j − 2cX̃j Ỹj

]
. (4.4)

Proof. Since kC = k ⊕ Jk (cf. Proposition 2.1), the set {Xj , Yj}dj=1 is a basis for kC. Let
V2k−1 = Xk and V2k = Yk for 1 ≤ k ≤ d, and define qij = 〈Vi, Vj〉a,b,c. By Lemma 3.3,

La,b,c =

d∑
i,j=1

q−1
ij ṼiṼj . (4.5)

We can compute directly from (4.1) and the orthonormality of {Xj}dj=1 that

〈Xi, Xj〉a,b,c = aδij , 〈Yi, Yj〉a,b,c = bδij , 〈Xi, Yj〉a,b,c = 〈Yi, Xj〉a,b,c = cδij .

It follows that the matrix q is block diagonal with 2 × 2 diagonal blocks all equal to the
matrix B (below). Thus q−1 is also block diagonal with 2× 2 diagonal blocks all equal to
B−1 (below).

B =

[
a c
c b

]
, B−1 =

1

ab− c2

[
b −c
−c a

]
.

Combining this with (4.5) yields (4.4). �
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To dispense with the cumbersome determinant in the denominator in (4.4), and match
the parametrization relevant to the Segal–Bargmann transform, we make the following
change of parametrization:

(s, t, u) = Φ(a, b, c) :=
1

ab− c2
(a+ b, 2a, 2c). (4.6)

It is straightforward to verify that Φ is a diffeomorphism

Φ: {(a, b, c) : a, b > 0, c2 < ab} → {(s, t, u) : t > 0, u ∈ R, 2s > t+ u2/t}

with inverse

(a, b, c) = Φ−1(s, t, u) =
4

2st− t2 − u2
( t2 , s−

t
2 ,

u
2 ) = 1

α ( t2 , s−
t
2 ,

u
2 ) (4.7)

referring to the constant α of (1.10), which is positive precisely in range of Φ. From here
on, we use the parameters (s, t, u) which leads to the notation used in Definition 1.4 of ∆s,τ

on KC in the introduction. In particular, this means that the Laplacian ∆s,τ corresponds
to the inner product 〈·, ·〉a,b,c where (a, b, c) are given as in (4.7). The fact that Φ is a
bijections shows that there is a one-to-one correspondence between the Laplacians ∆s,τ

and the inner products 〈·, ·〉a,b,c.

4.2. Invariant Heat Kernels on K and KC. Let us now fix notation for the heat kernels
relevant to the Segal–Bargmann transform.

Definition 4.8. Let K be a compact-type Lie group, with a fixed Ad(K)-invariant inner
product. Denote by ∆K the associated Laplacian acting on C∞(K); for t ≥ 0, denote
by ρt = ρ∆K

t : K → R+ the associated heat kernel (cf. Theorem 3.12 applied with G
replaced byK and ∆g replaced by ∆K). In addition, for s > 0 and τ ∈ D(s, s), denote by
µs,τ : KC → R+ the heat kernel (at time 1) associated to the Laplacian ∆s,τ of Definition
1.4.

To be clear:

e
t
2 ∆̄K =

∫
K

ρt(k) R̂k dk which is an operator on L2(K), (4.8)

e
t
2 ∆̄k =

∫
K

ρt(k) R̂k dk which is an operator on L2(KC), and

e
1
2 ∆̄s,τ =

∫
KC

µs,τ (z) R̂z dz which is an operator on L2(KC). (4.9)

For the heat operator (4.9), we could include an additional time parameter (e
r
2 ∆̄s,τ )r>0,

but following Definition 1.4 we see that r∆s,τ = ∆rs,rτ , so there is no loss in absorbing
this extra parameter into ones already present.

Following the discussion after (4.7), ∆s,τ is the Laplacian for an Ad(K)-invariant inner
product. Therefore Corollary 3.28 applies:

[e
1
2 ∆̄s,τ , R̂k] = 0

µs,τ (kzk−1) = µs,τ (z)
for k ∈ K, z ∈ KC. (4.10)

Also Theorem 3.30 applies: e
r
2 ∆̄k and e

1
2 ∆s,τ commute for all r, s, τ .

Assumption 4.9. For the remainder of this section, we assume K is compact.
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Definition 4.10 (K-averaging). Let P be the K-averaging operator defined on L1
loc(KC)

by

P = ΓHaar :=

∫
K

R̂k dk,

or more explicitly by

(Pf) (z) =

∫
K

f(zk) dk

where dk denotes the Haar probability measure on K. (So K-averaging is γ-averaging,
as in Theorem 3.33, in the case that γ is the Haar probability measure on K.)

Since the Haar measure on K is invariant under inversion and the convolution with
itself is still Haar measure, it follows from Lemma 3.24 that P : L2(KC) → L2(KC)
is an orthogonal projection. The operator P also preserves the subspaces C∞(KC) and
C∞c (KC) and if f ∈ C(KC) we have Pf(zk) = Pf(z) for all k ∈ K and z ∈ KC. In
short, R̂kP = P for all k ∈ K. If s > 0 and τ = t + iu ∈ D(s, s) we refer to Pµs,τ
as a K-averaged heat kernel on KC; see Definition 1.8. Recall from Definition 1.8 that
νt := Pµt,t ∈ C∞(KC, (0,∞)) is the K-averaged version of µt,t. The next lemma shows
that νt is also the K-averaged version of µs,τ whenever Re τ = t.

Lemma 4.11 (K-averaged heat kernels). If s > 0 and τ = t+ iu ∈ D(s, s), then

∫
K

µs,τ (zk) dk = (Pµs,τ ) (z) = νt(z) for all z ∈ KC.

Proof. If X ∈ k and f ∈ C∞c (KC), then (Pf) (zerX) = (Pf) (z) for all z ∈ KC and
r ∈ R. Differentiating at r = 0 shows that X̃Pf = 0 for any X ∈ k. Using the fact that
X̃j Ỹj = ỸjX̃j , which follows from the definition Yj = JXj and (2.1), it follows from
Definition 1.4 that

∆s,τP =
t

2
∆JkP = P

t

2
∆Jk on C∞c (KC), where ∆Jk :=

d∑
j=1

Ỹ 2
j . (4.11)

For the last equality we used Lemma 3.5 to conclude that [P,∆Jk] = 0 on C∞c (KC). An
application of Lemma 3.8 with Q = P , A = ∆s,τ , and B = t

2∆Jk gives, Pe
t
2 ∆̄Jk =

e∆̄s,τP for all τ ∈ D (s, s) with Re τ = t. In particular we may conclude that

e∆̄s,τP = e∆̄s,tP ∀ τ = t+ iu ∈ D (s, s) (4.12)

or equivalently that

〈e∆̄s,τPv,w〉L2(KC) = 〈e∆̄t,tPv,w〉L2(KC) ∀ u, v ∈ Cc(KC,R). (4.13)
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For the rest of the proof let µ̄s,τ = Pµs,τ be the K-average of µs,τ . We may rewrite
the left-hand-side of (4.13) as,

〈e∆̄s,τPv,w〉L2(KC) =

∫
K2

C

µs,τ (g)(Pv)(zg)w(z) dg dz

=

∫
K2

C×K
µs,τ (g)v(zgk)w(z) dg dz dk

=

∫
K2

C×K
µs,τ (gk−1)v(zg)w(z) dg dz dk

=

∫
K2

C×K
µs,τ (gk)v(zg)w(z) dg dz dk

=

∫
K2

C

µ̄s,τ (g)v(zg)w(z) dg dz.

This equation with τ = t also shows the right-hand-side of (4.13) is given by

〈e∆̄t,tPv,w〉L2(KC) =

∫
K2

C

νt(g)v(zg)w(z) dg dz.

Comparing the last two identities shows, for all v, w ∈ Cc(KC),∫
K2

C

µ̄s,τ (g)v(zg)w(z) dg dz =

∫
K2

C

νt(g)v(zg)w(z) dg dz.

As Cc(KC) is dense in L2(KC), we may conclude that for all v ∈ Cc(KC),∫
KC

µ̄s,τ (g)v(zg) dg =

∫
KC

νt(g)v(zg) dg for a.e. z

and hence for every z ∈ KC as both sides of the previous equation are continuous in z.
Thus, taking z = e, it follows that,∫

KC

µ̄s,τ (g)v(g) dg =

∫
KC

νt(g)v(g) dg ∀ v ∈ Cc(KC,R).

So as above, the density of Cc(KC) in L2(KC) along with the continuity of both µ̄s,τ and
νt, allows us to conclude that µ̄s,τ (g) = νt(g) for all g ∈ KC. �

Remark 4.12. By Theorem 3.33, µs,τ �C(s,τ) νt for some constant C(s, τ). (Recall Nota-
tion 3.32.) As a consequence of Lemma 4.11, we also have µt,t �C(t,t) νt. It follows that
µs,τ �C(t,t)C(s,τ) µt,t; i.e., all the densities µs,t+iu with t fixed are equivalent. It is worth
commenting on the constant C(s, τ); it is bounded by the expression (3.24). In this con-
text, we have the Ad(K)-invariant inner product 〈·, ·〉a,b,c with (a, b, c) = 1

α ( t2 , s−
t
2 ,

u
2 )

(cf. (4.7)) which induces the heat kernel µs,τ . The restriction of this inner product to k is

〈X1, X2〉 =
t

2α
〈X1, X2〉k,

i.e., it is a scalar multiple of the fixed background Ad(K)-invariant inner product on k,
where the scaling factor t

2α = 2t
2st−t2−u2 depends on all three parameters s, t, u continu-

ously. The constant in (3.24) is determined by the absolute minimum and maximum values
attained by the heat kernel ρs,τ,Kt on K corresponding to 1

2 this Laplacian (at time 1, since
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µs,τ is the heat kernel for ∆s,τ at time 1). Let ρ∆K denote the heat kernel onK determined
by the reference metric 〈·, ·〉k. By definition, we have

ρs,τ,K1 = ρ∆K

t/(2st−t2−u2).

Since the heat kernel ρ∆K
t is continuous (in fact smooth) in t, cf. Theorem 3.12, it follows

that C(s, τ) depends continuously on (s, τ) in the domain τ ∈ D(s, s) of interest. In
particular, this means that µs,τ , µt,t, and νt are all equivalent by constants that are locally
uniformly bounded in (s, τ).

The K-averaged heat kernel, νt, will appear in an essential way in Section 5.3. It will
also arise as a technical tool in Section 4.3 below.

4.3. Two Density Results for Matrix Entries. To show that the complex-time Segal–
Bargmann transform maps onto HL2(KC, µs,τ ), we require a density result. Recall (Def-
inition 3.13) the notion of a matrix entry on an arbitrary Lie group and the notion of a
holomorphic matrix entry on a complex Lie group. The main result of this section is the
following theorem

Theorem 4.13. Let K be a real Lie group of compact type. For any s > 0, the matrix
entries on K are dense in L2(K, ρs). If s > 0 and τ ∈ D(s, s), then the holomorphic
matrix entries on KC are dense in HL2(KC, µs,τ ).

Proof. We consider first the case that K = Rd and KC = Cd. Then ρs is a Gaussian
measure on K. Since every polynomial on Rd is a matrix entry, we may appeal to the
classical result that polynomials are dense in L2 of Gaussian measures on Rd. (For a proof
of a more general result, see [10, Theorem 3.6].) On the complex side, every holomor-
phic polynomial is a holomorphic matrix entry, and the measure µs,τ on Cd is Gaussian.
Thus, by [10, Proposition 3.5], matrix entries are dense in HL2(Cd, µs,τ ). (Note that, in
general, the measure µs,τ is not invariant under multiplication by eiθ and monomials of
different degrees are not necessarily orthogonal. Thus the proof of density of holomorphic
polynomials in [1, Section 1b] does not apply.)

We consider next the case that K is compact. In that case, the heat kernel density ρs on
K is bounded and bounded away from zero for each fixed s > 0. Thus, the Hilbert space
L2(K, ρs) is the same as the Hilbert space L2(K), with a different but equivalent norm.
Hence, the density of matrix entries in L2(K, ρs) follows from the Peter–Weyl theorem.
On the complex side, we appeal to the averaging result in Theorem 3.33, which tells us
that the Hilbert space HL2(KC, µs,τ ) is the same as the Hilbert space HL2(KC, νt), with
a different but equivalent norm. Thus, it suffices to establish the density of matrix entries
in HL2(KC, νt); this claim follows verbatim from the proof of the “onto” part of Theorem
2 in [18, Section 8]; we give a very brief outline of the idea of this proof at the end of this
section below.

We consider finally the case of a general compact-type group K. Recall (Proposition
2.1) that K is isometrically isomorphic to K0 × Rd for some compact Lie group K0 and
some d ≥ 0. Thus, the heat kernel measure ρs on K factors as a product of the heat
kernel measures ρ0

s on K0 and ρ1
s on Rd. Now, a standard result from measure theory tells

us that there is a unitary map U from L2(K0, ρ
0
s) ⊗ L2(Rd, ρ1

s) onto L2(K, ρs) uniquely
determined by the requirement that U(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2). If f1 and f2 are
matrix entries on K0 and Rd, respectively, then f1(x1)f2(x2) is a matrix entry on K (by
an argument very similar to the proof of Lemma 3.15). Using the density results for K0

and for Rd and the unitary map U , we can easily show that linear combinations of matrix
entries of this sort (which are again matrix entries) are dense in L2(K, ρs).
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On the complex side, recall (Proposition 2.1) that KC is isomorphic to (K0)C × Cd.
If we restrict our Ad-invariant inner product on k to the Lie algebras of K0 and of Rd,
these restrictions will also be Ad-invariant. We may then construct left-invariant metrics
on (K0)C and Cd by the same procedure as for KC. In that case, it is easily verified that
the isomorphism KC ∼= (K0)C × Cd is isometric. Thus, the heat kernel measure µs,τ on
KC is a product of the associated heat kernel measures µ0

s,τ on (K0)C and µ1
s,τ on Cd.

Then, as on the real side, we have a unitary map V fromL2((K0)C, µ
0
s,τ )⊗L2(Cd, µ1

s,τ )

onto L2(KC, µs,τ ). According to the Appendix of [19], the restriction of V to the tensor
product of the two HL2 spaces maps onto HL2(KC, µs,τ ). (It is easy to see that V maps
the tensor product of the two HL2 spaces into HL2(KC, µs,τ ); it requires some small
argument to show that it maps onto.) Thus, as on the real side, the density result for KC
reduces to the previously established results for (K0)C and for Cd. �

For the convenience of the reader, we briefly outline the proof of the density of holo-
morphic matrix entries in HL2(KC, νt), in the case thatK is compact. The proof is similar
in spirit to the proof of the density of polynomials in the classical Segal–Bargmann space
over Cd in [1, Section 1b]. Consider a fixed function F in HL2(KC, νt). By the Peter–
Weyl theorem, the restriction of F to K can be expanded in a “Fourier series,” that is, a
series in terms of matrix entries for irreducible representations of K:

F |K =
∑
π

fπ,Aπ

for some endomorphisms Aπ on the (complex) representation spaces. By the universal
property of the complexification, each representation π of K has a holomorphic extension
to a holomorphc representation πC of KC; thus, the matrix entry fπ,Aπ has a holomorphic
extension fπC,Aπ to KC.

Now, a fairly elementary argument shows that the resulting holomorphically extended
Fourier series converges to F uniformly on compact subsets of KC:

F =
∑
π

fπC,Aπ . (4.14)

Let En be a nested sequence of K-bi-invariant compact sets with union equal to KC. The
K-invariance of the measure νt implies that the functions fπC,Aπ are orthogonal, not just
in L2(KC, νt) but also in L2(En, νt). Orthogonality and uniform convergence over En
tells us that

‖F‖2L2(En,νt)
=
∑
π

‖fπC,Aπ‖
2
L2(En,νt)

.

Letting n tend to infinity and using monotone convergence, we obtain

‖F‖2L2(KC,νt)
=
∑
π

‖fπC,Aπ‖
2
L2(KC,νt)

.

It follows that the (orthogonal) series in (4.14) converges not only pointwise, but also in
L2(KC, νt).

5. THE SEGAL–BARGMANN TRANSFORM

We analyze the complex-time Segal–Bargmann transform for a connected Lie group of
compact type in two stages. In the first stage, we consider a transform Mτ , defined on ma-
trix entries using a power-series definition of the heat operator. Using the strategy outlined
in Section 1.4 along with density results established in Section 4.3, we show that Mτ maps
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a dense subspace of L2(K, ρs) isometrically onto a dense subspace of HL2(KC, µs,τ ).
Thus, Mτ extends to a unitary map Ms,τ of L2(K, ρs) onto HL2(KC, µs,τ ).

In the second stage, we show that the heat kernel ρt(x) on K has a holomorphic exten-
sion in both t and x, denoted ρC(·, ·). We then prove that the unitary map Ms,τ may be
computed by “convolution” with the holomorphically extended heat kernel. That is to say,

(Ms,τf)(z) =

∫
K

ρC(τ, zk−1)f(k) dk

for all s > 0, f ∈ L2(K, ρs), τ ∈ D(s, s), and z ∈ KC.
The advantage of the two-stage approach to the proof is that we can use the unitary

map Ms,τ to establish the existence of the holomorphic extension of the heat kernel, thus
avoiding the representation-theoretic estimates used in [18].

5.1. Constructing a Unitary Map. As usual, we work on a connected Lie group K of
compact type, with a fixed Ad(K)-invariant inner product on its Lie algebra k. Accord-
ing to Theorem 4.13, the space of matrix entries is dense in L2(K, ρs) and the space of
holomorphic matrix entries is dense in HL2(KC, µs,τ ).

We now define a transform Mτ directly by its action on matrix entries. Let fπ,A be
a matrix entry on K acting on a complex vector space Vπ . By the universal property of
complexifications, the representation π extends uniquely to a holomorphic representation
πC of KC on Vπ . Hence, the matrix entry fπ,A has an analytic continuation as well,

(fπ,A)C(g) = Tr(πC(g)A) = fπC,A(g), g ∈ KC.

Definition 5.1. For τ ∈ C+, define Mτ on matrix entries on K as

Mτfπ,A = [e
τ
2 ∆k(fπ,A)]C =

[ ∞∑
n=0

(τ/2)n

n!
(∆k)

nfπ,A

]
C

.

Note that, by (3.11), e
τ
2 ∆k(fπ,A) is again a matrix entry, and thus has a holomorphic

extension. We can therefore write the action of Mτ on matrix entries more explicitly as

Mτfπ,A = f
πC,e

τCπC/2·A. (5.1)

5.1.1. Complex Vector Fields and Commutation Relations. We would now like to emulate
the proof of the Segal–Bargmann isometry for the Rd case outlined in Section 1.4. To
that end, we must introduce the complex vector fields generalizing the complex derivatives
∂/∂zj and ∂/∂z̄j in the Euclidean context.

Definition 5.2. Let G be a complex Lie group with Lie algebra g and let X be an element
of g. The holomorphic and antiholomorphic vector fields associated to X are complex
vector fields ∂X and ∂̄X on G defined by

∂X ≡
1

2

(
X̃ − i J̃X

)
and ∂̄X ≡

1

2

(
X̃ + i J̃X

)
. (5.2)

In the special case G = Cd, if X = ∂/∂xj then ∂X = ∂/∂zj and ∂̄X = ∂/∂z̄j . (The
reader is warned, therefore, that the notation is somewhat counterintuitive when compared
to the Euclidean context.) By (2.3), if X ∈ g and F is holomorphic on G then

∂XF = X̃F, ∂̄XF = 0 (5.3)

∂X F̄ = 0, ∂̄XF = X̃F. (5.4)
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Lemma 5.3. If X,V ∈ g, then

[∂V , J̃X] = i[∂V , X̃], and [∂̄V , J̃X] = −i[∂̄V , X̃].

Proof. By (2.1), for any W1,W2 ∈ g, [JW1,W2] = J [W1,W2] = [W1, JW2] and there-
fore by the definition of the Lie bracket,

[J̃W1, W̃2] = ˜[JW1,W2] = ˜J [W1,W2] = ˜[W1, JW2] = [W̃1, J̃W2].

We can then compute from the definition that

[∂V , J̃X] =
1

2
[Ṽ − iJ̃V , J̃X] =

1

2
[J̃V − iJ̃JV , X̃] =

1

2
[J̃V + iṼ , X̃] = i[∂V , X̃].

The calculation for ∂̄V is similar. �

We now specialize to the case G = KC for a compact-type Lie group K.

Definition 5.4. Fix an orthonormal basis {X1, . . . , Xd} for k, and let ∂j := ∂Xj as in
(5.2). Then set

∂2 ≡
d∑
j=1

∂2
j , and ∂̄2 ≡

d∑
j=1

∂̄2
j . (5.5)

A routine calculation shows that the operators ∂2 and ∂̄2 are well-defined, independent
of the choice of orthonormal basis.

Lemma 5.5. For all f ∈ C∞(KC) and all k ∈ K,

∂2(f ◦Rk) = (∂2f) ◦Rk, and ∂̄2(f ◦Rk) = (∂̄2f) ◦Rk. (5.6)

The proof of Lemma 5.5 is very similar to the proof of Lemma 3.5, and is left to the reader.
This brings us to the main commutator result of this section.

Proposition 5.6. For any A ∈ kC,

[∂2, Ã] = [∂̄2, Ã] = 0.

Proof. As any A ∈ kC has the form A = V + JW for some V,W ∈ k, it suffices by
linearity to prove that ∂2 and ∂̄2 commute with Ṽ and J̃V for any V ∈ k . For the former
statement, apply Lemma 5.5 with k = etV , and differentiate at t = 0 to yield the result.
For the second statement, we employ Lemma 5.3 and compute as follows.

[∂2, J̃V ] =

d∑
j=1

[∂j∂j , J̃V ] =

d∑
j=1

(
∂j [∂j , J̃V ] + [∂j , J̃V ]∂j

)

= i

d∑
j=1

(
∂j [∂j , Ṽ ] + [∂j , Ṽ ]∂j

)
= i

d∑
j=1

[∂j∂j , Ṽ ] = i[∂2, Ṽ ]

and we already showed that [∂2, Ṽ ] = 0. A similar calculation proves the result for ∂̄2. �

Corollary 5.7. The operators ∂2, ∂̄2, ∆k, and ∆s,τ all mutually commute.

Proof. Since ∆k and ∆s,τ are linear combinations of squares of left-invariant vector fields
on KC, Proposition 5.6 shows that they both commute with ∂2 and ∂̄2. Similarly, letting
Yj = JXj , since ∂2

j and ∂̄2
j are linear combinations of X̃2

j , Ỹ 2
j , and X̃j Ỹj = ỸjX̃j (cf.

(2.1)), the commutator [∂2, ∂̄2] = 0 also follows from Proposition 5.6. Finally, ∆k =∑
j X̃

2
j with Xj ∈ k, while ∆s,τ is the Laplacian associated to an Ad(K)-invariant inner

product on kC; it follows from Corollary 3.6 that ∆k and ∆s,τ commute. �
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Remark 5.8. The fact that [∂2, ∂̄2] = 0 holds quite generally. Indeed, on any complex
manifold, if Z =

∑
j aj(z)

∂
∂zj

and W =
∑
j bj(z)

∂
∂zj

are two holomorphic vector fields,
than a simple computation shows that [Z, W̄ ] = 0.

5.1.2. The Transform Mτ , and the Isomorphism Ms,τ . The usefulness of the ∂2 and ∂̄2

operators and the commutation result in Corollary 5.7 in the present context lies in the
following result.

Lemma 5.9. Let s > 0 and τ ∈ D(s, s). Let ∆s,τ denote the KC Laplacian of Definition
1.4, and let ∆k denote the Laplacian of K acting on C∞(KC) as usual. Then

s∆k = ∆s,τ + τ∂2 + τ̄ ∂̄2

where all operators appearing in this identity are mutually commuting.

Proof. Fix an orthonormal basis {X1, . . . , Xd} of k. For ease of reading, let Yj = JXj .
To begin, we compute that, for each j,

∂2
j + ∂̄2

j =
1

4
(X̃j − iỸj)2 +

1

4
(X̃j + iỸj)

2 =
1

2
(X̃2

j − Ỹ 2
j ), (5.7)

∂2
j − ∂̄2

j =
1

4
(X̃j − iỸj)2 − 1

4
(X̃j + iỸj)

2 = −iX̃j Ỹj (5.8)

where we have used the fact that [X̃j , Ỹj ] = 0 (cf. (2.1)).
Now, let τ = t+ iu. Then for each j,

τ∂2
j + τ̄ ∂̄2

j = t(∂2
j + ∂̄2

j ) + iu(∂2
j − ∂̄2

j ) =
t

2
(X̃2

j − Ỹ 2
j ) + uX̃j Ỹj .

Thus, we have [(
s− t

2

)
X̃2
j +

t

2
Ỹ 2
j − uX̃j Ỹj

]
+ τ∂2

j + τ̄ ∂̄2
j = sX̃2

j . (5.9)

Summing (5.9) on j proves the lemma. �

We can now prove that Mτ is a bijection from the space of matrix entries on K to the
space of holomorphic matrix entries on KC, isometric from L2(K, ρs) into L2(KC, µs,τ ).

Theorem 5.10. Let f be a matrix entry function on K. Then for s > 0 and τ ∈ D(s, s),

‖Mτf‖L2(KC,µs,τ ) = ‖f‖L2(K,ρs). (5.10)

Moreover, every holomorphic matrix entry F on KC has the form F = Mτf for some
matrix entry f on K.

The proof of (5.10) follows the strategy outlined in Section 1.4, using left-invariant
vector fields in place of the partial derivatives in the Euclidean case. A key step in the
argument requires us to combine exponentials, which is possible only if the operators in
the exponent commute. It is at this point that we use the commutativity result in Corollary
5.7.

Proof. Let F = Mτf . The matrix entry f on K has a holomorphic extension fC to KC.
Now, ∆k is a left-invariant differential operator on KC, and this operator—being a sum
of squares of left-invariant vector fields—preserves the space of holomorphic functions.
Thus, we have that ((∆k)

nf)C = (∆k)
n(fC) for all n ≥ 0. It follows that F may be

computed as F = eτ∆k/2(fC). Since fC is holomorphic, we may use (5.3) to rewrite this
relation as

F = eτ∂
2/2(fC).
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It is then straightforward, using (5.3) and (5.4), to see that

|F |2 = eτ∂
2/2eτ̄ ∂̄

2/2(fCf̄C).

Thus, using Proposition 3.18, we may compute the norm of F as

‖F‖2L2(KC,µs,τ ) =
(
e∆s,τ/2|F |2

)
(e)

=
(
e∆s,τ/2eτ∂

2/2eτ̄ ∂̄
2/2(fCf̄C)

)
(e). (5.11)

By the commutativity result in Corollary 5.7 and Remark 3.17 we may combine the
exponents in the last expression in (5.11). Note that there are no domain issues to worry
about here: All the exponentials in (5.11) are defined by power series and since fCf̄C is
a matrix entry (cf. Lemma 3.15), all exponentials are acting in a fixed finite-dimensional
subspace of functions on KC. Using Lemma 5.9, (5.11) therefore becomes

‖F‖2L2(KC,µs,τ ) = (es∆k/2 |fC|2)(e) = (es∆k/2 |f |2)(e).

The last equality holds because e belongs to K and ∆k is a sum of squares of left-invariant
vector fields associated to elements of k. Using Proposition 3.18 again, we finally conclude
that

‖F‖2L2(KC,µs,τ ) = ‖f‖2L2(K,ρs)

establishing (5.10).
Suppose now that F is a holomorphic matrix entry on KC; that is, F = fπC,A for some

finite-dimensional holomorphic representation πC of KC. Then F |K = fπ,A, where π is
the restriction of πC to K. We may then define

f = e−
τ
2 ∆k(F |K) = f

π,e−
τ
2
CπA

as in (3.12). Then f is a matrix entry and we have, using (3.12) again,Mτf = (e
τ
2 ∆kf)C =

F . �

Theorem 5.11. The map Mτ has a unique continuous extension to L2(K, ρs), denoted
Ms,τ , and this extension is a unitary map from L2(K, ρs) onto HL2(KC, µs,τ ).

Proof. Theorem 4.13 tells us that Mτ is defined on a dense subspace of L2(K, ρs). Since
Mτ is isometric, the bounded linear transformation theorem (e.g., Theorem I.7 in [35])
tells us that Mτ has a unique continuous extension to a map Ms,τ of L2(K, ρs) into
HL2(KC, µs,τ ). This extension is easily seen to be isometric, and since (by Theorem
4.13 again) the image of Mτ is dense, the extension is actually a unitary map. �

For a general f ∈ L2(K, ρs), the value of Ms,τ may be computed by approximating f
by a sequence fn of matrix entries and setting

Ms,τf = lim
n→∞

Mτfn. (5.12)

(The bounded linear transformation theorem guarantees that the limit exists and that the
value of Ms,τ is independent of the choice of approximating sequence.) Now, (5.12) is
not a very convenient way to computing. In the next section, we will seek a direct way
of computing Ms,τ , which will also demonstrate that Ms,τ coincides with the way we
defined the complex-time Segal–Bargmann transform in the introduction; cf. (1.7). A first
step in that direction is proving that (Ms,τf)(z) is holomorphic in both τ and z.

Lemma 5.12. Fix s > 0. For each f ∈ L2(K, ρs), the function (τ, z) 7→ (Ms,τf)(z) is a
holomorphic function on D(s, s)×KC.
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Proof. If f = fπ,A is a matrix entry, then

(Ms,τfπ,A)(z) = (Mτfπ,A)(z) = Tr(πC(g)eτCπ/2A)

which is easily seen to depend holomorphically on τ and z.
We then approximate an arbitrary f ∈ L2(K, ρs) by a sequence fn of matrix entries.

Then Mτfn = Ms,τfn will converge to Ms,τf in HL2(KC, µs,τ ). It is well known that
the evaluation map F 7→ F (z) on HL2(KC, µs,τ ) is a bounded linear functional; this is
due to the ubiquitous pointwise L2 estimates in this holomorphic space (cf. [7, 20]). We
claim that we can actually find locally uniform bounds on this functional. That is to say:
for each precompact open subset U of KC and r ∈ (0, s), there exists C = C(r, U) < ∞
such that, for all τ ∈ D(s, r) and F ∈ HL2(KC, µs,τ ),

sup
z∈U
|F (z)| ≤ C(r, U) ‖F‖L2(KC,µs,τ ) . (5.13)

Assuming this result for the moment, we can conclude that the convergence of (Ms,τfn)(z)

to (Ms,τf)(z) is locally uniform jointly in (τ, z), and since each function in the sequence
is holomorphic, it follows that the limit (Ms,τf)(z) is jointly holomorphic in (τ, z) as
claimed.

To establish the bound in (5.13), we observe that the norm of the pointwise evaluation
functional can be estimated in terms of lower bounds on the density µs,τ . For example,
[7, Theorem 3.6] shows (in our context) that, for any precompact neighborhood V of the
identity e, there is a constant C(V ) so that, for all holomorphic F and z ∈ KC,

|F (z)| ≤ C(V )

infv∈V
√
µs,τ (vz)

‖F‖L2(KC,µs,τ ).

The constant C(V ) is determined only by the holomorphic structure of the group (given
by averaging a symmetrized bump function on V , applying the Cauchy integral formula);
hence, C(V ) is independent of s and τ . Hence, it suffices to show that µs,τ (z) is bounded
strictly above 0 locally uniformly in τ and z.

The group, KC, factors as (K0)C × Cd as in Proposition 2.1, and the heat kernel µs,τ
also factors over this product. On the Cd side, there is an explicit formula for µs,τ (z)
(given in (1.17)) which is manifestly bounded away from zero locally in both τ and z.
Thus, it suffices to assume that K is compact, which we do from now on.

Denote t = Re τ . From the averaging Theorem 3.33 and Lemma 4.11, we see that
there is a strictly positive constant C ′(s, τ) such that µs,τ �C′(s,τ) µt,t; moreover, as
detailed in Remark 4.12, the constant C ′(s, τ) is a continuous function of (s, τ). Note that
µt,t = ρ

∆1,1

t is the heat kernel for a single metric (cf. (4.9) and the remark following it)
and by Theorem 3.12 it follows that µt,t(z) = ρ

∆1,1

t (z) is a continuous positive function
of (t, z) ∈ (0,∞)×KC. In particular, µt,t(z) is bounded strictly away from 0 for (t, z) in
compact subsets of (0,∞) ×KC. It follows from the continuity of the function (s, τ) 7→
C ′(s, τ) that the same holds true for µs,τ (z), establishing (5.13) and completing the proof.

�

5.2. The Analytic Continuation of the Heat Kernel. In this section, we show that the
unitary map Ms,τ : L2(K, ρs)→ HL2(KC, µs,τ ) constructed in Section 5.1 may be com-
puted as a “convolution” against a holomorphic extension of the heat kernel ρt on K. The
following theorem makes this precise.

Theorem 5.13. Let K be a compact-type Lie group.
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(1) There exists a unique holomorphic function ρC : C+ × KC → C such that for
t > 0 and x ∈ K we have

ρC(t, x) = ρt(x).

(2) If s > 0 and τ ∈ D(s, s), then for each z ∈ KC, the function

x 7→ ρC(τ, zx−1)

ρs(x)

belongs to L2(K, ρs).
(3) The unitary map Ms,τ may be computed as

(Ms,τf)(z) =

∫
K

ρC(τ, zk−1)f(k) dk

for all f ∈ L2(K, ρs) and all z ∈ KC.

Since

ρC(τ, zk−1)f(k) dk =
ρC(τ, zk−1)

ρs(k)
f(k) ρs(k)dk

it follows by the Cauchy–Schwarz inequality and Theorem 5.13(2) that the function k 7→
ρC(τ, zk−1)f(k) is integrable. Using the decomposition of K as K0 × Rd, where K0 is
compact (Proposition 2.5), we may easily reduce the general case to the compact case and
the Euclidean case, which we now address separately.

5.2.1. The Compact Case. It is possible to construct the holomorphic extension of the heat
kernel onK using the method of [18, Section 4], which is based on a term-by-term analytic
continuation of the expansion of the heat kernel in terms of characters. Indeed, replacing
t by t + iu in the heat kernel makes no change to the (absolute) convergence estimates
in [18]. (The time-parameter occurs only linearly in the exponent there, so the absolute
value of each term would be independent of u.) On the other hand, the argument in [18]
requires detailed knowledge of the representation theory of K. We present here a different
argument (similar to the proof of Corollary 4.6 in [6]) that uses the unitary map Ms,τ of
Theorem 5.11 to construct the desired analytic continuation.

Lemma 5.14. If K is compact, s > 0, 0 < t < 2s, and Ms,t are the unitary maps as in
Theorem 5.11, then for any f ∈ L2(K, ρs),

(Ms,tf) (x) = (ρt ∗ f) (x) =

∫
K

ρt(xk
−1)f(k) dk ∀ x ∈ K ⊂ KC. (5.14)

(Note: for K compact, L2 (K) = L2(K, ρs) independent of s > 0 and hence Ms,tf does
not really depend on s.)

Proof. Recall from Eq. (5.1) that

Ms,tfπ,A = Mtfπ,A = f
πC,e

tCπC/2·A

and so (
Ms,tfπ,A

)
|K = f

πC,e
tCπC/2·A|K = fπ,[etCπ/2A].

By Proposition 3.18, if x ∈ K, then

fπ,[etCπ/2A] (x) =

∫
K

ρt(k)fπ,A(xk) dk

=

∫
K

ρt(xk
−1)fπ,A(k) dk = (ρt ∗ fπ,A) (x) .
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This suffices to complete the proof as matrix entries are dense inL2 (K) and bothL2 (K) 3
f →

(
Ms,tf

)
(x) ∈ C and L2 (K) 3 f → (ρt ∗ f) (x) ∈ C are continuous lin-

ear functionals on L2 (K) for each fixed x ∈ K. The first assertion holds since Ms,τ :
L2(K, ρs) → HL2(KC, µs,τ ) is unitary and pointwise evaluation on HL2(KC, µs,τ ) is
continuous and the second follows by Hölder’s inequality. �

Proof of Theorem 5.13 in the compact group case. We begin with point (1): the space-time
analytic continuation of the heat kernel. Let 0 < δ < r < ∞, and consider the vertically
symmetric rectangle Uδ,r = {τ ∈ C+ : δ < Re τ < r, |Im τ | < r}. Let 0 < ε < δ, and
fix s > 0 large enough that Uδ,r − ε ⊂ D(s, s). The function ρε is continuous and hence in
L2(K, ρs). We then define ρC : Uδ,r ×KC → C by

ρC(τ, z) =
(
Ms,τ−ερε

)
(z). (5.15)

By Lemma 5.12, ρC is analytic in both variables so long as τ−ε ∈ D(s, s); in particular, ρC
is analytic on Uδ,r ×KC. For the moment, it appears a priori that the value of ρC depends
on s and ε.

Now consider the restriction of ρC to (t, x) ∈ (Uδ,r ∩ R)×K. By lemma 5.14 and the
semigroup property of the heat kernel (Theorem 3.12(3)),

ρC(t, x) =
(
Ms,t−ερε

)
(x) = (ρt−ε ∗ ρε) (x) = ρt(x) ∀ x ∈ K. (5.16)

Thus, ρC is a holomorphic extension of the heat kernel ρt(x) in t and x. Analytic continu-
ation fromK toKC is unique (cf. [44, Lemma 4.11.13]), and also from Uδ,r∩R to Uδ,r by
elementary complex analysis. In particular, since ρt(x) does not depend on s or ε, neither
does the function ρC.

Thus, for each rectangleUδ,r, there is a unique analytic continuation of the heat kernel to
a holomorphic function ρC on Uδ,r×KC. Let δn and rn be sequences with δn ↓ 0 and rn ↑
∞, let Un = Uδn,rn , and let ρnC be the analytic continuation of ρt(x) to Un. The rectangles
Un are nested with union C+; since ρnC and ρmC agree on (Un∧m ∩ R)×K, uniqueness of
analytic continuation shows that they agree on their common domain Un∧m ×KC. Thus,
there is a globally defined holomorphic function ρC whose value in Un × KC is ρnC, and
thus restricts to ρt(x) on (Un ∩ R) ×K; ergo ρC(t, x) = ρt(x) for t > 0 and x ∈ K, as
desired. Uniqueness again follows from [44, Lemma 4.11.13]. This establishes point (1).

Point (2) is immediate since K is compact and the function in question is continuous.
For point (3), we first note that, by Lemma 5.12, (Ms,τf)(z) is holomorphic in τ and
z. Meanwhile, since ρC(τ, zk−1) is holomorphic in τ and z for each fixed k ∈ K, we
may use Fubini’s theorem and Morera’s theorem to verify that

∫
K
ρC(τ, zk−1)f(k) dx is

also holomorphic in τ and z. Since both sides of the desired equality are holomorphic
in τ and z, it suffices by uniqueness of analytic continuation to verify the result when
τ = t ∈ (0, 2s) and z = x belongs to K. Using Lemma 5.14 and the defining property of
ρC, the desired equality thus becomes

(e
t
2 ∆̄Kf)(x) =

∫
K

ρt(xk
−1)f(k) dk,

which is true by Corollary 3.29. This concludes the proof. �

5.2.2. The Euclidean Case. The heat kernel ρs on Rd is explicitly known to be the Gauss-
ian density mentioned in the introduction:

ρs(x) = (2πs)−d/2 exp

(
−|x|

2

2s

)
and the density µs,τ (z) in this case has been described in (1.17) in the introduction.
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Proof of Theorem 5.13 in the Euclidean case. For point (1), the desired holomorphic ex-
tension is given by

ρC(τ, z) :=
(√

2πτ
)−d

exp
(
−z · z

2τ

)
(5.17)

where z · z =
∑d
j=1 z

2
j and where

√
2πτ is defined by the standard branch of the square

root (with branch cut along the negative real axis).
Point (2) of the theorem is an elementary computation. Using additive notation for the

group operation, we need to verify that∫
Rd

|ρC(τ, z − x)|2

ρs(x)2
ρs(x) dx <∞ (5.18)

for all z ∈ Cd, provided that s > 0 and τ ∈ D(s, s) (or, equivalently, provided that
α > 0; cf. (1.10)). Equation (5.18) is a Gaussian integral whose computation is tedious
but straightforward. (The integral factors into separate integrals over each copy of R,
which may then be evaluated in a computer algebra system.) We record the result here: if
z = ξ + iη and τ = t+ iu, then∫

Rd

|ρC(τ, z − x)|2

ρs(x)2
ρs(x) dx =

(
πs√
α

)d
exp

(
t/2

2α
|ξ|2 +

s− t/2
2α

|η|2 +
u

2α
ξ · η

)
(5.19)

where, as in (1.10), α = (2st− t2 − u2)/4.
For point (3), we must show that (Ms,τf)(z) may be computed as

(Ms,τf)(z) =

∫
Rd
ρC(τ, z − x)f(x) dx (5.20)

for all f ∈ L2(Rd, ρs). If f is a polynomial (and thus a matrix entry) and τ ∈ R and
z ∈ Rd, (5.20) follows from Proposition 3.18. Furthermore, when f is a polynomial, both
sides of (5.20) are holomorphic in τ and z, so the result continues to hold when τ ∈ C+

and z ∈ Cd. Now, both sides of (5.20) depend continuously on f ∈ L2(Rd, ρs)—the
left-hand side by the unitarity of Ms,τ and the continuity of pointwise evaluation, and the
right-hand side by the fact that ρC(t, z − x) is square-integrable in x. Thus, we may pass
to the limit starting from polynomials to obtain the result for all f ∈ L2(Rd, ρs), thus
completing the proof of Theorem 5.13 in the Rd case. �

We note that, by (5.19), we have bounds on the value of (Ms,τf)(z) in terms of the L2

norm of f . Since Ms,τ maps isometrically onto HL2(Cd, µs,τ ), these bounds translate
into pointwise bounds in HL2(Cd, µs,τ ) as follows:

|F (ξ + iη)|2 ≤
(
πs√
α

)d
exp

(
t/2

2α
|ξ|2 +

s− t/2
2α

|η|2 +
u

2α
ξ · η

)
‖F‖2L2(Cd,µs,τ ) ,

(5.21)
where µs,τ is given as in (1.17). Note that the bounds on |F (z)|2 are, up to a constant, just
the reciprocal of the density µs,τ . This is typical behavior for HL2 spaces over Cd with
respect to a Gaussian measure.

5.3. The s→∞ Limit. Throughout this section, we assume that the compact-type group
K is actually compact and we normalize the Haar measure dk on K to be a probability
measure. Recall that νt ∈ C∞ (KC, (0,∞)) is the K-averaged heat kernel measure as in
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Definition 1.8 which, by Lemma 4.11, also satisfies,

νt(z) =

∫
K

µs,τ (zk) dk for s > 0, τ = t+ iu ∈ D(s, s), and z ∈ KC. (5.22)

We will use the following well-known result for the heat kernel measure on a compact
Lie group at large time.

Lemma 5.15. If K is a compact Lie group, the heat kernel ρs converges to the constant 1
uniformly over K (exponentially fast) as s→∞.

For completeness, we include a complete proof of Lemma 5.15 in Appendix B. (The
proof given there works essentially unchanged for compact Riemannian manifolds.)

Corollary 5.16. Let K be a compact Lie group. Then for each s > 0, there are positive
constants βs and γs such that, for all τ = t+ iu ∈ D(s, s),

βsνt(z) ≤ µs,τ (z) ≤ γsνt(z) (5.23)

for all z ∈ KC. Furthermore, the constants may be chosen so that βs → 1 and γs → 1 as
s→∞ with τ fixed.

Proof. By a small modification of the proof of Theorem 3.33, we have the following for-
mula for µs,τ :

µs,τ (z) =

∫
K

µs0,τ (zk−1)ρs−s0(k) dk,

for any s0 ∈ (0, s) and τ ∈ D(s0, s0) ⊃ D(s, s). (Write ∆s,τ = (s− s0)∆k + ∆s0,τ and
then follow the proof of Theorem 3.33 up to (3.23).) If we fix such an s0, then (5.23) holds
with βs = infk∈K ρs−s0(k) and γs = supk∈K ρs−s0(k). With that choice of βs and γs,
Lemma 5.15 tells us that βs and γs tend to 1 as s tends to infinity. �

With these results in hand, we may now prove Theorem 1.9, describing the large-s limit
of the transform Bs,τ .

Proof of Theorem 1.9. Since K is compact, the function ρs is bounded and bounded away
from zero, showing that L2(K) = L2(K, ρs) as sets. The equality of L2(KC, νt) and
L2(KC, µs,τ ) as sets follows from Corollary 5.16. The claimed convergence of norms
then follows easily from Lemma 5.15 and the fact that the constants βs and γs in Corollary
5.16 may be chosen to converge to 1 as s tends to infinity. The equalities of the various
Hilbert spaces as sets and the convergence of the norms allows us to deduce the unitarity
of B∞,τ from the unitarity of the maps Bs,τ . �

APPENDIX A. ESSENTIAL SELF-ADJOINTNESS OF THE LAPLACIAN

This section provides a self-contained proof that, on any Lie group, any “sum of squares”
Laplacian is essentially self-adjoint, with C∞c (G) as a core. This proof is adapted from
notes due to L. Gross.

Let G be a real Lie group with Lie algebra g, on which we fix an inner product through-
out. Let {Xj}kj=1 be a collection of left-invariant vector fields on G, and define

L0 :=

k∑
j=1

X2
j

acting on C2(G) and let L := L0|C∞c (G), i.e., L = L0 on D(L) := C∞c (G). Further let λ
denote a right-invariant Haar measure on G.
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Theorem A.1. The second-order differential operator L is essentially self-adjoint as an
unbounded operator on L2(G,λ) with domain C∞c (G).

It is important to note that we do not assume that the vector fields {Xj}kj=1 span g,
nor that they generate g as a Lie algebra. Thus, L0 is not necessarily elliptic or even
hypoelliptic. Thus, proofs that rely on hypoellipticity, such as the one in [27], do not apply
in this setting.

Before giving the proof we will need a little notation and a few preparatory results.

Notation A.2. For u ∈ C∞c (G) and f ∈ L2(G), define the convolution of u and f by

(u ∗ f) (x) =

∫
G

u(xy−1)f(y)λ(dy). (A.1)

We will also let

ũ(x) = ū(x−1)

which should not be confused with the notation ξ̃ for the left-invariant vector field deter-
mined by an element ξ ∈ g.

Proposition A.3. For all f, g ∈ L2(G,λ) and X ∈ g, the following results hold.

(1) If u ∈ C∞c (G), then u ∗ f ∈ L2(G,λ) and

‖u ∗ f‖2 ≤
(∫

G

|u|
√
mdλ

)
‖f‖2

where m is the modular function of G.
(2) 〈u ∗ f, g〉L2(G,λ) = 〈f, ũ ∗ g〉L2(G,λ) for all u ∈ C∞c (G).
(3) X̃(u ∗ v) = u ∗ (X̃v) for all u ∈ C∞c (G) and v ∈ C∞(G).
(4) 〈X̃u, v〉L2(G,λ) = −〈u, X̃v〉L2(G,λ) for all u ∈ C∞(G) and v ∈ C∞c (G).
(5) There exist un ∈ C∞c (G,R) such that un ∗ · → I strongly on L2(G,λ).

Proof. In the following argument, we will use the right invariance of Haar measure, the
definition of convolution in (A.1), and the left invariance of X̃ without further mention.
Using the definition of the modular function, ‖g ◦ Lx‖22 = m (x) ‖g‖22 for all x ∈ G.
Therefore,∫

G2

|u(xy−1)||f(y)||g(x)|λ(dx)λ(dy) =

∫
G2

|u(x)||f(y)||g(xy)|λ(dx)λ(dy)

≤
∫
G

|u(x)|‖f‖2 · ‖g ◦ Lx‖2 λ(dx)

≤
∫
G

|u(x)|
√
m(x)λ(dx) · ‖f‖2 · ‖g‖2.

This proves item (1) as a consequence of the converse to Hölder’s inequality. It also justifies
the use of Fubini’s theorem used to prove item (2):

〈u ∗ f, g〉L2(G,λ) =

∫
G2

u(xy−1)f(t)ḡ(x)λ(dx)λ(dy)

=

∫
G2

f(t)ũ(yx−1)g(x)λ(dx)λ(dy) = 〈f, ũ ∗ g〉L2(G,λ).
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For items (3) and (4), we have

X̃(u ∗ v)(x) =
d

dt

∣∣∣∣
t=0

∫
G

u
(
xetXy−1

)
v(y)λ(dy)

=
d

dt

∣∣∣∣
t=0

∫
G

u(xy−1)v
(
yetX

)
λ(dy) = u ∗ X̃v

and

〈Xu, v〉L2(G,λ) =
d

dt

∣∣∣∣
t=0

∫
G

u
(
xetX

)
v̄(x)λ(dx)

=
d

dt

∣∣∣∣
t=0

∫
G

u(x)v̄
(
xe−tX

)
λ(dx) = −〈u, X̃v〉L2(G,λ).

For item (5) we apply the usual approximate identity sequence arguments to any sequence
of functions {un}∞n=1 ⊂ C∞c (G, [0,∞)) with the following properties: 1)

∫
G
un dλ = 1

for all n and 2) supp(un) ↓ {e} as n→∞. �

Lemma A.4. For f ∈ C∞(G) ∩D(L∗), L∗f = L0f and moreover C∞(G) ∩D(L∗) is
core for L∗.

Proof. If f ∈ C∞(G)∩D(L∗) and v ∈ C∞c (G), then by the definition of L∗ and repeated
use of Proposition A.3,

〈L∗f, v〉L2(G,λ) = 〈f, Lv〉L2(G,λ) = 〈L0f, v〉L2(G,λ).

Since v ∈ C∞c (G) is arbitrary, it follows that L∗f = L0f .
Now suppose that f ∈ D(L∗) and that u, v ∈ C∞c (G). Then ũ ∗ v ∈ C∞c (G) and

therefore

〈u ∗ L∗f, v〉L2(G,λ) = 〈L∗f, ũ ∗ v〉L2(G,λ) = 〈f, L(ũ ∗ v)〉L2(G,λ)

= 〈f, ũ ∗ Lv〉L2(G,λ) = 〈u ∗ f, Lv〉L2(G,λ).

It follows from this equation that u ∗ f ∈ D(L∗) and that

L∗(u ∗ f) = u ∗ L∗f for all u ∈ C∞c (G). (A.2)

Now choose un as in Proposition A.3(5). Since each un∗f ∈ C∞(G)∩D(L∗), the lemma
follows from (A.2). �

Notation A.5. The tensor Dnf(x) ∈ (g⊗n)∗ of nth-order derivatives of f at x is defined
by

〈(Dnf) (x), ξ1 ⊗ · · · ⊗ ξn〉 =
(
ξ̃1 . . . ξ̃nf

)
(x) (A.3)

where ξj ∈ g for 1 ≤ j ≤ n, and the inner product is the standard one induced by the
inner product on g.

Let us now recall from [8, Lemma 3.6] that there exists hn ∈ C∞c (G, [0, 1]) such that
hn is increasing, h−1

n ({1}) ↑ G as n ↑ ∞, and supn supx∈G |Dkhn(x)| < ∞ for any
k ∈ N where Dkhn is as defined in (A.3).

Lemma A.6. If f is a real-valued function in C∞(G) ∩D(L∗), then∫
G

k∑
j=1

(X̃jf)2 dλ = −〈L∗f, f〉L2(G,λ). (A.4)

For any f in C∞(G) ∩D(L∗), the function X̃jf belongs to L2(G,λ) for all j.
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Proof. Let f be a real-valued element of C∞(G) ∩D(L∗). For any h ∈ C∞c (G, [0,∞)),
we have

k∑
j=1

∫
G

h(x)(X̃jf)2 λ(dx) = −
k∑
j=1

∫
G

[h(x)(X̃2
j f)f + (X̃jh)(X̃jf)f ] dλ

= −
∫
G

h(x)(L∗f)f dλ− 1

2

k∑
j=1

∫
G

(X̃jh)X̃j(f
2) dλ

= −〈hL∗f, f〉L2(G,λ) +
1

2

∫
G

(Lh)f2 dλ. (A.5)

Now replace h in the above identity by hn as in [8, Lemma 3.6], so in particular hn ↑ 1
as n → ∞ and Lhn → 0 boundedly. We now use the monotone convergence theorem on
the left-hand side of (A.5) and the dominated convergence theorem on both terms on the
right-hand side to verify (A.4). It follows that X̃jf belongs to L2(G,λ) for each j.

Now, since the domain of L is invariant under complex conjugation and since L com-
mutes with complex conjugation, the domains of both L and L∗ are invariant under com-
plex conjugation. Thus, if f ∈ C∞(G) ∩D(L∗), the real and imaginary parts, f1 and f2,
of f are also in C∞(G) ∩D(L∗). Equation (A.4) then shows that X̃jf1 and X̃jf2 are in
L2(G,λ), so that X̃jf is also in L2(G,λ). �

Proof of Theorem A.1. Let L denote the closure of L. By Proposition A.3, eachXj is skew
symmetric on C∞c (G) and as a consequence L is symmetric on C∞c (G). That is L ⊆ L∗

and therefore L ⊆ L∗ = L
∗
. So it remains only to show L∗ ⊆ L, or equivalently that

C∞c (G) is a core for L∗.
Using Lemma A.4, it suffices to prove the following: For every f ∈ C∞(G) ∩D(L∗),

there exists fn ∈ C∞c (G) such that fn converges to f in the L∗-graph norm. Choose
0 ≤ hn ≤ 1 with hn ∈ C∞(G) as in [8, Lemma 3.6] and let fn(x) = hn(x)f(x). Then
fn ∈ C∞(G) and fn → f in L2 since hn ↑ 1. Moreover,

Lfn = (Lhn)f + hn(L∗f) + 2

k∑
j=1

(X̃jhn)(X̃jf) (A.6)

and Lhn → 0 boundedly by [8, Lemma 3.6]. The first two terms on the right-hand side of
(A.6) therefore together converge to L∗f . Now, Lemma A.6 tells us that each X̃jf belongs
to L2(G,λ). Since also Xjhn → 0 pointwise and boundedly, dominated convergence tells
us that the third term on the right-hand side of (A.6) converges to zero in L2(G,λ). Thus
Lfn → L∗f in L2(G,λ), concluding the proof. �

APPENDIX B. UNIFORM CONVERGENCE OF ρs → 1 AS s→∞

Theorem B.1. Let λ1 be the first nonzero eigenvalue of −∆K/2. Then for every ε > 0,

Cε := sup
s≥ε

max
x∈K
|ρs(x)− 1| esλ1/2 <∞. (B.1)

In particular, ‖ρs − 1‖L∞(K) ≤ Cεe−sλ1/2 for all s ≥ ε.

Proof. The Laplacian ∆K for K has discrete, nonpositive spectrum, with zero being an
eigenvalue of multiplicity 1 with the corresponding eigenfunction ϕ0 ≡ 1 (as we are using
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normalized Haar measure onK). Denote the eigenvalues by−λn (so that λn are≥ 0), and
arrange them so that

0 = λ0 < λ1 ≤ λ2 ≤ λ3 · · · ,
with λn → ∞ as n → ∞. Let ϕn be the corresponding L2-normalized eigenfunctions,
chosen to be real-valued. (See [45, Exercise 16, p. 254] and [15, Section 1.6].) Since, for
any s > 0, ∫

K

ρs(x)ϕn(x) dx =
(
es∆̄K/2ϕn

)
(e) = e−sλn/2ϕn(e)

we conclude (using ϕ0 ≡ 1) that the eigenfunction expansion of ρs − 1 is given by

ρs(x)− 1 =

∞∑
n=1

ϕn(e)e−sλn/2ϕn(x),

where the sum is convergent in L2(K).
Convolving this identity with ρ1 then gives the pointwise identity

ρs+1 (x)− 1 = ((ρs − 1) ∗ ρ1)(x) =

∫
K

(ρs(y)− 1)ρ1(xy−1) dy.

Hence by the Cauchy–Schwarz inequality,

|ρs+1(x)− 1|2 ≤ K · ‖ρs − 1‖2L2(K) = K ·
∞∑
n=1

|ϕn(e)|2 e−sλn

where

K =

∫
K

∣∣ρ1(xy−1)
∣∣2 dy = ρ2(e) <∞.

Combing these results shows

eλ1s max
x∈K
|ρs+1(x)− 1|2 ≤ ρ2(e)

∞∑
n=1

|ϕn(e)|2 e−s(λn−λ1). (B.2)

Let m = min {n ∈ N : λn > λ1} and then define δ := λ1/λm < 1 so that λ1 =
δλm ≤ δλn and hence λn − λ1 ≥ (1− δ)λn for all n ≥ m. Therefore, for s ≥ 1,

∞∑
n=1

|ϕn(e)|2 e−s(λn−λ1) =

m−1∑
n=1

|ϕn(e)|2 +

∞∑
n=m

|ϕn(e)|2 e−s(λn−λ1)

≤
m−1∑
n=1

|ϕn(e)|2 +

∞∑
n=m

|ϕn(e)|2 e−(1−δ)λn

≤
m−1∑
n=1

|ϕn(e)|2 + ‖ρ1−δ − 1‖2L2(K) .

This estimate combined with (B.2) shows the constant Cε as in (B.1) is finite when ε = 2.
This is sufficient to show Cε < ∞ in general because (s, x) → |ρs(x)− 1| esλ1/2 is
continuous and hence bounded on [ε, 2]×K. �

Acknowledgments. This project began as the result of a conversation between the third
author and Thierry Lévy at Oberwolfach in June, 2015, regarding the idea of classifying
all Ad(U(n))-invariant inner products on GL(n) (and studying their large-n limits). This
led the third author to prove Theorem 4.2, and consequently to wonder if this extension of
the two-parameter family of inner products studied in [29] was associated to some kind of
“twisted Segal–Bargmann transform” extending the one in [10] and [19].
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