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Abstract

We study the (two-parameter) Segal–Bargmann transform BN
s,t on the unitary group U(N), for large N .

Acting on matrix valued functions that are equivariant under the adjoint action of the group, the transform has
a meaningful limit Bs,t as N → ∞, which can be identified as an operator on the space of complex Laurent
polynomials. We introduce the space of trace Laurent polynomials, and use it to give effective computational
methods to determine the action of the heat operator, and thus the Segal–Bargmann transform. We prove
several concentration of measure and limit theorems, giving a direct connection from the finite-dimensional
transform BN

s,t to its limit Bs,t. We characterize the operator Bs,t through its inverse action on the standard
polynomial basis. Finally, we show that, in the case s = t, the limit transform Bt,t is the free unitary Segal–
Bargmann transform G t introduced by Biane.
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1 Introduction

The Segal–Bargmann transform (also known in the physics literature as the Bargmann transform or Coherent
State transform) is a unitary isomorphism from L2 to holomorphic L2. It was originally introduced by Segal
[28, 29] and Bargmann [1, 2], as a map

St : L
2(RN , γNt )→ HL2(CN , γ2N

t/2 )

where γNt is the standard Gaussian heat kernel measure ( 1
4πt)

N/2 exp(− 1
4t |x|

2) dx on RN , and HL2 denotes the
subspace of square-integrable holomorphic functions. The transform St is given by convolution with the heat
kernel, followed by analytic continuation.

In [17], the second author introduced an analog of the Segal–Bargmann transform for any compact Lie group
K. The transform maps functions on K to holomorphic functions on the complexification KC of K. We will
be particularly interested in the case K = U(N), where the complexification is KC = GL(N,C). The “Bt”
version of the transform, which is the one most relevant to the present paper, is a unitary map

Bt : L2(K, ρt)→ HL2(KC, µt)

where ρt and µt are suitable heat kernel measures on K and KC, based at the identity. Mirroring the Euclidean
case, the transform itself is defined as follows:

Btf = (e
t
2

∆Kf)C (1.1)

where e
t
2

∆K is the time-t (forward) heat operator on K and ( · )C denotes analytic continuation from K to KC.
More generally, given two positive numbers s and t with s > t/2, there is a two-parameter Segal–Bargmann
transform, introduced by the first two authors in [10, 18]:

Bs,t : L
2(K, ρs)→ HL2(KC, µs,t),
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where µs,t is another heat kernel measure on KC. The transform Bs,t is given by the same formula (1.1) as Bt;
only the definition of the inner products on the domain and range spaces depends on the additional parameter s.
The original transform Bt coincides with Bt,t.

Since the classical Segal–Bargmann transform for Euclidean spaces admits an infinite dimensional version
[30], it is natural to attempt to construct an infinite dimensional limit of the transform for compact Lie groups.
One successful approach to such a limit is found in the paper [20] of the second author and A. N. Sengupta, in
which they develop a version of the Segal–Bargmann transform for the path group with values in a compact Lie
group K. The paper [20] is an extension of the work of L. Gross and P. Malliavin [15] and reflects the origins of
the generalized Segal–Bargmann transform for compact Lie groups in the work of Gross [14].

A different approach to an infinite dimensional limit is to consider the transform on a nested family of compact
Lie groups, such asU(N) forN = 1, 2, 3, . . . To define the transform onU(N), one must choose an Ad-invariant
inner-product on the Lie algebra u(N) of U(N): lettingMN (C) denote the space of allN×N complex matrices,
u(N) = {X ∈ MN (C) : X∗ = −X}. The most obvious approach to the N → ∞ limit would be to use on
each u(N) a fixed (i.e. N -independent) multiple of the Hilbert–Schmidt norm. Work of M. Gordina [12, 13],
however, showed that this approach does not work, because the target Hilbert space becomes undefined in the
limit. Indeed, Gordina showed that, with the metrics normalized the this way, in the large-N limit all nonconstant
holomorphic functions on GL(N,C) have infinite norm with respect to the heat kernel measure µt.

An alternative approach to the N → ∞ limit of the Segal–Bargmann transform on U(N), suggested by
Philippe Biane [4], is to scale the Hilbert–Schmidt norm on u(N) by an N -dependent constant. Specifically,
Biane proposed to use on u(N) the norm ‖ · ‖u(N) given by

‖X‖2u(N) = NTr (X∗X) = N
N∑

j,k=1

|Xjk|2 . (1.2)

In the first part of [4], this scaling was used to successfully carry out a large-N limit of the Lie algebra version
of the transform. Taking the underlying space to be the Lie algebra u(N) rather than the group U(N), he
considered a vector-valued version of the classical Euclidean Segal–Bargmann transform SNt acting on functions
u(N)→MN (C). Specifically, if P (x) =

∑n
k=0 anx

n is a single-variable polynomial, it gives rise to a function
PN : u(N)→MN (C) in the usual way:

PN (X) = a0IN +
n∑
k=1

anX
n ∈MN (C). (1.3)

The transformed functions SNt PN have a limit (in an appropriate sense; cf. (1.4)) which can be thought of as a
one-variable polynomial function P t : R→ R. This defines a unitary transformation F t : P 7→ P t [4, Theorem
3] on the limiting L2 closure of polynomials with respect to the limit heat kernel measure—in this context
Wigner’s semicircle law.

Remark 1.1. The results of [4, Section 1] are formulated in terms of the large-N limit of SNt on the space
XN = iu(N) of Hermitian N × N matrices, which is of course equivalent to the formulation above. It also
deals more generally with the class of functional calculus functions on XN ; cf. Section 2.1. We will restrict our
attention almost exclusively to the space of Laurent polynomial functions, that are dense in functional calculus.
Section 2 also discusses equivariant functions: an extension of functional calculus which forms a natural domain
for the Segal-Bargmann transform, and subsumes all other function spaces discussed in this paper.

Biane proceeded in [4] to construct a “large-N limit U(N) Segal–Bargmann transform” G t, not by taking
this limit directly, but instead developing a free probabilistic version of the Malliavin calculus techniques used
by Gross and Malliavin [15] to derive the properties of Bt from an infinite dimensional version of St. This
laid the foundation for the modern theory of free Malliavin calculus and free stochastic differential equations,
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subsequently studied in [5, 6, 21] and many other papers, and was groundbreaking in many respects. Biane
conjectured that his transform G t is the direct N → ∞ limit of the Segal–Bargmann transforms BN

t on U(N),
and suggested that this could be proved using the methods of stochastic analysis, but left the details of such
an argument out of [4] (see the Remark on page 263). One of the main motivations for the present paper is to
prove that this connection indeed holds: we will show directly that BN

t (defined with the metric given in (1.2)),
boosted to act on Laurent polynomial functions U(N) → MN (C), converges to G t as N → ∞. Our methods
and ideas are very different from those Biane suggested, however; they are analytic and geometric, rather than
probabilistic. Moreover, we find the large-N limit of the two-parameter Segal–Bargmann transform BN

s,t, and
this generalization is essential to our proof that limN→∞B

N
t,t = G t.

Remark 1.2. It should be noted that, shortly before the present paper was completed, the preprint [16] by Cébron
Guillaume appeared, addressing (in the special case s = t) some of the same questions we answer presently. On
the one hand, there are some similar ideas in our paper and Guillaume’s. In our Lemma 1.19 and Theorem 1.20,
for example, we identify the action of the Laplacian in terms of a sum of two operators, one of which is of order
1/N2; this result is conceptually very similar to [16, Lemma 4.1], although expressed in a different framework.
On the other hand, our method for connecting the large-N limit of the Segal–Bargmann transform to the work of
Biane is completely different from that of [16]. Guillaume works within an extension of the circular system in
which [4] constructs the transform, and shows that the leading term in his Lemma 4.1 is the generator of Biane’s
transform G t. We, by contrast, do not use free probability at all. Instead, we derive a polynomial generating
function for the limiting transform and show that this generating function coincides with the generating function
for G t; cf. Theorem 1.31.

In [4, Section 1], Biane considered the Segal–Bargmann transform SNt acting on matrix-valued function on
the Lie algebra u(N). The result of applying SNt to a single-variable polynomial function—that is, the type of
function in (1.3)—is typically not a single-variable polynomial function on MN (C). Nevertheless, [4, Theorem
2] asserts that, for each single-variable polynomial P , there is a unique single-variable polynomial P t such that

lim
N→∞

‖SNt PN − [P t]N‖L2(MN (C),γt/2;MN (C)) = 0, (1.4)

Biane’s transform F t is then the map sending P to P t.
In the present paper, we establish a similar result for the transform BN

t on the unitary group U(N), extended
to act on functions with values in MN (C). In the group case, it is natural to consider single-variable Laurent
polynomial functions; that is, linear combinations of matrix-valued functions of the form U 7→ Uk, where k is a
(possibly negative) integer. As in the Lie algebra case, BN

t does not map single-variable Laurent polynomials on
U(N) to single-variable Laurent polynomials on GL(N,C). Rather, applying BN

t to a single-variable Laurent
polynomial gives a trace Laurent polynomial.

Definition 1.3. LetG ⊂MN (C) be a matrix group. Let n ∈ N and let P be a polynomial in 2(n+1) commuting
variables. Denote by PN : G→MN (C) the function

PN (A) = P (A,A−1, tr(A), tr(A−1), . . . , tr(An), tr(A−n))IN , A ∈ G

where tr(A) = 1
NTr (A) is the normalized trace, and IN is the identity matrix. Any such function on G is

called a trace Laurent polynomial function. In the special case n = 0, P ∈ C[u, u−1] is a single-variable
Laurent polynomial, and PN is referred to as a single-variable Laurent polynomial function G → MN (C).
(In particular, single-variable Laurent polynomial functions on G form a subspace of trace Laurent polynomial
functions on G.)

The IN in the definition of PN is added to emphasize that, even if P is “scalar” (i.e. does not depend on the A
and A−1 variables), PN is still MN (C)-valued (in this case a scalar function times IN ).

The Segal–Bargmann transform of any single-variable Laurent polynomial function on U(N) is a trace Lau-
rent polynomial function. What’s more, this class is invariant under the transform:
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Proposition 1.4. Let s, t > 0 with s > t/2. The Segal–Bargmann transform BN
s,t (cf. Definition 1.8) maps trace

Laurent polynomial functions on U(N) to trace Laurent polynomial functions on GL(N,C).

The proof of Proposition 1.4 can be found on page 25. For example, let P (u) = u2; we calculate in Example
3.5 below that, for all Z ∈ GL(N,C),

(BN
s,tPN )(Z) = e−t

[
cosh(t/N)Z2 − tsinh(t/N)

t/N
Ztr(Z)

]
(1.5)

= e−t[Z2 − tZtrZ] +O

(
1

N2

)
,

where the O(1/N2) means the left- and right-hand-sides differ by O(1/N2)-scalar-multiples of Z2 and ZtrZ.
This suggests we identify the large-N limit of the Segal–Bargmann transform acting on U 7→ U2 as the formal
trace polynomial e−t[Z2 − tZtrZ]; ignoring the unknown domain of the variable Z, it appears the result is still
not a genuine polynomial. This highlights the second aspect of the limit that comes into play: in fact, we will
see that the trace term tr(Z) concentrates on its mean e−(s−t)/2 in the spaces L2(GL(N,C), µNs,t;MN (C)); cf.
Theorem 1.26. Setting (Bs,tP )(z) = e−t(z2 − te−(s−t)/2z), we therefore have

‖BN
s,tPN − [Bs,tP ]N‖2L2(GL(N,C),µNs,t;MN (C))

= O

(
1

N2

)
. (1.6)

This procedure works in general: given any Laurent polynomial P , there is a unique holomorphic Laurent poly-
nomial Bs,tP so that BN

s,tPN → Bs,tP in the sense of (1.6). This is our Main Theorem.

Main Theorem. Let s, t > 0 with s > t/2. There is an invertible operator Bs,t on the space of Laurent
polynomials in a single variable such that, for any Laurent polynomial P ,

‖BN
s,tPN − [Bs,tP ]N‖2L2(GL(N,C),µNs,t;MN (C))

= O

(
1

N2

)
, and

‖(BN
s,t)
−1PN − [B−1

s,tP ]N‖2L2(U(N),ρNs ;MN (C)) = O

(
1

N2

)
.

A formula for Bs,t may be found in Definition 1.28. In the special case s = t, Bt,t coincides with the free unitary
Segal–Bargmann transform G t from [4].

We prove this as Theorems 1.30, 1.29, and 1.31, stated on page 11.
Thus, the proper way to take the large-N limit of BN

s,t is to first take the limit of the coefficients of the
resultant trace Laurent polynomial function, and then let the trace terms concentrate on their means to produce
a genuine single-variable Laurent polynomial. This is how we define the large-N limit of the (two-parameter)
Segal–Bargmann transform on U(N).

A crucial result underlying many of our theorems is a “limiting partial product rule” for the action of the
Laplacian ∆U(N) for U(N) (with metric scaled as in (1.2)) on trace Laurent polynomial functions. Let P,Q be
as in Definition 1.3, at least one of which (say Q) is scalar-valued. Then, when applying ∆U(N) to the product
QNPN , the Leibniz product rule holds modulo an error term of order 1/N2: there is a fixed polynomial R,
determined by P and Q, such that

∆U(N)(PNQN ) = (∆U(N)PN )QN + PN (∆U(N)QN ) +
1

N2
RN . (1.7)

Thus, in the large-N limit, ∆U(N) behaves essentially like a first-order differential operator; we make this precise

in Theorem 1.20. This property allows us to recursively determine the limit action of the heat operator e
t
2

∆U(N)

and thus the Segal–Bargmann transform; cf. Section 5.1. It also gives an elegant framework to prove (and, more
importantly, explain) the concentration of measure phenomenon that is essential to our main results.

The remainder of this introduction is devoted to precise statements of the definitions and theorems of this
paper.
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1.1 Laplacian and Segal–Bargmann Transform on U(N)

Throughout this paper, N is a positive integer. In Definitions 1.5, 1.6, and 1.8, V stands for any normed compex
vector space; we will shortly deal exclusively with the case V = MN (C), but equipped with a different norm
from ‖ · ‖u(N) in (1.2).

Definition 1.5. LetG ⊂MN (C) be a matrix Lie group with Lie algebra g ⊂MN (C). ForX ∈ g, the associated
left-invariant derivative in the direction X is the operator ∂X : C∞(G;V )→ C∞(G;V ) given by

(∂XF )(A) =
d

dt

∣∣∣∣
t=0

F (AetX), A ∈ G. (1.8)

Definition 1.6. Let βN be an orthonormal basis for u(N) (with norm ‖ · ‖u(N) given in (1.2)). The Laplacian
∆U(N) on C∞(U(N);V ) is the operator

∆U(N) =
∑
X∈βN

∂2
X (1.9)

which is independent of the choice of orthonormal basis βN . For t > 0, the heat operator is e
t
2

∆U(N) . The heat
kernel measure ρNt is determined by∫

U(N)
f(U)ρNt (dU) =

(
e

t
2

∆U(N)f
)

(IN ), f ∈ C(U(N)), (1.10)

where IN is the identity matrix in MN (C). We will sometimes write EρNt (f) to mean
∫
U(N)

f(U) ρNt (dU).

Let s, t > 0 with s > t/2. Define the operator ANs,t on C∞(GL(N,C);V ) by

ANs,t =

(
s− t

2

) ∑
X∈βN

∂2
X +

t

2

∑
X∈βN

∂2
iX . (1.11)

The measure µNs,t on GL(N,C) is determined by∫
GL(N,C)

f(A)µNs,t(dA) =
(
e

1
2
As,tf

)
(IN ), f ∈ Cc(GL(N,C)). (1.12)

We will sometimes write EµNs,t(f) to mean
∫
GL(N,C)

f(U)µs,t(dU).

Remark 1.7. (1) When s = t, ANs,t = t
2∆GL(N,C), and the measure µNt,t is therefore the heat kernel measure

on GL(N,C) (at 1
2 the usual time). On the other hand, AN1,0

∣∣
C∞(U(N))

= ∆U(N). Thus, ANs,t interpolates
between the two heat kernels.

(2) Since ∆U(N) and ANs,t are elliptic operators, the semigroups e
t
2

∆U(N) and e
1
2
AN

s,t can be defined using heat
equations. For our purposes, where the functions f will be trace polynomial functions, it suffices to expand
e

t
2

∆U(N) and e
1
2
AN

s,t as power series. This is discussed in Appendix A.

(3) The formula (1.12) extends beyond compactly-supported functions; in particular, it also holds for any
scalar-valued trace Laurent polynomial function f in variables A,A∗ ∈ GL(N,C). This follows from
Langland’s Theorem cf. [24, Theorem 2.1 (p. 152)]. Appendix A gives a concise sketch of the heat kernel
results we need in this paper.
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Definition 1.8. Fix s, t > 0 with s > t/2. The scalar unitary Segal–Bargmann transform

BN
s,t : L

2(U(N), ρNs )→ HL2(GL(N,C), µNs,t)

is defined by
BN
s,tf =

(
e

t
2

∆U(N)f
)
C

where ( · )C denotes analytic continuation from U(N) to its complexification GL(N,C). It is an isometric iso-
morphism of these spaces; cf. [7, 10, 17, 18, 20].

We let BN
s,t act on V -valued functions componentwise; that is, the boosted transform

BN
s,t ⊗ 1V : L2(U(N), ρNs )⊗ V → HL2(GL(N,C), µNs,t)⊗ V

is also an isometric isomorphism. (All tensor products are over C.) As usual, we identify

L2(U(N), ρNs ;V ) ∼= L2(U(N), ρNs )⊗ V and HL2(GL(N,C), µNs,t;V ) ∼= HL2(GL(N,C), µNs,t)⊗ V,

where the induced norms of the V -valued functions F are

‖F‖2L2(U(N),ρNs ;V ) ≡
∫
U(N)

‖F (U)‖2V ρNs (dU) (1.13)

‖H‖2
L2(GL(N,C),µNs,t;V )

≡
∫
GL(N,C)

‖H(A)‖2V µNs,t(dA). (1.14)

Henceforth, we will let V = MN (C), equipped with the inner-product

‖A‖2MN (C) =
1

N
Tr (AA∗) =

1

N

N∑
j,k=1

|Ajk|2. (1.15)

Notation: BN
s,t refers to the boosted unitary Segal–Bargmann transform BN

s,t⊗ 1MN (C) with this choice of norm
on MN (C).

Remark 1.9. We are free to use any normed space for the boosted Segal–Bargmann transform, as long as it is the
same space for values of the functions in the domain and in the range of BN

s,t. We will not use the norm ‖ · ‖u(N)

from (1.2); rather, we use the scaling of (1.15). As we will see, this joint scaling of the two norms is the unique
choice that give a meaningful large-N limit for the Segal–Bargmann transform (cf. Remark 3.4).

Remark 1.10. Equations (1.10) and (1.12) in conjunction with Remark 1.7(3) give an easy way to compute
L2-norms with respect to the heat kernel measures. In particular, (1.12) and (1.14) yield

‖F‖2
L2(GL(N,C),µNs,t;V )

= (e
1
2
AN

s,t‖F‖2MN (C))(IN ) (1.16)

for any trace Laurent polynomial function F .

1.2 Trace Laurent Polynomials and Intertwining Operators

To properly treat trace Laurent polynomial functions overU(N) andGL(N,C) (cf. Definition 1.3), the following
polynomial spaces are useful.
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Definition 1.11. Throughout this paper, we let u and v = {vn}n∈Z\{0} = {v±1, v±2, . . .} denote commuting
indeterminates. Define

P1 = C[u, u−1], P0 = C[v], P = P1 ⊗P0 = C[u, u−1;v]. (1.17)

Thus, P consists of all finite linear combinations of monomials

uk0vk11 v
k−1

−1 · · · v
kn
n v

k−n
−n , n ≥ 0, k0 ∈ Z, kj ∈ N for j ∈ Z \ {0}.

Denote by P1,+ = C[u] the polynomials in u, and P1,− = C[u−1] 	 C the polynomials in u−1 with constant
term 0, so that P1 = P1,+ ⊕P1,−.

The trace degree of a monomial in P is

deg
(
uk0vk11 v

k−1

−1 · · · v
kn
n v

k−n
−n

)
= |k0|+

∑
1≤|j|≤n

|j|kj . (1.18)

More generally, the trace degree of any element of P is the maximum of the trace degrees of its monomial terms.
For n ≥ 0, denote by Pn ⊂P the subspace of polynomials of trace degree ≤ n:

Pn = {P ∈P : degP ≤ n}. (1.19)

Note that Pn is finite dimensional, Pn ⊂ C[u, u−1; v±1, . . . , v±n], and P =
⋃
n≥0 Pn. Define P0

n, P1
n, and

P1,±
n similarly.

Let G ⊂ MN (C) be a matrix group. Restating Definition 1.3 in the present language, a trace Laurent
polynomial function on G is any function of the form

PN (A) = P (A; tr(A), tr(A−1), tr(A2), tr(A−2), . . .)IN A ∈ G (1.20)

for some P ∈P .

Remark 1.12. (1) The first variable in P on the right-hand-side of (1.20) is a Laurent polynomial variable,
meaning that A may be have positive or negative powers. The standard notation for this might be to write
P (A,A−1, tr(A), tr(A−1), . . .)IN , but this might suggest that u and u−1 are independent variables, so we
avoid this.

(2) For Definitions 1.3 and 1.11, it doesn’t matter whether we use the trace Tr or the normalized trace tr. It
will be convenient to use tr later, so we fix this convention now.

(3) It is important to note that, for any finite N , there will be many distinct elements P ∈ P that induce the
same trace Laurent polynomial function on G, i.e. there will be P 6= Q with PN = QN . Nevertheless, it is
true that if PN = QN for sufficiently large N , then P = Q; cf. Proposition 2.10.

(4) The trace degree reflects the nature of the variables v±1, v±2, . . . in P as stand-ins for traces of powers
of a matrix variable. Informally, the trace degree of P ∈ P is the total degree of PN (A), counting all
instances of A inside and outside traces.

Definition 1.13. The tracing map T : P → P0 is the linear operator given as follows: if P ∈ P0 and
k ∈ Z \ {0}, then

T(ukP (v)) = vkP (v). (1.21)

An element P ∈P is in P0 if and only if T(P ) = P .
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Remark 1.14. The operator T intertwines the normalized trace on matrix-valued functions on MN (C):

[T(P )]N = tr ◦ PN (1.22)

as can be easily verified.

Definition 1.15. Let A± denote the positive part and negative part operators

A± : P →P1
± ⊗P0

given by

A+

( ∞∑
k=−∞

ukqk(v)

)
=
∞∑
k=0

ukqk(v), A−

( ∞∑
k=−∞

ukqk(v)

)
=

−1∑
k=−∞

ukqk(v). (1.23)

Note that A+ + A− = idP , while A+ − A− = sgn is the signum operator, where sgn(un) = sgn(n)un, and
sgn(n) = n/|n| when n 6= 0 and sgn(0) = 1.

The next results show that the Laplacian ∆U(N) of (1.9), when acting on trace Laurent polynomial functions
over U(N), lifts to a linear operator DN on P . Moreover, the structure of this operator illucidates the limit
prodecure that will allow us to identify the limit Segal–Bargmann transform.

Definition 1.16. Define the following operators on P . For k ∈ Z, let M(·) denote the multiplication operator,
and define:

N1 = u
∂

∂u
(A+ −A−), N0 =

∑
|k|≥1

|k|vk
∂

∂vk
, N = N0 + N1, (1.24)

Y = Y+ − Y− =

∞∑
k=1

vkuA+
∂

∂u
Mu−kA+ −

−1∑
k=−∞

vkuA−
∂

∂u
Mu−kA−, (1.25)

Z = Z+ − Z− =

∞∑
k=2

k−1∑
j=1

jvjvk−j

 ∂

∂vk
−

−2∑
k=−∞

 −1∑
j=k+1

jvkvk−j

 ∂

∂vk
, (1.26)

L =
∑
|j|,|k|≥1

jkvk+j
∂2

∂vj∂vk
+ 2

∑
|k|≥1

kuk+1 ∂2

∂vk∂u
. (1.27)

Example 1.17. The operator N is the trace degree operator: for P ∈P

N(P ) = (degP )P.

The operator N1 is a first-order pseudo-differential operator; but it is not a genuine differential operator because
we do not treat u and u−1 as independent variables. By contrast, we do treat vk and v−k as independent, and so
N0 is a first-order differential operator.

Example 1.18. The first order pseudo-differential operator Y appears somewhat mysterious; we illustrate its
action here.

• Y annihilates P0; more generally, for P ∈ P and Q ∈ P0, Y(PQ) = Y(P ) · Q. It therefore suffices to
understand the action of Y on P1.
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• Y± annihilates P1,∓. The reader can calculate that

Y(un) = Y+(un) =

n−1∑
k=1

(n− k)vku
n−k, n ≥ 0

−Y(un) = Y−(un) =
−1∑

k=n+1

(n− k)vku
n−k, n < 0.

Lemma 1.19. Let N,Y,Z,L : P →P be given as in Definition 1.16. Define

D = −N − 2Z− 2Y (1.28)

DN = −N − 2Z− 2Y− 1

N2
L = D− 1

N2
L. (1.29)

The operators DN , D, and L preserve trace degree (1.18), and commute with the tracing map T (1.21).

The proof of Lemma 1.19 can be found on page 23.
The next theorem shows that ∆U(N) lifts to the operator DN on P . Hence, it is a O(1/N2)-perturbation of

D, which behaves in many respects like a first-order differential operator.

Theorem 1.20 (Intertwining Formula). For any P ∈P ,

∆U(N)PN = [DNP ]N . (1.30)

The proof of Theorem 1.20 can be found on page 23.

Remark 1.21. A similar intertwining formula holds for the operator As,t; cf. Theorem 3.13 on page 29.

The following easy corollary to Theorem 1.20 is of both computational and conceptual importance.

Corollary 1.22. Let P ∈P and Q ∈P0. Then

D(PQ) = (DP )Q+ P (DQ). (1.31)

Thus, for any t ∈ R,
e

t
2
D(PQ) = e

t
2
DP · e

t
2
DQ. (1.32)

The proof of Corollary 1.22 can be found on page 25.

Remark 1.23. Eq. (1.31) and Theorem 1.20 prove the partial product rule of (1.7). Indeed, it is easy to work out
that the polynomial R in (1.7) is

R = L(P )Q+ PL(Q)− L(PQ).

1.3 Limit Theorems

We now turn to the limit as N →∞. Since the Segal–Bargmann transform is (analytic continuation of) the heat
operator exp( t2∆U(N)), the intertwining Theorem 1.20 suggests the limit Segal–Bargmann transform ought to be
given in terms of the semigroup exp( t2D). This is only half the story, however. As N → ∞, each trace Laurent
polynomial function concentrates on a single-variable Laurent polynomial function, described by the following
map.

Definition 1.24. For s ∈ R, the evaluation map πs : P →P1 is defined to be

(πsP )(u) =
(
e−

s
2

(N0+2Z)
)
P (u,1)

where 1 = (1, 1, . . .). Since N0 and and Z are first-order differential operators, πs is an algebra homomorphism.
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Remark 1.25. Note that N1 and Y annihilate P0; thus, forQ ∈P0, we have−(N0+2Z)Q = DQ, and therefore
the constant πsQ is given by πsQ =

(
e

s
2
DQ
)

(1). In particular, define

νk(s) = πs(vk). k ∈ Z (1.33)

Note that, since the coefficients of the differential operators N0 and Z are real, the constants νk(s) are real.
What’s more, it follows from the structure of N0 and Z that ν−k(s) = νk(s). In Lemma 5.4, we show that |νk(s)|
is exponentially bounded in k for all s ∈ R.

The following concentration of measure results underly our main limit theorems.

Theorem 1.26. Let s, t > 0, with s > t/2. If P ∈P , then the following hold:

‖PN − [πsP ]N‖2L2(U(N),ρNs ;MN (C)) = O

(
1

N2

)
(1.34)

‖PN − [πs−tP ]N‖2L2(GL(N,C),µNs,t;MN (C))
= O

(
1

N2

)
. (1.35)

The proof of Theorem 1.26 can be found on page 32.

Remark 1.27. Taking P (u,v) = vk, so that PN (U) = tr(Uk), (1.33) and (1.34) show, in particular, that νk(s) =
limN→∞ EρNs tr(( · )k) when s > 0. These limiting expected values, in turn, were explicitly calculated in [3,
Lemma 3]:

νk(s) = e−
k
2
s
k−1∑
j=0

(−1)j
sj

k!
kj−1

(
k

j + 1

)
, k ≥ 0. (1.36)

They are the (trace) moments of the free unitary Brownian motion. There is a probability measure νs on the unit
circle T such that νk(s) =

∫
T ξ

kνs(dξ) for k ∈ Z; we will refer to this measure as the free unitary Brownian
motion distribution. The measure νs is characterized in [4, Prop. 10].

Because of Theorem 1.26’s concentration of traces, although in general e
t
2
DP /∈ P1 is (even if P ∈ P1),

the corresponding trace Laurent polynomial function [e
t
2
DP ]N is close, in L2(µNs,t)-sense, to a single-variable

Laurent polynomial function on GL(N,C). In the limit, this will produce an operator on P1. This finally brings
us to the limit Segal–Bargmann transform.

Definition 1.28. For s, t > 0 with s > t/2, the free unitary Segal–Bargmann transform Bs,t : P1 → P1 is
given by

Bs,t = πs−t ◦ exp

(
t

2
D

)
.

The inverse free unitary Segal–Bargmann transform Hs,t : P1 →P1 is defined as

Hs,t = πs ◦ exp

(
− t

2
D

)
.

Without the evaluation maps, the two operators e
t
2
D and e−

t
2
D are, of course, inverse to each other. In fact, this

is true with the evaluations as well, justifying the terminology in Definition 1.28.

Theorem 1.29. For s, t > 0 with s > t
2 , Bs,t and Hs,t are invertible operators on P1, inverse to each other.

The proof of Theorem 1.29 can be found on page 35.
Following is the motivating theorem of this paper: the free unitary Segal–Bargmann transform of Definition

1.28 is the limit of the unitary Segal–Bargmann transform on U(N) of Definition 1.8, as N →∞.
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Theorem 1.30. Let s, t > 0 with s > t
2 . Let f ∈ P1 be a single-variable Laurent polynomial. Then Bs,tf is

the limit of BN
s,tfN in HL2(GL(N,C), µNs,t;MN (C)) in the following sense:

‖BN
s,tfN − [Bs,tf ]N‖2L2(GL(N,C),µNs,t;MN (C))

= O

(
1

N2

)
, (1.37)

and Hs,tf is the limit of (BN
s,t)
−1fN in L2(U(N), ρNs ;MN (C)) in the following sense:

‖(BN
s,t)
−1fN − [Hs,tf ]N‖2L2(U(N),ρNs ;MN (C)) = O

(
1

N2

)
. (1.38)

The proof of Theorem 1.30 can be found on page 32.
Finally, we explicitly describe the action of the transform, through its inverse Hs,t, via the generating function

of its inverse action on monomials. In the special case s = t, we show this aligns with the free Gross-Malliavin
approach pioneered by Biane in [4].

Theorem 1.31. Let s, t > 0 with s > t/2, let k ≥ 1, and let ps,tk = Hs,t(( · )k) (so that Bs,t(p
s,t
k )(z) = zk).

Then the power series
Π(s, t, u, z) =

∑
k≥1

ps,tk (u)zk

converges for all sufficiently small |u| and |z|. This generating function is determined by the implicit formula

Π(s, t, u, ze
1
2

(s−t) 1+z
1−z ) =

(
1− uze

s
2

1+z
1−z

)−1
− 1. (1.39)

In the special case s = t, this yields the generating function corresponding to the transform G t of [4, Proposition
13]. Thus, Bt,t = G t.

The proof of Theorem 1.31 can be found on page 45.

2 Equivariant Functions and Trace Laurent Polynomials

In this section, we consider function spaces over U(N) and GL(N,C) that are very natural domains for the
Segal-Bargmann transform and its inverse.

Definition 2.1. Let G ⊂ MN (C) be a matrix group. A function F : G → MN (C) is called equivariant if
F (BAB−1) = BF (A)B−1 for all A,B ∈ G (i.e. it is equivariant under the adjoint action of G).

The set of equivariant functions is a C-algebra. It contains all trace Laurent polynomial functions (1.20), as
can be easily verified. This shows that the equivariant subspaces

L2(U(N), ρNs ;MN (C))eq and HL2(GL(N,C), µNs,t;MN (C))eq,

are non-trivial. The main results of this section, Theorem 2.3 and 2.7, show that BN
s,t maps L2(ρNs )eq onto

HL2(µNs,t)eq (extending Proposition 1.4), and that trace Laurent polynomials are dense in these equivariant L2-
spaces. We conclude this section with Theorem 2.10, showing that the map P → L2(ρNs )eq given by P 7→ PN
is one-to-one on each subspace Pn for all sufficiently large N .

We begin with a brief discussion of functional calculus, another subspace of the L2-equivariant space, which
featured prominently in [4].
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2.1 Functional Calculus

Definition 2.2. Let T denote the unit circle in C. For every measurable function f : T→ C, let fN be the unique
function mapping U(N) into MN (C) with the property that

fN

V
 λ1

. . .
λN

V −1

 = V

 f(λ1)
. . .

f(λN )

V −1

for all V ∈ U(N) and all λ1, . . . , λN ∈ T. The function fN is called the functional calculus function associated
to the function f . The space of those functional calculus functions that are in L2(U(N), ρNs ;MN (C)) is called
the functional calculus subspace.

It is easy to check that fN (U) is well defined, independent of the choice of diagonalization. If, for example,
f is the function given by f(λ) = eλ, then fN (U) = eU , computed by the usual power series. If f happens to
be a single-variable Laurent polynomial, then fN is a single-variable Laurent polynomial function, in the sense
of Definition 1.3; thus our notation fN for both is consistent. (By comparison: in [4], the functional calculus
function fN is denoted θNf .) Trace polynomials are not, in general, functional calculus functions. For example,
the function F (U) = Utr(U) is not a functional calculus function on U(N), except when N = 1. Indeed, if
N ≥ 2 and U(N) 3 U = diag(λ1, λ2), the (1, 1)-entry of the diagonal matrix UtrU is 1

2(λ1 + λ2)λ1, which is
not a function of λ1 alone. This violates Definition 2.2. Functional calculus functions are equivariant.

Since Λ(f) ≡
∫
U(N) tr(fN (U)) ρNs (dU) defines a positive linear functional on C(T) with Λ(1) = 1, by the

Riesz Representation Theorem [25, Theorem 2.14] there is a probability measure νNs on T such that∫
U(N)

tr(fN (U)) ρNs (dU) = Λ(f) =

∫
T
f(ξ) νNs (dξ), f ∈ C(T). (2.1)

(Theorem 1.26 shows, in particular, that νNs converges weakly to νs; cf. Remark 1.27.) For any function f on
T, one can easily verify from Definition 2.2 that [|f |2]N (U) = fN (U)fN (U)∗; hence, by the density of C(T) in
L2(T, νNs ), (2.1) shows that

‖fN‖L2(U(N),ρNs ;MN (C)) = ‖f‖L2(T,νNs ) . (2.2)

It follows that the functional calculus subspace is a closed subspace of L2(ρNs )eq, and contains the single-variable
Laurent polynomial functions as a dense subspace. That this density result extends to trace Laurent polynomials
in the full space L2(ρNs )eq is Theorem 2.7 below.

If F is a holomorphic function on C∗, there is a unique holomorphic function FN : GL(N ;C) → MN (C)
which satisfies

FN

A
 λ1

. . .
λN

A−1

 = A

 F (λ1)
. . .

F (λN )

A−1

for every A ∈ GL(N,C) and all λ1, . . . , λN ∈ C∗; indeed, FN is given by the same Laurent series expansion
as F , applied to the matrix variable. We call such a function a holomorphic functional calculus function on
GL(N,C). As (1.5) shows, the boosted Segal–Bargmann transform BN

s,t does not, in general, map functional cal-
culus functions on U(N) to holomorphic functional calculus functions on GL(N,C). Nevertheless, [4] suggests
that in the large-N limit, BN

s,t ought to map functional calculus functions to holomorphic functional calculus
functions (at least in the s = t case), mirroring the limit theorem that holds for the Lie-algebra version SNt of
the transform; cf. [4, Theorem 2]. Since single-variable Laurent polynomial functions are dense in the functional
calculus subspace, Theorem 1.30 can be interpreted as a rigorous version of this idea.
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2.2 Results on Equivariant Functions

Theorem 2.3. Let s, t > 0 with s > t/2. The Segal–Bargmann transform BN
s,t maps L2(U(N), ρNs ;MN (C))eq

isometrically onto HL2(GL(N,C), µNs,t;MN (C))eq.

We begin with the following lemma.

Lemma 2.4. Let G ⊂MN (C) be a group. For any function F : G→MN (C), define

CV (F )(A) = V −1F (V AV −1)V, V,A ∈ G. (2.3)

Let s, t > 0 with s > t/2. Then for all F ∈ L2(U(N), ρs;MN (C)) and V ∈ U(N),

BN
s,t(CV F ) = CV (BN

s,tF ). (2.4)

Proof. Since ∆U(N) is bi-invariant, it commutes with the left- and right- actions of the group; hence it, and

therefore the semigroup e
t
2

∆U(N) , commute with the adjoint action AdV (U) = V UV −1 on functions: for any
V ∈ U(N)

e
t
2

∆U(N) (F ◦ (AdV )) =
(
e

t
2

∆U(N)F
)
◦AdV . (2.5)

Conjugating both sides of (2.5) by V −1 in the range of F (which commutes with the heat operator), it follows
that

CV (e
t
2

∆U(N)F ) = e
t
2

∆U(N)(CV F ), V ∈ U(N). (2.6)

Uniqueness of analytic continuation now proves (2.4) from (2.6).

Theorem 2.3 now follows by analytically continuing (2.4) in the V variable.

Proof of Theorem 2.3. Let F ∈ L2(U(N), ρNs ;MN (C)) be equivariant; thus CV F = F for all V ∈ U(N).
Then (2.4) shows that CV (BN

s,tF ) − BN
s,tF ≡ 0 for each V ∈ U(N). Since BN

s,tF is holomorphic, it follows
by uniqueness of analytic continuation that the function A 7→ CA(BN

s,tF ) − BN
s,tF ≡ 0 for A ∈ GL(N,C);

thus, BN
s,tF is equivariant under GL(N,C), as required. An entirely analogous argument applies to the inverse

transform, establishing the proposition.

Let us remark here on an intuitive approach to the concentration of measure results in Section 4. If Ut is a
random matrix sampled from the distribution ρNt on U(N), its (random) eigenvalues converge to their (deter-
ministic) mean as N → ∞. To be precise: if λN1 , . . . , λ

N
N are the eigenvalues of Ut, the empirical eigenvalue

measure

ν̃Nt =
1

N

N∑
j=1

δλNj

converges weakly in probability to the measure νt. (The mean of the random measure ν̃Nt is the measure νNt
of (2.1) which converges weakly to νt; cf. Remark 1.27. The stronger statement that the convergence is in
probability, not just in expectation, follows from the variance estimates in [23, Proposition 6.2], for example.)

The conjugacy classes in the group U(N) are in one-to-one correspondence with the (symmetrized) list of
eigenvalues. Each such list is, in turn, determined by its emprical measure ν̃Nt . The convergence of the random
eigenvalues of Ut to a deterministic limit therefore suggests that the heat kernel measure ρNt concentrates its mass
on a single conjugacy class as N → ∞. The following proposition therefore offers some insight into Theorem
1.26 (that trace Laurent polynomials concentrate on single-variable Laurent polynomials). Indeed, on a fixed
conjugacy class, any equivariant function is given by a polynomial.
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Proposition 2.5. Let G ⊆ MN (C) be a group, and let C be a conjugacy classe in G. If F : G → MN (C) is
equivariant, then there exists a single-variable polynomial PC such that F (A) = PC(A) for all A ∈ C.

Proof. Fix a point A0 in C, and let A1 commute with A0. Then since F is equivariant,

A−1
1 F (A0)A1 = F (A−1

1 A0A1) = F (A0)

which shows that F (A0) commutes with any such A1: that is, F (A0) ∈ {A0}′′ is in the double commutant of
A0. A classical theorem in linear algebra (see, for example, [22] for a short proof) then asserts that there is a
single-variable polynomial PA0 such that F (A0) = P (A0). Every other point in the conjugacy class C is of
the form A = BA0B

−1 for some B ∈ G. Since applying a polynomial function to a matrix commutes with
conjugation, we have

F (A) = F (BA0B
−1) = BF (A0)B−1 = BPA0(A0)B−1 = PA0(BA0B

−1) = PA0(A)

which shows that the map A0 7→ PA0 is constant for A0 ∈ C, so relabel PA0 = PC . Thus, the identity
F (A) = PC(A) holds for all A ∈ C.

Remark 2.6. Proposition 2.5 has the at-first-surprising consequence that the equivariant function F (A) = A−1 is
equal to a polynomial (not a Laurent polynomial) on any given conjugacy class. This can be seen as a consequence
of the Cayley-Hamilton Theorem; cf. Section 2.4. Indeed, let pA(λ) = det(λIN − A) be the characteristic
polynomail of A; then pA(A) = 0. This shows there are coefficients ck (determined by A) so that

∑N
k=0 ckA

k =
0. Since c0 = (−1)N det(A), if A is invertible we can therefore factor out A from the k ≥ 1 terms and solve for
A−1 as a polynomial in A. The above proof shows that this A-dependent polynomial is, in fact, uniform over the
whole conjugacy class.

2.3 Density of Trace Laurent Polynomials

Conceptually, equivariant functions are a natural arena for the Segal–Bargmann transform in the large-N limit.
Computationally, it will be convenient to work on the subclass of trace Laurent polynomials; cf. (1.20). In fact,
trace Laurent polynomials are dense in L2(U(N), ρNs ;MN (C))eq. Thus, understanding the action of BN

s,t on this
class tells the full story.

Theorem 2.7. For s > 0, the space of trace Laurent polynomials is dense in L2(U(N), ρNs ;MN (C))eq.

We begin by proving that equivariant functions whose entries are polynomials in U and U∗ are dense.

Lemma 2.8. Every equivariant function F ∈ L2(U(N), ρNs ;MN (C))eq can be approximated by a sequence of
equivariant matrix-valued functions Fn, where each entry of Fn(U) is a polynomial in the entries of U and their
conjugates.

Proof. By the Stone–Weierstrass Theorem and the density of continuous functions in L2, any f ∈ L2(ρNs ) can
be approximated by scalar-valued polynomial functions of the entries of the U(N) variable and their conjugates.
Applying this result to the components of the matrix-valued function F , we see that there is a sequence Pn of
polynomials in the entries of U and their conjugates such that

‖Pn − F‖L2(U(N),ρNs ;MN (C)) → 0. (2.7)

Now, consider again the conjugation action CV of (2.3). It is easy to verify that this action preserves the space of
homogeneous polynomials of degree m in the entries Ujk and their conjugates. Thus, the averaged function

Fn(U) =

∫
U(N)

CV (Pn)(U) dV
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is still a polynomial in the entries of U and their conjugates; and Fn is evidently equivariant. Therefore CV (F ) =
F for each V ∈ U(N), and so

Fn(U)− F (U) =

∫
U(N)

CV (Pn)(U) dV − F (U) =

∫
U(N)

[CV (Pn)− CV (F )](U) dV.

It follows from (2.7) (with an application of Minkowski’s inequality and the dominated convergence theorem)
that Fn approximates F in L2(U(N), ρNs ;MN (C)) as claimed.

Proof of Theorem 2.7. We will show that each of the functions Fn in Lemma 2.8 is actually a trace Laurent
polynomial. Suppose, then, that F is equivariant and that each entry of F (U) is a polynomial in the entries
of U and their conjugates. Let T (N) ⊂ U(N) denote the diagonal subgroup. By the spectral theorem, any
U ∈ U(N) has a unitary diagonalization U = V ΛV −1 for some Λ ∈ T (N). The equivariance of F then gives
that F (U) = F (V ΛV −1) = V F (Λ)V −1. In particular, any equivariant function F is completely determined by
its restriction F |T (N) to the diagonal subgroup.

Because F is equivariant, by the same argument used in the proof of Proposition 2.5, F (U) ∈ {U}′′ for
each U . Let U ∈ T (N) be in the dense subset of matrices with all eigenvalues distinct; then {U}′ is the set
of all diagonal matrices, and so F (U) commutes with all diagonal matrices, meaning that F (U) is diagonal.
By the initial assumption on F , all entries of F (U) are polynomials in the entries and their conjugates; hence,
since the off-diagonal entries are 0 on a dense set, F (U) is diagonal for all U ∈ T (N), and its diagonal entries
are polynomials in the diagonal entries λ1, . . . , λN of U and their conjugates. Since this holds true on a dense
set of U ∈ T (N), it holds true on all of T (N). Of course, for U ∈ T (N) the diagonal entries of U satisfy
λ̄j = 1/λj . Thus, each of the diagonal entries of F |T (N) (U) is a Laurent polynomial q(λ1, . . . , λN ) in the
λj’s. The symmetric group ΣN is a subgroup of U(N), so since F |T (N) is equivariant under U(N), it is also
equivariant under ΣN . Hence each of the (matrix-valued) polynomials q is equivariant under the action of ΣN on
the diagonal entries.

Taking k be be larger than the largest negative degree of any variable in q, and setting r(λ1, . . . , λN ) =
(λ1 · · ·λN )kq(λ1, . . . , λN ), r is also equivariant under the action of ΣN . We can then express

F |T (N) (U) = (λ1 · · ·λN )−kr(λ1, . . . , λN ) = det(U∗)kr(λ1, . . . , λN ).

Since the diagonal entries of r(λ1, . . . λN ) are equivariant under permutations, the first entry of r must be in-
variant under permutations of the remaining N − 1 variables. This means that the first entry of r is a linear
combination of terms of the form λ`1s`(λ2, . . . , λN ), where ` ranges from 0 up to the degree d of r and s` is a
symmetric polynomial in N − 1 variables. By equivariance under ΣN , it now follows that, for 1 ≤ j ≤ N , the
jth diagonal component of r itself must be a linear combination of terms of the form{

λ`js`(λ1, . . . , λ̂j , . . . λN ) : 0 ≤ ` ≤ d, 1 ≤ j ≤ N
}
.

It is well-known that every symmetric polynomial inN−1 variables λ1, . . . , λN−1 is a polynomial in power-sums
p`(λ1, . . . , λN−1) with 0 ≤ ` ≤ N − 1, where, for any integer `,

p`(λ1, . . . , λN−1) = λ`1 + λ`2 + · · ·+ λ`N−1. (2.8)

(This result was known at least to Newton. For a proof, see [26, Theorem 4.3.7].) Furthermore, any power sum in
N − 1 variables can be written as a linear combination of power sums of N variables along with the monomials
λ`j ; for example

N∑
j=2

λ`j =

 N∑
j=1

λ`j

− λ`1.
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Thus, the first entry of r is actually a polynomial in power-sums of all N variables and in λ1 with the remaining
entries of r then being determined by equivariance with respect to permutations.

Suppose now that r is the permutation-equivariant polynomial whose jth entry is

λ`0j

(
λk11 + · · ·+ λk1N

)`1
· · ·
(
λkM1 + · · ·+ λkMN

)`M
.

Then r is nothing but the restriction to T (N) of the trace polynomial

R(U) = U `0Tr(Uk1)`1 · · ·Tr(UkM )`M .

Meanwhile, by the above-quoted result, the symmetric polynomial (λ1λ2 · · ·λN )k can be expressed as a poly-
nomial in the power-sums of the λj’s. Taking the complex-conjugate of this result, we see that det(U∗)k can be
expressed as a scalar trace polynomial in U∗; thus U 7→ (detU∗)kR(U) is a trace Laurent polynomial. Hence
F |T (N) is the restriction of the trace Laurent polynomial function U 7→ (detU∗)kR(U), and the result follows
since F is determined by F |T (N).

2.4 Asymptotic Uniquness of Trace Laurent Polynomial Representations

The Cayley–Hamilton theorem asserts that, for any matrix A ∈MN (C), it holds that pA(A) = 0 where pA(λ) =
det(λIN − A) is the characteristic polynomial of A. In fact, the coefficients of the characteristic polynomial
pA are all scalar trace polynomial functions of A: this follows from the Newton identities. In fact, using the
operators M(·) and A+ of Definition 1.16, there is an explicit formula for pA. Let

hA(λ) = exp

(
−
∞∑
m=1

1

mλm
Tr (Am)

)
.

Then for A ∈MN (C), pA(λ) = (A+MλNhA)(λ). (See the Wikipedia entry for the Cayley-Hamilton theorem.)
Thus, the expression pA(A) is a(n N -dependent) trace polynomial in A, and the Cayley–Hamilton theorem
asserts that this trace polynomial function vanishes identically on MN (C). We illustrate this result in the case
N = 2.

Example 2.9. For all A ∈M2(C), the Cayley–Hamilton Theorem asserts that

A2 − Tr(A)A+ det(A)I2 = 0. (2.9)

In the 2× 2 case, however, it is easily seen that

det(A) =
1

2
(Tr(A)2 − Tr(A2)). (2.10)

Substituting (2.10) into (2.9) and expressing things in terms of the normalized trace gives

A2 − 2Atr(A) + 2tr(A)2I2 − tr(A2)I2 = 0

for all A ∈ M2(C). In particular, if P ∈P denotes the nonzero polynomial P (u;v) = u2 − 2uv1 + 2v2
1 − v2,

then P2 : U(2) → M2(C) is the zero function. Note, however, that PN is not the zero function on U(N) for
N > 2, since the minimal polynomial of a generic element of U(N) has degree N . This demonstrates the
following theorem.

Theorem 2.10. Let P ∈ P \ {0}. Then for all sufficiently large N , the trace Laurent polynomial function PN
is not identically zero on U(N). In particular, if P,Q ∈P are such that PN = QN for all sufficiently large N ,
then P = Q.
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In order to prove Theorem 2.10, the following lemma (from the theory of symmetric functions) is useful. The
corresponding statement for symmetric polynomials (rather than Laurent polynomials) is a standard result. The
Laurent polynomial case must be known, but is well hidden in the literature.

Lemma 2.11. If N ≥ 2n, then the power sums pk(λ1, . . . , λN ) (cf. (2.8)) with 0 < |k| ≤ n are algebraically
independent elements of the ring of rational function in N variables.

Proof. Let ej denote the jth elementary symmetric polynomial in N variables, that is, the sum of all products
of exactly j of the N variables. Then the power sums p1, . . . , pn can be expressed as linear combinations
of the functions e1, . . . , en. Thus, it suffices to prove the independence of the functions ej(λ1, . . . , λN ) and
ej(λ

−1
1 , . . . , λ−1

N ) for 1 ≤ j ≤ n. We may easily see, however, that

ej(λ
−1
1 , . . . , λ−1

N ) =
eN−j(λ1, . . . , λN )

eN (λ1, . . . , λN )
.

In the case N = 2n, we need to establish the independence of the functions e1, . . . , eN/2 and eN/2/eN , . . . ,
eN−1/eN , which follows easily from the known indepence of e1, . . . , en cf. [26, Theorem 4.3.7]. In the case
N > 2n, if we had an algebraic relation among the functions ej(λ1, . . . , λN ) and ej(λ−1

1 , . . . , λ−1
N ) for 1 ≤

j ≤ n, we could clear eN from the denominator to obtain an algebraic relation among the functions e1, . . . , en,
eN−1, . . . , eN−n and eN , which is impossible.

We now proceed with the scalar version of Theorem 2.10.

Lemma 2.12. Let Q ∈P0
n \ {0}, and let N ≥ 2n. Then QN is not identically zero on U(N).

Proof. Let Q ∈ P0 \ {0}; then QN is a trace Laurent polynomial, which also defines a holomorphic function
on GL(N,C). By uniqueness of analytic continuation, if QN ≡ 0 on U(N), then QN ≡ 0 on GL(N,C). To
prove the lemma, it therefore suffices to find A ∈ GL(N,C) with QN (A) 6= 0. Actually, we will find a diagonal
matrix A ∈ GL(N,C) with QN (A) 6= 0.

For clarity, we write out the polynomial Q in terms of its coefficients:

Q(v1, v−1, . . . , vn, v−n) =
∑

i1,...,in
j1,...,jn

aj1,...,jni1,...,in
· vi11 v

j1
−1 · · · v

in
n v

jn
−n.

Consider any diagonal matrix diag(λ1, . . . , λN ) in GL(N,C); for convenience, denote λ = (λ1, . . . , λN ). Then
tr(Ak) = pk(λ) (the power sum of (2.8)), and so

QN (diag(λ)) =
∑

i1,...,in
j1,...,jn

aj1,...,jni1,...,in
· p1(λ)i1p−1(λ)j1 · · · pn(λ)inp−n(λ)jn . (2.11)

By Lemma 2.11, the power sums p1(λ), p−1(λ), . . . , pn(λ), p−n(λ) are algebraically independent since λ =
(λ1, . . . , λN ) and N ≥ 2n. Since Q 6= 0, some of the coefficients aj1,...,jni1,...,in

in (2.11) are 6= 0. It follows that
QN (diag(λ)) is not identically 0, as desired.

This finally brings us to Theorem 2.10.

Proof of Theorem 2.10. We write P (u;v) as a sum of positive and negative powers of u, multiplied by polynomi-
als in v, where at least one of these coefficients polynomials is nonzero. Let us multiply PN (U) by Uk for some
large k, so that all the untraced powers of U in UkPN (U) are non-negative. Let ` be the highest untraced power
of U occurring in the expression for UkPN (U). Choose N large enough so that N > ` and so that (Lemma 2.12)
the coefficient q of U ` in PN (U) is not identically zero. Then q is nonzero on a nonempty open subset of U(N).
This set contains a matrix U0 whose minimal polynomial has degree N > `. When we evaluate PN (U0), the
result will be a linear combination of powers of U0 with the coefficient of U `0 being nonzero. Since the minimal
polynomial of U0 has degree N > `, the value of PN (U0) is not zero.

18



3 The Laplacian and Heat Operator on Trace Laurent Polynomials

This section is devoted to a complete description of the action of the Laplacian ∆U(N) on trace Laurent polyno-
mial functions, and its corresponding lift to DN on the space P; cf. Theorem 1.20. We begin by proving “magic
formulas” expressing certain quadratic matrix sums in simple forms. We use these to give derivative formulas that
allow for the routine computation of ∆U(N)PN for any trace Laurent polynomial function PN , and we then use
these to prove the intertwining formula of Theorem 1.20. We conclude by proving a more general intertwining
formula (Theorem 3.13) for the action of ANs,t on trace polynomial functions over GL(N,C); in this latter case,
we deal more generally with trace Laurent polynomials in A and A∗ as this will be of use in Section 4.

3.1 Magic Formulas

We define an inner-product on MN (C) by

〈X,Y 〉 = NTr (Y ∗X) = N2tr(Y ∗X). (3.1)

Restricted to the Lie algebra u(N) (consisting of all skew-Hermitian matrices in MN (C)), 〈·, ·〉 is real-valued;
it is the polarized inner product corresponding to the norm ‖ · ‖uN of (1.2). (This is not to be confused with the
polarized inner-product corresponding to the norm ‖ · ‖MN

of (1.15).)
The main result of this section, which underlies all computations throughout this paper, is the following list

of “magic formulas”.

Proposition 3.1. Let βN be any orthonormal basis for u(N) with respect to the inner-product in (3.1). Then we
have the following “magic” formulas: for any A,B ∈MN (C),∑

X∈βN

X2 = −IN , (3.2)

∑
X∈βN

XAX = −tr(A)IN , (3.3)

∑
X∈βN

tr(XA)X = − 1

N2
A, (3.4)

∑
X∈βN

tr(XA)tr(XB) = − 1

N2
tr(AB). (3.5)

Remark 3.2. Eq. (3.2) is the A = IN special-case of (3.3); similarly, (3.5) follows from (3.4) by multiplying by
B and taking tr. We separate them out as distinct formulas for convenience in repeated use below.

Proof. If βN is a basis for the real vector space u(N), it is also a basis for the complex vector space MN (C) =
u(N)⊕iu(N). Furthermore, if βN is (real) orthonormal in u(N) with respect to the (restricted real) inner product
in (3.1), then βN is (complex) orthonormal in MN (C) with respect to the (complex) inner-product in (3.1).

Thus, let β̃N be any orthonormal basis for MN (C) with respect to (3.1), and consider the linear map Φ :
MN (C)→MN (C) given by

Φ(A) =
∑
X∈β̃N

X∗AX.

A routine calculation shows that Φ is independent of the choice of orthonormal basis. We compute Φ by using
the basis

β̃N ≡
{

1√
N
Ejk

}N
j,k=1

(3.6)
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where Ejk is the N ×N matrix with a 1 in the (j, k)-entry and zeros elsewhere. Writing things out in terms of
indices shows that, for any A ∈MN (C), we have

N · [Φ(A)]`m =

 N∑
j,k=1

EkjAEjk


`m

=
N∑

j,k,n,o=1

δk`δjnAnoδjoδkm =
∑
o

Aooδ`m,

which says that

Φ(A) =
1

N
Tr(A)IN = tr(A)IN .

The basis-independence of Φ allows us to replace (3.6) by any real orthonormal basis βN of u(N) (which, as
noted above, is also a complex orthonormal basis for MN (C)). The elements X ∈ βN are skew-Hermitian, and
thus we obtain ∑

X∈βN

XAX = −Φ(A) = −tr(A)I,

which is (3.3).
Meanwhile, if we multiply both sides of (3.4) by −N2 and recall that each X is skew, we see that (3.4) is

equivalent to the assertion that

A =
∑
X∈βN

N2tr(X∗A)X =
∑
X∈βN

〈A,X〉X.

But this identity is just the expansion of A in the orthornormal basis βN for MN (C). Finally, as we have already
remarked, (3.2) and (3.5) follow from (3.3) and (3.4), respectively.

3.2 Derivative Formulas

Theorem 3.3. Let m,n ∈ N. Let βN denote an orthonormal basis for u(N), and let X ∈ βN . The following
hold true:

∂XU
n =

n∑
j=1

U jXUn−j , n ≥ 0 (3.7)

∂XU
n = −

0∑
j=n+1

U jXUn−j , n < 0 (3.8)

∂Xtr(Un) = n · tr (XUn) , n ∈ Z (3.9)

∆U(N)U
n = −nUn − 21n≥2

n−1∑
j=1

jU jtr(Un−j), n ≥ 0 (3.10)

∆U(N)U
n = nUn + 21n≤−2

−1∑
j=n+1

jU jtr(Un−j), n < 0 (3.11)
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∆U(N)tr(U
n) = −ntr(Un)− 21n≥2

n−1∑
j=1

jtr(U j)tr(Un−j), n ≥ 0 (3.12)

∆U(N)tr(U
n) = ntr(Un) + 21n≤−2

−1∑
j=n+1

jtr(U j)tr(Un−j), n < 0 (3.13)

∑
X∈βN

∂XU
m · ∂Xtr(Un) = −mn

N2
Un+m, n,m ∈ Z (3.14)

∑
X∈βN

∂Xtr(Um) · ∂Xtr(Un) = −mn
N2

tr(Un+m), n,m ∈ Z. (3.15)

These formulas are valid for all matrices U ∈MN (C); we will normally use them for U ∈ U(N).

Proof. By the product rule, for n ≥ 0

∂XU
n =

d

dt

∣∣∣∣
t=0

(
UetX

)n
=

n∑
j=1

U jXUn−j

which proves (3.7). Similalry, for m > 0

∂XU
−m =

d

dt

∣∣∣∣
t=0

(
e−tXU−1

)m
= −

m−1∑
j=0

U−jXU−(m−j)

and letting n = −m proves (3.8). Taking traces of (3.7) and (3.8) then gives (3.9) after using tr(AB) = tr(BA)
repeatedly. Making use of magic formulas (3.2) and (3.3), we then have, for n ≥ 0

∆U(N)U
n = 21n≥2

∑
1≤j<k≤n

∑
X∈βN

U . . .

j︷︸︸︷
UX . . .

k︷︸︸︷
UX . . . U +

n∑
j=1

∑
X∈βN

U . . .

j︷ ︸︸ ︷
UX2 . . . . . . U

= −21n≥2

∑
1≤j<k≤n

Un−(k−j)tr(Uk−j)− nUn.

A little index gymnastics then reduces this last expression to the result in (3.10). An entirely analogous compu-
tation proves (3.11). Equations (3.12) and (3.13) result from taking traces of (3.10) and (3.11), since the linear
functional tr commutes with ∆U(N). Finally, from (3.7) and (3.9), when m ≥ 0

∑
X∈βN

(∂XU
m)tr(∂XU

n) = n
∑
X∈βN

m∑
j=1

U jXUm−jtr(XUn)

= n
∑
X∈βN

m∑
j=1

U jtr(XUn)XUm−j

= − n

N2

m∑
j=1

U jUnUm−j = −mn
N2

Um+n.

An analogous computation for m < 0 yields the same result, proving (3.14); and taking the trace of this formula
gives (3.15).
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Remark 3.4. Eq. (3.10) shows that the identity function id(U) = U on U(N) satisfies ∆U(N)id = −id. It
follows, for example, that all of the coordinate functions U 7→ Ujk are eigenfunctions of ∆U(N) with eigenvalue
−1, independent of n. This independence suggests that we are, in fact, using the “correct” scaling of the metric
on U(N), which in turn determines the scaling of ∆U(N). If we used the unscaled Hilbert-Schmidt norm on
u(N), the function id would be an eigenvector for the Laplacian with eigenvalue −N ; that scaling would not
bode well for an infinite dimensional limit of any quantities involving the Laplacian.

To illustrate how Theorem 3.3 may be used, we proceed to determine the action of the heat operator e
t
2

∆U(N)

on the polynomial PN (U) = U2.

Example 3.5. Equation (3.10) shows that ∆U(N)U
2 = −2U2− 2UtrU . In order to calculate ∆U(N)(UtrU), we

use the definition (1.9) of ∆U(N) and the product rule twice. For each X ∈ u(N),

∂2
X(UtrU) = ∂X [(∂XU) · trU + U · (∂XtrU)] = (∂2

XU) · trU + 2(∂XU)(∂XtrU) + U · ∂2
XtrU.

Summing over X ∈ u(N) and using (3.10), (3.12), and (3.14) then shows that

∆U(N)(UtrU) = (−U) · trU − 2

N2
U2 + 2U · (−trU) = − 2

N2
U2 − 2UtrU.

Thus, setting PN (U) = U2 and QN (U) = Utr(U), we have

∆U(N)PN = −2PN − 2QN , (3.16)

∆U(N)QN = − 2

N2
PN − 2QN . (3.17)

When N > 1, the span of the two functions PN , QN is a 2-dimensional subspace of C∞(U(N)) (when N = 1,
PN = QN ). Equations (3.16)–(3.17) show that this subspace is invariant under the action of ∆U(N), which is
represented there by the matrix

DN =

[
−2 −2/N2

−2 −2

]
.

The exponentiated matrix e
t
2
DN is easily computed (cf. [19, Chapter 2, Exercises 6,7]) as

e
t
2
DN = e−t

[
cosh(t/N) −1/N sinh(t/N)
−N sinh(t/N) cosh(t/N)

]
.

It follows immediately (reading off from the first column of this matrix) that

e
t
2

∆U(N)PN = e−t cosh (t/N)PN − e−tN sinh(t/N)QN

as claimed in (1.5).

Any trace Laurent polynomial function PN on U(N) is contained in a finite-dimensional subspace of matrix-
valued functions that is invariant under ∆U(N); this is the content of Lemma 3.7 below. Thus, the computation

of e
t
2

∆U(N)PN for any trace Laurent polynomial PN reduces to exponentiating a matrix of finite size.

3.3 Intertwining Formulas I

Recall the operators T, N, Z, Y, and L from Definitions 1.13 and 1.16. Before we prove that their composite DN

(1.29) intertwines ∆U(N), we first prove Lemma 1.19.
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Proof of Lemma 1.19. The reader may readily verify that N, Z±, Y±, and L all preserve trace degree. What’s
more, it is elementaty to calculate that [T,N] = 0, while

Z±T = T[Z± + Y±], Y±T = 0.

Hence, it follows that D = −N − 2(Z + Y) = −N − 2(Z+ + Y+) + 2(Z− + Y−) commutes with T. Since
DN = D− 1

N2L (cf. (1.28)), we are left only to prove that [T,L] = 0. This is also straightforward to compute;
instead, we offer an alternative proof. From (1.22), we see that, for any P ∈P ,

[TDN (P )]N = tr(∆U(N)PN ) = ∆U(N)tr(PN ) = [DNT(P )]N .

That is: ([T,DN ]P )N ≡ 0. It follows, using the fact that [T,D] = 0, that

([T,L]P )N =
(
[T, N2(DN −D)]P

)
N

= N2 ([T,DN ]P )N ≡ 0, for all N. (3.18)

If the polynomial [T,L]P is not identically 0, (3.18) is in direct contradiction to Proposition 2.10. Thus, for each
P ∈P , [T,L]P = 0, which proves the result.

We now proceed to prove Theorem 1.20 (the intertwining formula). The following notation will be useful.

Notation 3.6. For n ∈ Z and A ∈ MN (C) let Wn(A) = An, Vn(A) = tr(An), and V(A) = {Vn(A)}|n|≥1.
(Technically we should write V N

n for Vn and WN
n for Wn, but we omit this extra index since the meaning should

be clear from the context.) With this notation we have PN (U) = P (U,V(U))IN for P ∈P .

Proof of Theorem 1.20. For convenience, we explicitly restate the desired formula as follows:

∆U(N)PN =

[(
−N − 2Z− 2Y− 1

N2
L

)
P

]
N

. (3.19)

Fix n ∈ Z \ {0}, and let P (u,v) = unq(v) where q ∈ P0; thus PN = Wn · q(V). For X ∈ u(N), by the
product rule we have

∂XPN = ∂X [Wn · q(V)] = ∂XWn · q(V) +Wn · ∂Xq(V)

and therefore

∆U(N)PN =
∑
X∈βN

∂2
XPN =

∑
X∈βN

[
∂2
XWn · q(V) + 2∂XWn · ∂Xq(V) +Wn · ∂2

Xq(V)
]

=
(
∆U(N)Wn

)
· q(V) + 2

∑
X∈βN

∂XWn · ∂Xq(V) +Wn ·
(
∆U(N)q(V)

)
. (3.20)

Using (3.14) and the chain rule, the middle term in (3.20) can be written as∑
X∈βN

∂XWn · ∂Xq(V) =
∑
X∈βN

∂XWn ·
∑
|k|≥1

(
∂

∂vk
q

)
(V) · ∂XVk

=
∑
|k|≥1

 ∑
X∈βN

∂XWn · ∂XVk

( ∂

∂vk
q

)
(V)

=
∑
|k|≥1

(
− nk
N2

Wn+k

)(
∂

∂vk
q

)
(V) = − 1

N2

∑
|k|≥1

nkWn+k

(
∂

∂vk
q

)
(V). (3.21)
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Notice that nWn+k = Wk+1 · nWn−1 = Wk+1

[
∂
∂uu

n
]
N

, and so (3.21) may be written in the form

∑
X∈βN

∂XWn · ∂Xq(V) = − 1

N2

∑
|k|≥1

kuk+1 ∂2

∂u∂vk
P


N

. (3.22)

For the last term in (3.20), we again use the chain and product rules repeatedly to find

∂2
Xq(V) = ∂X

∑
|k|≥1

(
∂

∂vk
q

)
(V)∂XVk


=
∑
|k|≥1

(
∂

∂vk
q

)
(V) · ∂2

XVk +
∑
|j|,|k|≥1

(
∂2

∂vj∂vk
q

)
(V) · (∂XVj)(∂XVk). (3.23)

Summing this equation on X ∈ βN , (3.15) shows that the the second sum in (3.23) simplifies to∑
X∈βN

∑
|j|,|k|≥1

(
∂2

∂vj∂vk
q

)
(V) · (∂XVj)(∂XVk) = − 1

N2

∑
|j|,|k|≥1

jkVj+k ·
(

∂2

∂vj∂vk
q

)
(V). (3.24)

For the first sum in (3.23), we break up the sum over positive and negative terms, and use (3.12) and (3.13) to see
that

∑
X∈βN

∑
|k|≥1

(
∂

∂vk
q

)
(V) · ∂2

XVk =

∞∑
k=1

(
∂

∂vk
q

)
(V)

−kVk − 21k≥2

k−1∑
j=1

jVjVk−j


+

−1∑
k=−∞

(
∂

∂vk
q

)
(V)

kVk + 21k≤−2

−1∑
j=k+1

jVjVk−j


which is equal to

−
∑
|k|≥1

|k|Vk
(

∂

∂vk
q

)
(V)

− 2
∞∑
k=2

k−1∑
j=1

jVjVk−j

( ∂

∂vk
q

)
(V) + 2

−1∑
k=−∞

 −1∑
j=k+1

jVjVk−j

( ∂

∂vk
q

)
(V). (3.25)

Combining (3.23)-(3.25) we see that the final term in (3.20) is

Wn ·∆U(N)q(V) = −[N0P ]N − 2[ZP ]N −
1

N2

 ∑
|j|,|k|≥1

jkvj+k
∂2

∂vj∂vk
P


N

and combining this with (3.20) and (3.22) gives

∆U(N)PN =
(
∆U(N)Wn

)
· q(V)−

[(
N0 + 2Z +

1

N2
L

)
P

]
N

, (3.26)

where (3.22) and (3.24) are the terms responsible for L. To address the first term in (3.26), we treat the cases
n ≥ 0 and n < 0 separately. When n ≥ 0, (3.10) gives

(
∆U(N)Wn

)
· q(V) = −nWn · q(V)− 21n≥2

n−1∑
j=1

jWjVn−jq(V).
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The first term is −
[
u ∂
∂uu

nq(v)
]
N

, and the second is (reindexing k = n− j)

−2

[
n−1∑
k=1

vku
n−kq(v)

]
N

= −2[Y+P ]N

from Example 1.18. An analogous computation in the case n < 0, using (3.11), shows that in this case

∆U(N)Wn · q(V) =

[
u
∂

∂u
P

]
N

+ 2[Y−P ]N .

Combining these with (3.26) concludes the proof.

We now prove Corollary 1.22.

Proof of Corollary 1.22. For convenience, we restate (1.31): the desired property is

D(PQ) = (DP )Q+ P (DQ), P ∈P, Q ∈P0.

Recall from Definition 1.16 and Lemma 1.19 that D = −N − 2Y− 2Z = −(N0 + 2Y)− (N1 + 2Z), where N1

and Z are first order differential operators on P , while N0 and Y annihilate P0 and satisfy

N0(PQ) = (N0P )Q, Y(PQ) = (YP )Q, P ∈P, Q ∈P0.

Hence
(N0 + 2Y)(PQ) = [(N0 + 2Y)P ]Q = [(N0 + 2Y)P ]Q+ P [(N0 + 2Y)Q].

Since N1 + 2Z satisfies the product rule on P in general, this proves (1.31); (1.32) follows thence from the
standard power series argument.

S

We conclude this section with the proof of Proposition 1.4.

Lemma 3.7. For n ≥ 0, let P ∈Pn. Then for t ∈ R, e
t
2
DNP ∈Pn.

Proof. Lemma 1.19 gives that DN preserves trace degree, and thus Pn is an invariant subspace for DN . The
result follows.

Proof of Proposition 1.4. Any trace Laurent polynomial function on U(N) has the form PN for some P ∈ P .
Let n = deg(P ), so that P ∈Pn. Theorem 1.20 shows that, for t ∈ R,

e
t
2

∆U(N)PN = [e
t
2
DNP ]N

and Lemma 3.7 asserts that e
t
2
DNP ∈ Pn. Hence, e

t
2

∆U(N)PN is a trace Laurent polynomial function on
U(N). Since BN

s,tPN is the analytic continuation of this trace Laurent polynomial function to GL(N,C) (which
is therefore given by the same formula), the result is proved.
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3.4 Intertwining Formulas II

This section is devoted to proving an intertwining formula for GL(N,C) (cf. Theorem 3.13) which is analogous
to the intertwining formula for U(N) in Theorem 1.20. This result is only needed in order to prove concentration
of measures on GL(N,C) (Eq. (1.35) of Theorem 1.26) and hence we do not need as much detailed information
about the operators involved. On the other, hand we will now have to consider scalar trace Laurent polynomials
in both A and A∗, which complicates the notation somewhat.

Notation 3.8. For n ∈ N, let Ωn denote the set of functions (words) ε : {1, . . . , n} → {±1,±∗}. For ε ∈ Ωn,
we denote |ε| = n. Set Ω =

⋃
n Ωn. We define the word polynomial space W as

W = C
[
{vε}ε∈Ω

]
the space of polynomials in the indeterminates {vε}ε∈Ω. Of frequent use will be the words

ε(j, k) = (

|j| times︷ ︸︸ ︷
±1, . . . ,±1,

|k| times︷ ︸︸ ︷
±∗, . . . ,±∗) ∈ Ωj+k, (3.27)

where we use +1 in the first slots if j > 0 and −1 if j < 0, and similarly we use +∗ in the last slots if k > 0 and
−∗ if k < 0.

Notation 3.9. For ε ∈ Ωn and A ∈ GL(N,C) we define Aε = Aε1Aε2 · · ·Aεn , where A+∗ ≡ A∗ and A−∗ ≡
(A∗)−1 = (A−1)∗. Given P ∈ W , we let PN : GL(N,C)→ C be the function

PN (A) = P (V(A))

where
V(A) = {Vε(A) : ε ∈ Ω}

and
Vε(A) = tr(Aε) = tr (Aε1Aε2 · · ·Aεn) .

The notation V here collides with Notation 3.6, but there should be no confusion as to which is being used. As
in that case, we should technically write Vε = V N

ε and V = VN , but we suppress the N throughout. Also, in
terms of Notation 3.6, note that Vε(k,0)(A) = tr(Ak) = Vk(A), while Vε(0,k)(A) = tr((A∗)k) = Vk(A

∗). It is
therefore natural to think of P0 as included in W , in the following way.

Notation 3.10. We can identify P0 as a subalgebra of W in two ways: ι, ι∗ : P0 ↪→ W , with ι linear and ι∗

conjugate linear, are determined by

ι(vk) = vε(k,0) ι∗(vk) = vε(0,k). (3.28)

The inclusions ι and ι∗ intertwine with the evaluation maps as follows: for Q ∈P0,

[ι(Q)]N (A) = QN (A) [ι∗(Q)]N (A) = QN (A)∗. (3.29)

The trace degree on P0 extends consistently to the larger space W .

Definition 3.11. The trace degree of a monomial
∏m
i=1 v

kj
εj ∈ W is given by

deg

 m∏
j=1

v
kj
εj

 =
m∑
j=1

|kj ||εj |,
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and the trace degree of any element in W is the highest trace degree of any of its monomial terms. Since
|ε(k, 0)| = |ε(0, k)| = k, we have

deg ι(Q) = deg ι∗(Q) = degQ (3.30)

for Q ∈P0. Note, moreover, that deg(RS) = deg(R) + deg(S) for R,S ∈ W . Finally, for n ∈ N we set

Wn = {P ∈ W : deg (P ) ≤ n} .

Note that Wn is finite dimensional, Wn ⊂ C[{vε}|ε|≤n], and W =
⋃
n Wn.

We now proceed to describe the action of ANs,t on functions on U(N) or GL(N,C) of the form RN for some
R ∈ W ; recall from (1.11) that

ANs,t ≡
(
s− t

2

) ∑
X∈βN

∂2
X +

t

2

∑
X∈βN

∂2
iX

where βN is an orthonormal basis for u(N).

Theorem 3.12. Fix s, t ∈ R. There are collections
{
qs,tε : ε ∈ Ω

}
and

{
rs,tε,δ : ε, δ ∈ Ω

}
in W with the following

properties:

(1) for each ε ∈ Ω, qs,tε is a certain finite sum of monomials of trace degree |ε| such that

ANs,tVε = [qs,tε ]N = qs,tε (V), (3.31)

(2) for ε, δ ∈ Ω, rs,tε,δ is a certain finite sum of monomials of trace degree |ε|+ |δ| such that(
s− t

2

) ∑
X∈βN

(∂XVε) (∂XVδ) +
t

2

∑
X∈βN

(∂iXVε) (∂iXVδ) =
1

N2
[rs,tε,δ]N =

1

N2
rs,tε,δ(V). (3.32)

Please note that the polynomials qs,tε and rs,tε,δ do not depend on N . The 1/N2 in (3.32) comes from the magic
formula (3.4), as we will see in the proof.

Proof. Fix ε ∈ Ω, and let n = |ε|. Let βN denote an orthonormal basis for u(N), and let β+ = βN while
β− = iβN . For any ξ ∈ u(N)⊕ iu(N) = gl(N,C) = MN (C), we make the following conventions:

(Aξ)1 ≡ Aξ, (Aξ)−1 ≡ −ξA−1, (Aξ)∗ ≡ ξ∗A∗, (Aξ)−∗ ≡ −A∗ξ∗. (3.33)

Note that, for ξ ∈ β±, ξ∗ = ∓ξ. In the proof to follow, we do not precisely track all of the signs, and so ±
denotes a sign that may be different in different terms and on different sides of an equation. Thus, we have

(∂ξVε) (A) =

n∑
j=1

tr (Aε1Aε2 . . . (Aξ)εj . . . Aεn)

and so

(
∂2
ξVε
)

(A) =

n∑
j=1

tr
(
Aε1Aε2 . . .

(
Aξ2

)εj . . . Aεn) (3.34)

+ 2
∑

1≤j<k≤n
tr (Aε1Aε2 . . . (Aξ)εj . . . (Aξ)εk . . . Aεn) . (3.35)
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We must now sum over ξ ∈ β±. It follows from magic formula (3.2) and convention (3.33) that each term in
(3.34) simplifies to∑

ξ∈β±

tr
(
Aε1Aε2 . . .

(
Aξ2

)εj . . . Aεn) = ±tr (Aε1Aε2 . . . Aεj . . . Aεn) = ±Vε(A).

To be clear: the± on the right varies with j and whether the sum is over β+ or β−. Summing each of these terms
over 1 ≤ j ≤ n shows that (3.34) summed over β± is

∑
ξ∈β±

n∑
j=1

tr
(
Aε1Aε2 . . .

(
Aξ2

)εj . . . Aεn) = n±(ε)Vε(A) (3.36)

for some n±(ε) ∈ Z. For the terms in (3.35), applying (3.33) shows that

tr (Aε1Aε2 . . . (Aξ)εj . . . (Aξ)εk . . . Aεn) = ±tr(Aε
0
j,kξAε

1
j,kξAε

2
j,k) (3.37)

where {ε`j,k}`=0,1,2 are certain substrings of ε, whose concatenation is all of ε: ε0
j,kε

1
j,kε

2
j,k = ε. Applying magic

formula (3.3) to (3.37) gives∑
ξ∈β±

tr(Aε
0
j,kξAε

1
j,kξAε

2
j,k) = ±tr(Aε

0
j,kAε

2
j,k)tr(Aε

1
j,k) = ±tr(Aεj,k)tr(Aε

1
j,k)

where εj,k = ε0
j,kε

2
j,k. Note that |εj,k|+ |ε1

j,k| = |ε|. Hence, the sum in (3.35) summed over β± is equal to∑
1≤j<k≤n

±tr(Aεj,k)tr(Aε
1
j,k) =

∑
1≤j<k≤n

±Vεj,k(A)Vε1j,k
(A). (3.38)

Hence, if we define
q±ε = n±(ε)vε + 2

∑
1≤j<k≤|ε|

±vεj,kvε1j,k , (3.39)

which have homogeneous trace degree |ε|, then (3.34)-(3.38) show that

qs,tε =

(
s− t

2

)
q+
ε +

t

2
q−ε

satisfies (3.31), proving item (1) of the theorem.
For item (2), fix δ ∈ Ω and let m = |δ|. We calculate for each ξ ∈MN (C)

(∂ξVε)(A)(∂ξVδ)(A) =
n∑
j=1

m∑
k=1

tr(Aε1Aε2 · · · (Aξ)εj · · ·Aεn) · tr(Aδ1Aδ2 · · · (Aξ)δk · · ·Aδm),

again making use of convention (3.33). Using the cyclic property of the trace, we can write the terms in this sum
in the form

±tr(ξAε
(j)

)tr(ξAδ
(k)

)

where ε(j) is a certain cyclic permutation of ε, and δ(k) is a certain cyclic permutation of δ. Summing over
ξ ∈ β± and using magic formula (3.5), we then have

∑
ξ∈β±

(∂ξVε)(A)(∂ξVδ)(A) =
1

N2

n∑
j=1

m∑
k=1

±tr(Aε
(j)
Aδ

(k)
) =

1

N2

n∑
j=1

m∑
k=1

±Vε(j)δ(k)(A). (3.40)
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Since ε(j)δ(k) has length |ε|+ |δ|, the W elements

r±ε,δ =

|ε|∑
j=1

|δ|∑
k=1

±vε(j)δ(k) (3.41)

have homogeneous trace degree |ε|+ |δ|, and (3.40) therefore shows that

rs,tε,δ =

(
s− t

2

)
r+
ε,δ +

t

2
r−ε,δ (3.42)

satisfies (3.32), proving item (2) of the theorem.

Theorem 3.13 (Intertwining Formual II). Fix s, t ∈ R. Let
{
qs,tε : ε ∈ Ω

}
and

{
rs,tε,δ : ε, δ ∈ Ω

}
be the polyno-

mials from Theorem 3.12 and define

D̃s,t =
1

2

∑
ε∈Ω

qs,tε
∂

∂wε
and L̃s,t =

1

2

∑
ε,δ∈Ω

rs,tε,δ
∂2

∂wε∂wδ
(3.43)

which are first and second order differential operators on W which preserve trace degree. Then for all N ∈ N
and P ∈ W ,

1

2
ANs,tPN =

[
D̃s,tP +

1

N2
L̃s,tP

]
N

. (3.44)

Remark 3.14. Definition 1.6 of ANs,t is stated for s, t > 0 and s > t/2; it is only in this regime that the operator
ANs,t is negative-definite and the tools of heat kernel analysis apply. The operator itself is well-defined-for any
s, t ∈ R, however, and it will be convenient to utilize this in some of what follows.

Proof. By the chain rule, if ξ ∈MN (C) then

∂2
ξPN =

∑
ε∈Ω

∂ξ

[(
∂P

∂vε

)
(V) · ∂ξVε

]
=
∑
ε∈Ω

(
∂P

∂vε

)
(V)∂2

ξVε +
∑
ε,δ∈Ω

(
∂2P

∂vε∂vδ

)
(V) · (∂ξVε) (∂ξVδ)

from which it follows that

ANs,tPN =
∑
ε∈Ω

(
∂P

∂vε

)
(V) ·ANs,tVε

+
∑
ε,δ∈Ω

(
∂2P

∂vε∂vδ

)
(V)

(s− t

2

)∑
ξ∈β

∂ξVε · ∂ξVδ +
t

2

∑
ξ∈iβ

(∂ξVε) (∂ξVδ)

 .
Combining this equation with the results of Theorem 3.12 completes the proof.

We record one further intertwining formula that will be useful in the proofs of Theorems 1.26 and 1.30.

Lemma 3.15. There exists a sequilinear (conjugate linear in the second variable) form B : P ×P → W such
that, for all P,Q ∈P , we have deg (B(P,Q)) = deg(P ) + deg(Q) and

[B(P,Q)]N (A) = tr[PN (A)QN (A)∗] for all A ∈ GL(N,C).
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Proof. By sesquilinearity, it suffices to define B on P,Q ∈ P of the form P (u,v) = ukp(v) and Q(u,v) =
u`q(v) for k, ` ∈ Z and p, q ∈P0. We compute, for A ∈ GL(N,C), that

tr[PN (A)QN (A)∗] = tr[AkpN (A)A∗`qN (A)∗] = tr(AkA∗`)pN (A)qN (A)∗

= [vε(k,`)]N (A)[ι(p)]N (A)[ι∗(q)]N (A)

by (3.29), where ε(k, `) is defined in (3.27). Thus, we take B : P ×P → W to be the unique sesquilinear form
such that, for p, q ∈P0,

B(ukp, u`q) = wε(k,`)ι(p)ι
∗(q).

This is trace degree additive by (3.30). This concludes the proof.

4 Limit Theorems

In this section, we prove that the heat kernel measures ρNs on U(N) and µNs,t on GL(N,C) each concentrate
all their mass in such a way that the space of trace Laurent polynomial functions collapses onto the space of
single variable Laurent polynomial functions. To motivate this, consider the scalar-valued case: if Q ∈P0, then
Theorem 1.20 shows that

e
s
2

∆U(N)(QN ) =
[
e

s
2

(D− 1
N2L)Q

]
N

=
[
e

s
2
DQ
]
N

+O

(
1

N2

)
, (4.1)

where the second equality will be made precise in Lemma 4.1 below. Evaluating (4.1) at IN and using (1.10)
shows that

EρNs (QN ) =
(
e

s
2

∆U(N)QN

)
(IN ) =

(
e

s
2
DQ
)

(1) +O

(
1

N2

)
,

where Q(1) = Q(1, 1, 1, . . .) is the evaluation of Q at all variables = 1. Thus, from Definition 1.24 and Remark
1.25, limN→∞ EρNs (QN ) = πsQ. At the same time, the restriction of D to P0 is −(N0 + 2Z) (cf. Definition
1.16), which is a first-order differential operator. Thus, e

s
2
D is an algebra homomorphism on P0, and so[

e
s
2
DQ2

]
N

=
([
e

s
2
DQ
]
N

)2
. (4.2)

If Q has real coefficients, then Q2 = |Q|2, and (1.10) together with (4.1) applied to Q2 and (4.2) evaluated at 1
show that

VarρNs (QN ) =

∫
U(N)

|QN (U)|2 ρNs (dU)−

∣∣∣∣∣
∫
U(N)

QN (U) ρNs (dU)

∣∣∣∣∣
2

= O

(
1

N2

)
.

Thus, the random variables QN concentrate on their limit mean πsQ, summably fast. Section 4.1 fleshes out this
argument in the general case; Sections 4.2 and 4.3 then use these ideas to prove Theorems 1.30 and 1.29.

4.1 Concentration of Measures

We begin with an abstract result that will be the gist of all our concentration of measure theorems.

Lemma 4.1. Let V be a finite dimensional normed C-space and supposed that D and L are two operators on V .
Then there exists a constant C = C(D,L, ‖ · ‖V ) <∞ such that∥∥eD+εL − eD

∥∥
End(V )

≤ C |ε| for all |ε| ≤ 1, (4.3)
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where ‖ · ‖End(V ) is the operator norm on V . It follows that if ϕ ∈ V ∗ is a linear functional, then∣∣ϕ(eD+εLx)− ϕ(eDx)
∣∣ ≤ C‖ϕ‖V ∗‖x‖V |ε|, x ∈ V, |ε| ≤ 1, (4.4)

where ‖ · ‖V ∗ is the dual norm on V ∗.

Proof. Using the well known differential of the exponential map (see for example [11, Theorem 1.5.3, p. 23],
[19, Theorem 3.5, p. 70], or [27, Lemma 3.4, p. 35]),

d

ds
eD+sL = eD+sL

∫ 1

0
e−t(D+sL)Let(D+sL)dt

=

∫ 1

0
e(1−t)(D+sL)Let(D+sL)dt,

we may write

eD+εL − eD =

∫ ε

0

d

ds
eD+sLds =

∫ ε

0

[∫ 1

0
e(1−t)(D+sL)Let(D+sL)dt

]
ds.

Crude bounds now show∥∥eD+εL − eD
∥∥

End(V )
≤
∫ |ε|

0

[∫ 1

0

∥∥∥e(1−t)(D+sL)Let(D+sL)
∥∥∥

End(V )
dt

]
ds ≤ C(D,L, ‖ · ‖V )|ε|.

Proving (4.3); (4.4) follows immediately.

The next lemma identifies the evaluation functional πs−t in terms of the operator D̃s,t; it demonstrates the
way in which Lemma 4.1 will be used throughout the remainder of this section. Recall the evaluation map πs of
Definition 1.24, and the inclusion maps ι, ι∗ : P0 ↪→ W of Notation 3.10.

Lemma 4.2. Let s, t > 0 with s > t/2. Let D̃s,t be given as in (3.43). Then, for any Q ∈P0,

[eD̃s,tι(Q)](1) = πs−tQ. (4.5)

Proof. If f : GL(N,C)→MN (C) is holomorphic, then ∂iXf = i∂Xf for all X ∈ u(N), which then implies

ANs,tf
∣∣
U(N)

=

(
s− t

2

) ∑
X∈βN

∂2
Xf −

t

2

∑
X∈βN

∂2
Xf = (s− t) ∆U(N)f.

Since the scalar trace Laurent polynomial function QN is holomorphic, it follows that

e
1
2
AN

s,tQN = e
1
2

(s−t)∆U(N)QN . (4.6)

Using intertwining formulas (3.29) and (3.44) on the left-hand-side of (4.6) and intertwining formula (1.30) on
the right-hand-side, we have[

eD̃s,t+
1

N2 L̃s,tι(Q)
]
N

= e
1
2
AN

s,tQN = e
1
2

(s−t)∆U(N)QN =
[
e

1
2

(s−t)DNQ
]
N
,

and evaluating both sides at IN and using DN = D− 1
N2L (cf. Lemma 1.19), we have(

eD̃s,t+
1

N2 L̃s,tι(Q)
)

(1) =
(
e

1
2

(s−t)(D− 1
N2L)Q

)
(1). (4.7)

Let n = deg(Q). The linear functional ϕ(R) = R(1) is in continuous on P0
n and Wn, and hence Lemma 4.1

allows us to take the limit as N →∞ in (4.7), yielding(
eD̃s,tι(Q)

)
(1) =

(
e

1
2

(s−t)DQ
)

(1). (4.8)

Finally, since Q ∈P0, the left-hand-side of (4.8) is πs−tQ; cf. Remark 1.25. This concludes the proof.
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Remark 4.3. (1) A similar calculation shows that
(
eD̃s,tι∗(Q)

)
(1) = πs−t(Q).

(2) Properly speaking, the “heat operator” e
1
2

(s−t)∆U(N) in (4.6) is only defined when s > t. However, since
QN is a trace Laurent polynomial function, this expression can be made sense of as a convergent power-
series, and the intertwining formulas still apply.

We now proceed with the proof of Theorem 1.26.

Proof of Theorem 1.26. We begin with the proof of (1.35). By the triangle inequality, it suffices to prove the
theorem for polynomails of the form P (u,v) = ukQ(v) for k ∈ Z and Q ∈P0 scalar. Therefore

P (u,v)− πs−tP (u,v) = uk[Q(v)− πs−tQ] = ukRs−t(v)

where Rs−t = Q− πs−tQ. Note that πs−tRs−t = 0. Now, for A ∈ GL(N,C),

‖PN (A)− (πsP )N (A)‖2MN
= tr(Ak[Rs−t]N (A)[Rs−t]N (A)∗A∗k)

= tr(AkA∗k)[Rs−t]N (A)[Rs−t]N (A)∗. (4.9)

Thus
‖[P ]N (A)− (πs−tP )N (A)‖2MN

= [vε(k,k)ι(Rs−t)ι
∗(Rs−t)]N (A) (4.10)

where, in the case k = 0, we interpret vε(0,0) = 1. We calculate the L2(µNs,t)-norm of P − πs−tP = ukRs−t
using (1.10). Thus, using the intertwining formula (3.44) and (4.10), we have

‖PN − (πsP )N‖2L2(µNs,t)
= e

1
2
AN

s,t
(
‖PN − (πs−tP )N‖2MN

)
(IN )

=
(
eD̃s,t+

1
N2 L̃s,t

(
vε(k,k)ι(Rs−t)ι

∗(Rs−t)
))

(1). (4.11)

Now, let n = degQ = degRs−t. Using the linear functional ϕ(R) = R(1) on W2n, Lemma 4.1 then yields∣∣∣(eD̃s,t+
1

N2 L̃s,t
(
vε(k,k)ι(Rs−t)ι

∗(Rs−t)
))

(1)−
(
eD̃s,t

(
vε(k,k)ι(Rs−t)ι

∗(Rs−t)
))

(1)
∣∣∣ = O

(
1

N2

)
. (4.12)

But, since D̃s,t is a first-order differential operator acting on W2n, eD̃s,t is an algebra homomorphism, and we
have

eD̃s,t
(
vε(k,k)ι(Rs−t)ι

∗(Rs−t)
)

= eD̃s,tvε(k,k) · eD̃s,tι(Rs−t) · eD̃s,tι∗(Rs−t) = 0 (4.13)

since eD̃s,tι(Rs−t) = πs−tRs−t = 0 by Lemma 4.2. Thus, (4.11)-(4.13) prove (1.35).
Note that s

2∆U(N) = 1
2A

N
s,0; thus taking t = 0 in (4.12) and restricting the function to U(N) also proves

(1.34), concluding the proof.

4.2 Proof of Main Limit Theorem 1.30

Proof of Theorem 1.30. Let f ∈P1; then by the intertwining formula (1.30),

e
t
2

∆U(N)fN = [e
t
2
DN f ]N ,

where DN is defined in (1.29).
The function on the right is a trace Laurent polynomial function of U ∈ U(N) (with no U∗s), and therefore

its analytic continuation to GL(N,C) is given by the same trace polynomial function in A ∈ GL(N,C). Thus

[BN
s,tfN ](A) = [e

t
2
DN f ]N (A), A ∈ GL(N,C).
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Hence
‖BN

s,tfN − [Bs,tf ]N‖L2(µNs,t)
= ‖[e

t
2
DN f ]N − [πs−t ◦ e

t
2
Df ]N‖L2(µNs,t)

.

By the triangle inequality, the last quantity is

≤ ‖[e
t
2
DN f ]N − [e

t
2
Df ]N‖L2(µNs,t)

+ ‖[e
t
2
Df ]N − [πs−t ◦ e

t
2
Df ]N‖L2(µNs,t)

. (4.14)

The second term in (4.14) is O(1/N) by (1.35) (Theorem 1.26). Thus, to complete the proof of (1.37), it suffices
to show that

‖[e
t
2
DN f ]N − [e

t
2
Df ]N‖2L2(µNs,t)

= O

(
1

N2

)
(4.15)

for each f ∈ P1 = C[u, u−1]. Let n = deg f , let B : P ×P → W be the sesquilinear form in Lemma 3.15,
and let R(N) = e

t
2
DN f − e

t
2
Df . Then by (1.16) and (3.44), the left side of (4.15) is given by

‖[R(N)]N‖2L2(µNs,t)
= e

1
2
AN

s,t

(
‖[R(N)]N‖2MN

)
=
(
eD̃s,t+

1
N2 L̃s,tB(R(N), R(N))

)
(1). (4.16)

Using the linear functional ϕ(P ) = P (1) on W2n and any norm ‖ · ‖W2n , Lemma 4.1 ensures there is a constant
C (depending on n, s, t but not on N ) such that∣∣∣(eD̃s,t+

1
N2 L̃s,tB(R(N), R(N))

)
(1)−

(
eD̃s,tB(R(N), R(N))

)
(1)
∣∣∣ ≤ C

N2
‖B(R(N), R(N))‖W2n . (4.17)

Let ψ(P ) =
(
eD̃s,tP

)
(1), another linear functional on W2n; then∣∣∣(eD̃s,tB(R(N), R(N))

)
(1)
∣∣∣ ≤ ‖ψ‖∗2n‖B(R(N), R(N))‖W2n .

This, in conjunction with (4.16) and (4.17), shows that

‖[R(N)]N‖2L2(µNs,t)
≤
(
‖ψ‖∗2n +

C

N2

)
‖B(R(N), R(N))‖W2n . (4.18)

Since B : Pn ×Pn → W2n is sesquilinear with finite dimensional domain and range, it is bounded with any
choice of norms; in particular, given any norm ‖ · ‖Pn on Pn, there is a constant C ′ (depending on n but not N )
so that

‖B(P,Q)‖W2n ≤ C ′‖P‖Pn‖Q‖Pn for all P,Q ∈Pn.

Together with (4.18), this yields

‖[R(N)]N‖2L2(µNs,t)
≤ C ′

(
‖ψ‖∗2n +

C

N2

)
‖R(N)‖2Pn

. (4.19)

Finally, Lemma 4.1 gives

‖R(N)‖Pn = ‖e
t
2

[D− 1
N2L]f − e

t
2
Df‖Pn = O

(
1

N2

)
which proves (4.15). (In fact it shows this term is O(1/N4); however, since the square of the second term in
(4.14) is O(1/N2), this faster convergence doesn’t improve matters.)

The proof of (1.38) is similar: the restriction of (BN
s,t)
−1fN to U(N) is simply e−

t
2

∆U(N)fN , and a similar
triangle inequality argument now using (1.34) shows that it suffices to prove

‖[e−
t
2
DN f ]N − [e−

t
2
Df ]N‖2L2(ρNs ) = O

(
1

N2

)
. (4.20)

The argument now proceeds identically to above, by redefining R(N) with the substitution t 7→ −t, and taking
all norms with the substitution (s, t) 7→ (s, 0) in all formulas from (4.16) onward.
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4.3 Limit Norms and the Proof of Theorems 1.29

We begin by proving that the transforms Bs,t and Hs,t are invertible on P1. (This will be subsumed by Theorem
1.29, but it will be useful to have this fact in the proof.)

Lemma 4.4. Bs,t and Hs,t are invertible operators on P1
n for each n > 0, and hence on P1.

Proof. Consider e±
t
2
D restricted to Pn. Expanding as power-series, a straightforward induction using the forms

of the composite operators N, Z, and Y shows that there exist qtk ∈P0 with

e±
t
2
Dun = e∓

n
2
tun +

n−1∑
k=0

qtk(v)uk,

e±
t
2
Du−n = e±

n
2
tu−n +

0∑
k=−n+1

qtk(v)uk.

This shows that e±
t
2
D preserves P1,+

n and P1,−
n ⊕C. Incorporating the evaluation maps πs or πs−t, we find that

Bs,t(u
±n),Hs,t(u

±n) ∈ e±
n
2
tu±n + P1

n−1

Consider, then, the standard basis {1, u1, . . . , un} of P1,+
n ; it follows that, in this basis, Bs,t|P1,+

n
and Hs,t|P1,+

n

are upper-triangular, with diagonal entries e∓
k
2
t for 0 ≤ k ≤ n. Thus the restrictions of Bs,t and Hs,t to

P1,+
n are invertible. A similar argument shows the invertibility on P1,−

n , thus yielding the result on Pn. Since
P1 =

⋃
n P1

n, the proof is complete.

We now introduce two seminorms on P .

Definition 4.5. Let s, t > 0 with s > t/2. For each N , define the seminorms ‖ · ‖s,N and ‖ · ‖s,t,N on P by

‖P‖s,N = ‖PN‖L2(U(N),ρNs ;MN (C)) (4.21)

‖P‖s,t,N = ‖PN‖L2(GL(N,C),µNs,t;MN (C)). (4.22)

In fact, for any n > 0 and sufficiently large N , seminorms (4.21) and (4.22) are actually norms when restricted
to Pn. Indeed, if ‖P‖s,N = 0 then PN = 0 in L2(U(N), ρNs ;MN (C)), and since PN is a smooth function and
ρNs has a strictly positive density, this means PN is identically 0. By Proposition 2.10, when N is sufficiently
large (relative to n) it follows that P = 0.

For P ∈P , define

‖P‖s = lim
N→∞

‖P‖s,N (4.23)

‖P‖s,t = lim
N→∞

‖P‖s,t,N . (4.24)

These are also seminorms on P , but they are not norms on all of P , or even on Pn for any n > 1. However,
restricted to single-variable Laurent polynomials P1, they are in fact norms. To prove this, we look to the free
unitary Brownian motion distribution νs; cf. Remark 1.27. The measure νs is the weak limit of νNs of (2.1) (which
exists by the Lévy continuity theorem). In [4, Proposition 10, p. 270], it is shown that νs is absolutely continuous
with respect to Lebesgue measure on T, with a continuous density that is strictly positive in a neighborhood of
1 ∈ T; we will need this result (in particular the fact that supp(νs) is not a finite set) in the following.

Lemma 4.6. The seminorms (4.23) and (4.24) are norms on the subspace P1 ⊂ P of single-variable Laurent
polynomials.
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Proof. We begin with norm (4.23). Identify the Laurent polynomial P ∈ P1 as a trigonometric polynomial
function PT on the unit circle T. Then (2.2) shows that

‖P‖s,N = ‖PN‖L2(U(N),ρNs ;MN (C)) = ‖PT‖L2(T,νNs ).

Thus, since νNs ⇀ νs,
‖P‖s = lim

N→∞
‖PT‖L2(T,νNs ) = ‖PT‖L2(T,νs). (4.25)

Since the support of νs is infinite, (4.25) shows that seminorm (4.23) is indeed a norm on P1.
For seminorm (4.24), we will utilize the isometry property of the finite dimensional Segal–Bargmann trans-

form BN
s,t. FixQ ∈P1; then there is some finite n for whichQ ∈P1

n. By Lemma 4.4, there is a unique Laurent
polynomial P ∈P1

n so that Bs,t(P ) = Q. Thus

‖Q‖s,t = ‖Bs,tP‖s,t = lim
N→∞

‖Bs,tP‖s,t,N .

By Theorem 1.30 and (4.22) we have

lim
N→∞

‖Bs,tP‖s,t,N = lim
N→∞

‖[BN
s,tP ]N‖L2(GL(N,C),µNs,t;MN (C))

and by the isometry property of the Segal–Bargmann transform, we therefore have

‖Q‖s,t = lim
N→∞

‖PN‖L2(U(N)),ρNs ;MN (C)) = ‖P‖s.

Thus, if ‖Q‖s,t = 0 then ‖P‖s = 0, so Q = Bs,t(0) = 0. This concludes the proof.

Remark 4.7. Eq. (4.25) shows that norm (4.23) is just an L2-norm, with respect to a well-understood measure.
Norm (4.24) is, at present, much more mysterious. In [4], a great deal of work is spent trying to understand this
norm in the case s = t. It can, in that case, be identified as the norm of a certain reproducing kernel Hilbert
space, built out of holomorphic functions on a bounded region Σt ⊂ C \ {0} that has no obvious symmetries,
and which becomes non-simply-connected when t ≥ 4. Understanding the norm (4.24) in general is a goal for
future research of the present authors.

This leads us to the proof of Theorem 1.29.

Proof of Theorem 1.29. Fix P ∈P1, and consider the Laurent polynomial Bs,tHs,tP ∈P1. By definition

‖Bs,tHs,tP − P‖s,t = lim
N→∞

‖Bs,tHs,tP − P‖s,t,N

= lim
N→∞

‖[Bs,tHs,tP ]N − PN‖L2(µNs,t)
. (4.26)

The triangle inequality yields

‖[Bs,tHs,tP ]N − PN‖L2(µNs,t)
≤ ‖[Bs,tHs,tP ]N −BN

s,t[Hs,tP ]N‖L2(µNs,t)
+ ‖BN

s,t[Hs,tP ]N − PN‖L2(µNs,t)
.

Applying (1.37) with f = Hs,tP shows that the first term is O(1/N). For the second term, we use the isometry
property of the Segal–Bargmann transform: since PN is a single-variable (i.e. holomorphic) Laurent polynomial,
it is in the range of BN

s,t, and so

‖BN
s,t[Hs,tP ]N − PN‖L2(µNs,t)

= ‖BN
s,t

(
[Hs,tP ]N − (BN

s,t)
−1PN

)
‖L2(µNs,t)

= ‖[Hs,tP ]N − (BN
s,t)
−1PN‖L2(ρNs ) = O

(
1

N

)
,

by (1.38). Hence, the quantity in the limit on the right-hand-side of (4.26) is O(1/N), so its limit is 0. We
therefore have ‖Bs,tHs,tP − P‖s,t = 0. Lemma 4.6 shows that ‖ · ‖s,t is a norm on P1, and so it follows
that Bs,tHs,tP − P = 0. Hence, since Bs,t and Hs,t are known to be invertible (Lemma 4.4), it follows that
Hs,t = B−1

s,t as desired.
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5 The Free Unitary Segal–Bargmann Transform

In this final section, we identify the limit Segal–Bargmann transform Bs,t, which has been constructed (Definition
1.28) as a linear operator on the space P1 of single-variable Laurent polynomials. We will characterize the Biane
polynomials for Bs,t:

ps,tk = Hs,t(( · )k) = πs ◦ e−
t
2
D( · )k, k ∈ Z (5.1)

defined so that
Bs,t(p

s,t
k )(z) = zk

when s > t/2 > 0. We call them Biane polynomials since, as we will prove, they match the polynomials that
Biane introduced in [4, Lemma 18] to characterize the free unitary Segal–Bargmann transform G t, in the specal
case s = t. There is classical motivation to understand these polynomials. Consider the 1-dimensional classical
Segal–Bargmann transform S1

t . Since polynomials are dense in the Gaussian L2-spaces forming the domain and
image of S1

t , its action is completely determined by the polynomials Hk(t, ·) satusfying S1
t (Hk(t, ·))(z) = zk.

In this case, since the measure γ2
t/2 is rotationally-invariant, the monomails z 7→ zk are orthogonal, and since

S1
t is an isometry, it follows that Hk(t, ·) are the orthogonal polynomials of the Gaussian measure γ1

t : the
Hermite polynomials of (variance t/2). Hence, the Biane polynomials are the unitary version of the Hermite
polynomials. We will determine the generating function Π of these polynomials; cf. (1.39). In the case s = t,
this precisely matches the generating function in [4, Lemma 18]; in this way, we verify that our limit Segal–
Bargmann transform is the aforementioned free unitary Segal–Bargmann transform G t.

Before proceeding, we make an observation. It is immediate from the form of the operators N, Z, and Y in
Definition 1.16 that D = −N − 2Z− 2Y satisfies

D(u−k) =
(
D( · )k

)
(u−1), k ∈ Z.

Expanding e−
t
2
D as a power series shows that the semigroup also commutes with the reciprocal map, and apply-

ing the algebra homomorphism πs then shows that

ps,t−k(u) = ps,tk (u−1), k ∈ Z. (5.2)

Note also that D preserves the subspaces P1,± ⊗P0, and hence ps,tk (u) is a polynomial in u for k ≥ 0, while
ps,tk (u) is a polynomial in u−1 for k < 0. Hence, since ps,t0 = 1, it will suffice to identify ps,tk only for k ≥ 1.

5.1 Biane Polynomials and Differential Recursion

It will be convenient to look at the related family of “unprojected” polynomials.

Definition 5.1. For t ∈ R and k ∈ N, define Bt
k ∈P and Ctk ∈P0 by

Bt
k(u,v) = e−

k
2
te−

t
2
Duk and Ctk(v) = T(Bt

k)(v), (5.3)

where T is the tracing map of (1.21). For s ∈ R, define bk(s, t, · ) ∈P1 and ck(s, t) ∈ C by

bk(s, t, u) = πs(B
t
k)(u) and ck(s, t) = πs(C

t
k). (5.4)

Note, by (5.1) and the linearity of πs, that

bk(s, t, u) = e−
k
2
tps,tk (u). (5.5)
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It is useful to note the following alternative expression for ck(s, t). From (5.3),

Ctk(v) = e−
k
2
tT(e−

t
2
Duk) = e−

k
2
te−

t
2
Dvk (5.6)

since T commutes with D. Thus, from Definition 1.24 and Remark 1.25,

ck(s, t) = e−
k
2
tπs(e

− t
2
Dvk) = e−

k
2
t
(
e

1
2

(s−t)Dvk

)∣∣∣
v=1

= e−
k
2
tνk(s− t). (5.7)

The main computational tool that will lead to the identification of the Biane polynomials ps,tk is the following
recursion.

Proposition 5.2. Let s, t ∈ R, u ∈ C, and k ≥ 1. Let ck(s, t) and bk(s, t, u) be given as in Definiton 5.1. Then

ck(s, t) = νk(s) +

k−1∑
m=1

∫ t

0
mck−m(s, τ)cm(s, τ) dτ, k ≥ 2 (5.8)

with c1(s, t) = ν1(s); and

bk(s, t, u) = uk +

k−1∑
m=1

∫ t

0
mck−m(s, τ)bm(s, τ, u) dτ, k ≥ 2 (5.9)

with b1(s, t, u) = u.

Proof. First note that B0
k(u;v) = uk and C0

k(u;v) = vk by definition, and thus bk(s, 0, u) = πs(u
k) = uk,

while ck(s, 0) = πs(vk) = νk(s) by (1.33). For k = 1, we have

Bt
1(u) = e−

t
2 e−

t
2
Du = u

because Du = −u. For k ≥ 2,

d

dt
Bt
k =

d

dt
e−

t
2

(k+D)uk = −1

2
e−

t
2

(k+D)(k + D)uk.

Recall (1.28) that D = −N− 2Z− 2Y. Eq. (1.24) shows that N(uk) = kuk; (1.26) shows that Z annihilates uk;
and Example 1.18 works out that Y(uk) =

∑k−1
j=1(k − j)vjuk−j =

∑k−1
m=1mu

mvk−m. Thus

(k + D)(uk) = kuk − kuk − 2

k−1∑
m=1

mumvk−m = −2

k−1∑
m=1

mumvk−m.

Hence
d

dt
Bt
k = e−

k
2
te−

t
2
D

(
k−1∑
m=1

mumvk−m

)
= e−

k
2
t
k−1∑
m=1

me−
t
2
D(umvk−m). (5.10)

We now use the partial homomorphism property of (1.32) at time −t, which yields (since vk−m ∈P0) that

e−
t
2
D(umvk−m) = (e−

t
2
Dum)(e−

t
2
Dvk−m). (5.11)

Now, vk−m = T(uk−m), and by Lemma 1.19 T and D commute. We may rewrite (5.11) as

e−
t
2
D(umvk−m) = (e−

t
2
Dum)T(e−

t
2
Duk−m) (5.12)
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Eq. (5.3) gives
e−

t
2
D( · )m = e

m
2
tBt

m and T[e−
t
2
D( · )k−m] = e

k−m
2

tCtk−m.

Thus, (5.10) and (5.12) combine to give

d

dt
Bt
k = e−

k
2
t
k−1∑
m=1

me
m
2
tBt

me
k−m

2
tCtk−m =

k−1∑
m=1

mCtk−mB
t
m. (5.13)

Integrating both sides of (5.13) from 0 to t, and using the initial condition Bt
k(u;v) = uk, gives

Bt
k = uk +

k−1∑
m=1

m

∫ t

0
Cτk−mB

τ
m dτ. (5.14)

The tracing map T is linear, and commutes with the integral (easily verified since all terms are polynomials);
moreover, if C ∈P0, then T(CB) = CT(B). Thus

Ctk = T(Bt
k) = T(uk) +

k−1∑
m=1

m

∫ t

0
T[Cτk−mB

τ
m] dτ = vk +

k−1∑
m=1

m

∫ t

0
Cτk−mC

τ
m dτ. (5.15)

Finally, the evaluation map πs is an algebra homomorphism, and (as with T) commutes with the integral; applying
πs to (5.14) and (5.15) yields the desired equations (5.8) and (5.9), concluding the proof.

Remark 5.3. By changing the index m 7→ k −m in (5.8) and averaging the results, we may alternatively state
the recursion for ck as

ck(s, t) = νk(s) +
k

2

k−1∑
m=1

∫ t

0
ck−m(s, τ)cm(s, τ) dτ. (5.16)

A transformation of this form is not possible for the bk(s, t, u) recursion, however.

5.2 Exponential Growth Bounds

In Section 5.3, we will study the generating functions of the quantities νk(s), ck(s, t), and bk(s, t, u). As such,
we will need a priori exponential growth bounds.

Lemma 5.4. For s, t ∈ R and k ≥ 2,

|νk(t)| ≤ Ck−1(1 + |t|)k−1e−
k
2
t, and (5.17)

|ck(s, t)| ≤ Ck−1(1 + |s− t|)k−1e−
k
2
s, (5.18)

where Ck = 1
k+1

(
2k
k

)
are the Catalan numbers.

Remark 5.5. When t > 0, νk(t) is the kth moment of the probability measure νt on the unit circle T, and we
therefore have the much better bound |νk(t)| ≤ 1; similarly, if s ≥ t, |ck(s, t)| ≤ e−

k
2
t. It is necessary to have

a priori bounds for negative t and s − t as well, however. While (5.17) is by no means sharp, the known exact
formula (1.36) for νk(t) shows that, when t < 0, νk(t) does grown exponentially with k (at least for small |t|).

In the proof of Lemma 5.4, we will use the well-known fact that the Catalan numbers satisfy Segner’s recur-
rence relation

Ck =
k∑

m=1

Cm−1Ck−m, k ≥ 1.
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Proof. Taking s = 0 in (5.16), and noting that νk(0) = 1 for all k, we have

ck(0, t) = 1 +
k

2

k−1∑
m=1

∫ t

0
cm(0, τ)ck−m(0, τ) dτ, k ≥ 2. (5.19)

We claim that
|ck(0, t)| ≤ Ck−1(1 + |t|)k−1, k ≥ 1. (5.20)

Since c1(0, t) = 1 = C1, we proceed by induction. Let k ≥ 2, and assume that (5.20) holds below level k; then
(5.19) yields

|ck(0, t)| ≤ 1 +
k

2

∫ |t|
0

k−1∑
m=1

Cm−1Ck−m−1 (1 + τ)k−2 dτ

= 1 +
k

2 (k − 1)

(
(1 + |t|)k−1 − 1

) k−1∑
m=1

Cm−1Ck−m−1

= 1− k

2 (k − 1)
Ck−1 + (1 + |t|)k−1Ck−1 ≤ Ck−1 (1 + |t|)k−1 (5.21)

wherein we have used k
2(k−1)Ck−1 ≥ 1 for all k ≥ 2. This completes the induction argument, proving (5.20)

holds. Now, taking s = 0 in (5.7) yields

ck(0, t) = e−
k
2
tνk(−t) (5.22)

meaning that νk(t) = e−
k
2
tck(0,−t), and this together with (5.20) proves (5.17). Then, using (5.7) once more,

(5.17) implies that

|ck(s, t)| = e−
k
2
t|νk(s− t)| ≤ e−

k
2
te−

k
2

(s−t) · Ck−1(1 + |s− t|)k−1

which prove (5.18).

Remark 5.6. Equations (5.19) and (5.22) together yield a recursion for the coefficients %k(t) = e
k
2
tνk(t) =

ck(0,−t):

%k(t) = 1− k

2

k−1∑
m=1

∫ t

0
%m(τ)%k−m(τ) dτ. (5.23)

This same recursion was derived in [4, Lemma 11], using free stochastic calculus, with νk(s) being identified as
the limit moments of the free unitary Brownian motion distribution. It is interesting that we can derive it directly
from derivative formulas on the unitary group.

Lemma 5.7. Let s, t > 0 and u ∈ C. For k ≥ 2, the bk(s, t, u) of (5.9) satisfy

|bk(s, t, u)| ≤ [5(1 + s)(1 + t)]k−1|u|k. (5.24)

Proof. Since b1(s, t, u) = u, (5.24) holds for k = 1. We proceed by induction, assuming (5.24) holds below
level k. Then (5.9) gives us

|bk(s, t, u)| ≤ |u|k +
k−1∑
m=1

∫ t

0
m|ck−m(s, τ)||bm(s, τ, u)| dτ. (5.25)
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The Catalan number Ck is ≤ 4k (in fact it is ∼ 4k/k3/2√π). Note that, for s, t > 0, 1 + |s− t| ≤ (1 + s)(1 + t).
Hence (5.18) implies that |ck(s, t)| ≤ [4(1 + s)(1 + t)]k−1. Thus (5.25) and the inductive hypothesis give us, for
k ≥ 2,

|bk(s, t, u)| ≤ |u|k +
k−1∑
m=1

∫ t

0
m[4(1 + s)(1 + τ)]k−m−1 · [5(1 + s)(1 + τ)]m−1|u|k dτ

= |u|k + |u|k · (1 + s)k−2

∫ t

0
(1 + τ)k−2 dτ ·

k−1∑
m=1

m4k−m−15m−1. (5.26)

Summing the geometric series, we may estimate

5k−1 − 4k−1 ≤
k−1∑
m=1

m4k−m−15m−1 ≤ (k − 1)5k−1.

Substituting this into (5.26) we have

|bk(s, t, u)| ≤ |u|k + |u|k(1 + s)k−2[(1 + t)k−1 − 1]
1

k − 1

k−1∑
m=1

m4k−m−15m−1

≤ |u|k
(

1− (1 + s)k−2 5k−1 − 4k−1

k − 1

)
+ 5k−1(1 + s)k−2(1 + t)k−1|u|k

≤ [5(1 + s)(1 + t)]k−1|u|k

where we have used that 1 + s ≥ 1 and 5k−1−4k−1

k−1 ≥ 1 for k ≥ 2. This concludes the inductive proof.

5.3 Holomorphic PDE

The double recursion of Proposition 5.2 can be written in the form of coupled holomorphic PDEs for the gener-
ating functions of ck(s, t) and bk(s, t, u).

Definition 5.8. Let s, t ∈ R. For z ∈ C, define

ψs(t, z) =

∞∑
k=1

ck(s, t)z
k.

Additionally, for u ∈ C define

φs,u(t, z) =
∞∑
k=1

bk(s, t, u)zk.

By (5.18) and the Catalan bound Ck ≤ 4k, the power series z 7→ ψs(t, z) is convergent whenever |z| <
es/2/4(1 + |s − t|); similarly, by (5.24), the power series z 7→ φs,u(t, z) is convergent whenever s, t > 0
and |z| < [5(1 + s)(1 + t)|u|]−1. Hence, ψs(t, · ) and φs,u(t, · ) are holomorphic in a small disk (with radius
that depends continuously on s, t > 0). Note that, by (5.5),

Π(s, t, u, z) =
∑
k≥1

ps,tk (u)zk =
∑
k≥1

e
k
2
tbk(s, t, u)zk = φs,u(t, e

t
2 z). (5.27)

So, identifying φs,u(t, z) will also identify the sought-after generating function Π(s, t, u, z).
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Proposition 5.9. For fixed s > 0, the functions R 3 t 7→ ψs(t, z) and R+ 3 t 7→ φs,u(t, z) are differentiable for
all sufficiently small |z| and |u|. Their derivatives are given by

∂

∂t
ψs(t, z) =

∞∑
k=1

∂

∂t
ck(s, t)z

k and
∂

∂t
φs,u(t, z) =

∞∑
k=1

∂

∂t
bk(s, t, u)zk.

Proof. From (5.8), ∂
∂tc1(s, t) = 0, while for k ≥ 2 we have

∂

∂t
ck(s, t) = k

k−1∑
m=1

ck−m(s, t)cm(s, t).

Hence, from (5.18) and the Catalan bound Ck ≤ 4k

k ,∣∣∣∣ ∂∂tck(s, t)
∣∣∣∣ ≤ k−1∑

m=1

m|ck−m(s, t)||cm(s, t)| ≤ (k − 1)4ke−
k
2
s(1 + |s− t|)k

for k ≥ 2. It follows that
∑∞

k=1
∂
∂tck(s, t)z

k converges to an analytic function of z on the domain |z| <
es/2/4(1 + |s − t|). Integrating this series term-by-term over the interval [0, t] shows that it is the derivative of
ψs(t, z), as claimed. A completely analogous argument applies to φs,u(t, z).

We will shortly write down coupled PDEs satisfies by ψs and φs,u. First, we remark on their initial conditions.
From Proposition 5.2, we have

ck(s, 0) = νk(s) and bk(s, 0, u) = uk.

Thus

ψs(0, z) =
∑
k≥1

νk(s)z
k, (5.28)

φs,u(0, z) =
∑
k≥1

ukzk =
uz

1− uz
. (5.29)

It will be convenient to express ψs(0, z) in terms of the shifted coefficients %k(s) = e
k
2
sνk(s) considered in

Remark 5.6. Define
%(s, z) =

∑
k≥1

%k(s)z
k = ψs(0, e

s
2 z). (5.30)

Note that, since νk(0) = 1 for all k, %(0, z) = z
1−z .

Proposition 5.10. For s, t > 0 and |z| and |u| sufficiently small, the functions %, ψs, and φs,u satisfy the following
holomorphic PDEs:

∂%

∂s
= −z%∂%

∂z
, %(0, z) =

z

1− z
, (5.31)

∂ψs

∂t
= zψs

∂ψs

∂z
, ψs(0, z) = %(s, e−

s
2 z), (5.32)

∂φs,u

∂t
= zψs

∂φs,u

∂z
, φs,u(0, z) =

uz

1− uz
. (5.33)

Remark 5.11. (1) PDE (5.31) was proved in [3, Lemma 1], using the recursion (5.23). We reprove it here, as
a special case of (5.32).
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(2) The requirement that s, t > 0 is only needed to verify the exponential growth bounds of the coefficients
bk(s, t, u); cf. Lemma 5.7. Lemma 5.4, on the other hand, is valid for all s, t ∈ R, and so (5.31) and (5.32)
are valid for s, t ∈ R.

Proof. First, Remark 5.6 and (5.22) show that %k(t) = ck(0,−t), and hence %(t, z) = ψ0(−t, z). Hence, (5.31)
follows immediately from (5.32). Now, Proposition 5.9 yields that ψs(t, z) is differentiable in t, and so by
Proposition 5.2

∂

∂t
ψs(t, z) =

∞∑
k=2

∂

∂t
ck(s, t) z

k =

∞∑
k=2

k−1∑
m=1

mcm(s, t)ck−m(s, t) zk. (5.34)

On the other hand, ψs(t, z) is analytic in z, and

z
∂

∂z
ψs(t, z) =

∞∑
k=1

ck(s, t) · z
∂

∂z
zk =

∞∑
k=1

kck(s, t)z
k,

and so

zψs(t, z)
∂

∂z
ψs(t, z) =

∞∑
k1=1

ck1(s, t)zk1 ·
∞∑
k2=1

k2ck2(s, t)zk2

=

∞∑
k=2

zk
∑

k1+k2=k
k1,k2≥1

k2ck1(s, t)ck2(s, t).

Reindexing the internal sum and comparing with (5.34) proves (5.32). The proof of (5.33) is entirely analogous.

5.4 Generating Function

We now proceed to prove the implicit formula (1.39), by solving the coupled PDEs (5.31)–(5.33). We do this
essentially by the method of characteristics. These quasilinear PDEs have a fairly simple form; as a result, the
characteristic curves are the same as the level curves in this case. As we will see, all three equations have the
same level curves.

Lemma 5.12. Fix s0 ≥ 0 and w0 ∈ C with |w0| < [4(1 + s0)]−1. Consider the exponential curve

w(s) = w0 e
%(0,w0)s.

Then s 7→ %(s,w(s)) is constant. In particular, %(s,w(s)) = %(0, w0) for all s ∈ [0, s0).

Proof. Lemma 5.4 shows that e
k
2
s|νk(s)| ≤ [4(1 + s)]k; thus %(s, w) = ψνs(e

s
2w) =

∑
k≥1 e

k
2
sνk(s)w

k con-
verges to an analytic function of w for |w| < [4(1 + s)]−1. Thus, since s 7→ [4(1 + s)]−1 is decreasing, %(s, w)
is differentiable in s and analytic in w for |w| < [4(1 + s0)]−1 and 0 ≤ s < s0. Since 4(1 + s0) > 1, the
initial condition %(0, w) = w

1−w is also analytic on this domain. Thus, subject to these constraints, we can simply
differentiate. To avoid confusion, we denote %̇(s, w) = ∂%

∂s (s, w) and %′(s, w) = ∂%
∂w (s, w).

d

ds
%(s,w(s)) = %̇(s,w(s)) + %′(s,w(s))ẇ(s). (5.35)

We now use (5.31), which asserts that %̇(s, w) = −w%(s, w)%′(s, w); hence

%̇(s,w(s)) = −w(s)%(s,w(s)) %′(s,w(s)).
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Plugging this into (5.35) yields

d

ds
%(s,w(s)) = %′(s,w(s)) [−w(s)%(s,w(s)) + ẇ(s)] . (5.36)

Note that w satisfies the ODE

ẇ(s) =
d

ds
w0 e

%(0,w0)s = %(0, w0)w0 e
%(0,w0)s = %(0, w0)w(s).

Substituting this into (5.35) yields

d

ds
%(s,w(s)) = %′(s,w(s))w(s) [%(0, w0)− %(s,w(s))] (5.37)

% (s,w(s)) |s=0 = %(0, w0).

We now easily see that % (s,w(s)) ≡ %(0, w0) = w0
1−w0

is indeed the (unique) solution to this this ODE.

Corollary 5.13. Subject to the constraints on s, w in Lemma 5.12, the function ψs(0, w) = %(s, e−
s
2w) is

constant along the curves s 7→ e
s
2w(s) = w0e

[%(0,w0)+ 1
2

]s. Note that

%(0, w0) + 1
2 = w0

1−w0
+ 1

2 = 1
2

1+w0
1−w0

.

Thus, for all sufficiently small w and s,

ψs(0, w e
s
2

1+w
1−w ) = υ(0, w) = %(0, w) =

w

1− w
. (5.38)

Differentiation shows that the function w 7→ we
s
2

1+w
1−w is strictly increasing for all w ∈ R (provided s < 4);

and in general for all w > 0 for all s; hence, (5.38) actually uniquely determines ψs(0, z) for z (by analytic
continuation) when s < 4; moreoever, by the inverse function theorem, it is analytic in z.

Following the idea of Lemma 5.12, we now show that the level-curves of the functions ψs and φs,u are also
exponentials.

Lemma 5.14. For z0 ∈ C, consider the exponential curve

z(t) = z0 e
−ψs(0,z0)t.

Then for z0 and t sufficiently small, t 7→ ψs(t, z(t)) and t 7→ φs,u(t, z(t)) are constant. In particular,

ψs(t, z(t)) = ψs(0, z0), and φs,u(t, z(t)) = φs,u(0, z0).

Proof. To improve readability, through this proof we suppress the parameters s, u and simply write φs,u(t, z) =
φ(t, z) and ψs(t, z) = ψ(t, z). As per the discussion following Definition 5.8, these functions are differentiable
in t and analytic in z for sufficiently small z. As in the proof of Lemma 5.12, we set ψ̇(t, z) = ∂

∂tψ(t, z), and
ψ′(t, z) = ∂

∂zψ(t, z), and similarly with φ̇ and φ′. Differentiating, we have

d

dt
ψ(t, z(t)) = ψ̇(t, z(t)) + ψ′(t, z(t))ż(t)

d

dt
φ(t, z(t)) = φ̇(t, z(t)) + φ′(t, z(t))ż(t).
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PDEs (5.32) and (5.33) say ψ̇(t, z) = zψ(t, z)ψ′(t, z) and φ̇(t, z) = zψ(t, z)ψ′(t, z), and so

d

dt
ψ(t, z(t)) = [z(t)ψ(t, z(t)) + ż(t)]ψ′(t, z(t)) (5.39)

d

dt
φ(t, z(t)) = [z(t)ψ(t, z(t)) + ż(t)]φ′(t, z(t)) (5.40)

As in the proof of Lemma 5.12, we note that z satisfies the ODE

ż(t)− z0ψ(0, z0)e−ψ(0,z0)t = −ψ(0, z0)z(t).

Substituting this into (5.39) and (5.40) yields

d

dt
ψ(t, z(t)) = [ψ(t, z(t))− ψ(0, z0)] z(t)ψ′(t, z(t)) (5.41)

d

dt
φ(t, z(t)) = [ψ(t, z(t))− ψ(0, z0)] z(t)φ′(t, z(t)). (5.42)

The initial condition for (5.41) is ψ(t, z(t))|t=0 = ψ(0, z0), and it follows immediately that ψ(t, z(t)) = ψ(0, z0)
is the unique solution of this ODE. Hence, (5.42) reduces to the equation d

dtφ(t, z(t)) = 0, and since its initial
condition is φ(t, z(t))|t=0 = φ(0, z0), it follows that φ(t, z(t)) = φ(0, z0) as well.

This brings us to the proof of (1.39). First, Lemma 5.14, together with the initial condition in (5.33), yields

φs,u(t, ze−ψ
s(0,z)t) = φs,u(0, z) =

uz

1− uz
=

1

1− uz
− 1. (5.43)

Next, Corollary 5.13 describes (s, z) 7→ ψs(0, z) in terms of its level curves; (5.38) states that

ψs(0, w e
s
2

1+w
1−w ) = %(0, w) =

w

1− w
. (5.44)

So set z = we
s
2

1+w
1−w ; then (5.43) and (5.44) say

φs,u(t, e−
w

1−w
twe

s
2

1+w
1−w ) = φs,u(t, e−ψ

s(0,z)tz) =
(

1− uwe
s
2

1+w
1−w

)−1
− 1. (5.45)

Finally, note that
− w

1−w = −1
2

1+w
1−w + 1

2

and so (5.45) may be written in the form

φs,u(t, e
t
2we

1
2

(s−t) 1+w
1−w ) =

(
1− uwe

s
2

1+w
1−w

)−1
− 1. (5.46)

Finally, recall (5.27), which (in this language) says that

Π(s, t, u, ζ) = φs,u(t, e
t
2 ζ). (5.47)

Setting ζ = we
1
2

(s−t) 1+w
1−w , (5.46) and (5.47) combine to yield(

1− uwe
s
2

1+w
1−w

)−1
− 1 = φs,u(t, e

t
2we

1
2

(s−t) 1+w
1−w ) = φs,u(t, e

t
2 ζ) = Π(s, t, u, ζ)

which is precisely the statement of (1.39).
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5.5 Proof of Theorem 1.31 (Bt,t = Gt)

We are now in a position to complete the proof of Theorem 1.31, modulo a small error in [4].

Remark 5.15. In [4, Lemma 18], there is a typographical error that is propagated through the remainder of that
paper. In the second line of the proof of that lemma, the function ι(t, ·) should be the inverse of z 7→ ze

t
2

1+z
1−z

rather than the inverse of z 7→ z
1+z e

t
2

(1+2z) as stated. That ι(t, ·) has this different form follows from [4,

Lemma 11], which defines the kernel function κ(t, z) (formula 4.2.2.a) implicitly by κ(t,z)−1
κ(t,z)+1e

t
2
κ(t,z) = z; then

ι(t, z) = κ(t,1/z)+1
κ(t,1/z)−1 yields the result. Hence, the correct generating function for the Biane polynomials in [4] is

the one in (1.39). The presence of this error, and the tracking of its source, were confirmed by Philippe Biane in
a private communication on October 27, 2011.

Proof of Theorem 1.31. By the density of trigonometric polynomials in L2(T, νt) for any measure νt, the trans-
form G t is determined by its action on Laurent polynomial functions. Hence, to verify that Bt,t = G t, it suffices
to verify that (G t)−1 agrees with Ht,t on monomials z 7→ zk for k ∈ Z. Eq. (5.2) is consistent with [4, Lemma
18], and so it suffices to prove this result for k ≥ 1. Eq. (1.39) verifies that the Biane polynomials pt,tk for Ht,t

have the same generating function as the Biane polynomials of G t (cf. Remark 5.15), and this concludes the
proof.

A Heat Kernel Measures on Lie Groups

Suppose that G is a connected Lie group and β is a basis for Lie (G). Then A =
∑

X∈β ∂
2
X is a left-invariant

non-positive elliptic differential operator which is essentially self adjoint onC∞c (G) as an operator on L2 (G, dg)
where dg is a right Haar measure on G. Associated to the contraction semigroup

{
etA/2

}
t>0

is a convolution
semigroup of probability (heat kernel) densities {ht}t>0. In more detail, R+ × G 3 (t, g) → ht(g) ∈ R+ is a
smooth function such that

∂tht(g) =
1

2
Aht(g) for t > 0

and
lim
t↓0

∫
G
f(g)ht(g) dg = f(e) for all f ∈ Cc(G).

(Throughout, e = 1G.) Basic properties of these heat kernels are summarized in [8, Proposition 3.1] and [9,
Section 3.]. For an exhaustive treatment of heat kernels on Lie groups see [24] and [31]. For our present purposes,
we need to know that, if G = U(N) or G = GL(N,C) (and so ht is the density of ρt or µs,t, respectively), then∫

G
f(g)ht(g) dg =

∞∑
n=0

1

n!

(
t

2

)n
(Anf) (I) for all t ≥ 0 (A.1)

whenever f is a trace Laurent polynomial. This result can be seen as a consequence of Langland’s theorem; see,
for example, [24, Theorem 2.1 (p. 152)]. As it is a bit heavy to get to Langland’s theorem in Robinson we will,
for the reader’s convenience, sketch a proof of (A.1); see Theorem A.2 below. For the rest of this section let d
denote the left-invariant metric on G such that {∂X}X∈β is an orthonormal frame on G and set |g| = d(e, g).
Also let us use the abbreviation ht(f) for

∫
G f(g)ht(g) dg.

Lemma A.1. Suppose f : [0, T ]×G→ C is a C2 function such that |h(t, g)| ≤ CeC|g| for some C <∞, where
h is any of the functions f , ∂tf , or ∂Xf for any X ∈ Lie(A), or Af . Then

∂tht (f(t, ·)) = ht

(
∂tf(t, ·) +

1

2
Af(t, ·)

)
for t ∈ (0, T ] (A.2)
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and
lim
t↓0

ht (f(t, ·)) = f(0, ·). (A.3)

Proof. Let {hn} ⊂ C∞c (G, [0, 1]) be smooth cutoff functions as in [8, Lemma 3.6] and set fn(t, g) ≡ hn(g)f(t, g).
Then it is easy to verify that it is now permissible to differentiate past the integrals and perform the required in-
tegration by parts in order to show that

d

dt
[ht(fn(t, ·))] = ht

(
∂tf(t, ·) +

1

2
Af(t, ·)

)
.

Let F (t, ·) = ∂tf(t, ·) + 1
2Af(t, ·) and

Fn(t, ·) = ∂tfn(t, ·) +
1

2
Afn(t, ·)

= F (t, ·)hn +
1

2
f(t, ·)Ahn +

∑
X∈β

∂Xf(t, ·)∂Xhn.

From the properties of hn and the assumed bounds on f , given ε ∈ (0, T ) there exist C < ∞ independent of n
such that

sup
ε≤t≤T

|Fn(t, g)− F (t, g)| ≤ 1|g|≥nCe
C|g|.

It then follows by the standard heat kernel bounds (see for example [31] or [24, page 286]) that

sup
ε≤t≤T

|ht (Fn(t, ·))− ht (F (t, ·))| → 0 as n→∞.

Hence we may conclude that d
dt [ht(f(t, ·))] exists and

d

dt
[ht (f(t, ·))] = lim

n→∞

d

dt
[ht (fn(t, ·))]

= ht

(
∂tfn(t, ·) +

1

2
Afn(t, ·)

)
for ε < t ≤ T

which proves (A.2). To prove (A.3) we start with the estimate

|ht (f(t, ·))− f(0, e)| =
∣∣∣∣∫
G

[f(t, y)− f(0, e)]ht(y) dy

∣∣∣∣
≤
∫
G
|f(t, y)− f(0, e)|ht(y) dy

≤ δ(ε, t) + C

∫
|y|>ε

eC|y|ht(y) dy

where
δ(ε, t) =

∫
|y|≤ε

|f(t, y)− f(0, e)|ht(y) dy ≤ sup
|y|≤ε
|f(t, y)− f(0, e)| .

From [8, Lemma 4.3] modified in a trivial way from its original form where ε was take to be 1, we know that

lim sup
t↓0

∫
|y|>ε

ec|y|ht(y) dy = 0 for all ε > 0 and c <∞.

Therefore, we conclude that

lim sup
t↓0

|ht (f(t, ·))− f(0, e)| ≤ lim sup
t↓0

δ(ε, t)→ 0 as ε ↓ 0

as claimed.
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Theorem A.2. Suppose now that G = U(N) or G = GL(N,C) and PN is a trace Laurent polynomial function
on G. Then for T > 0,

hT (PN ) =

( ∞∑
n=0

1

n!

(
T

2

)n
AnPN

)
(I). (A.4)

Proof. Fix T > 0, and for 0 < t < T let

f(t, ·) =
∞∑
n=0

1

n!

(
T − t

2

)n
AnPN

where the sum is convergent as A is a bounded operator on the finite dimensional subspace of trace Laurent
polynomials of trace degree degP or less. Moreover, f(t, ·) is again a trace Laurent polynomial with time
dependent coefficients and f satisfies

∂tf(t, ·) +
1

2
Af(t, ·) = 0 with f(T, ·) = PN .

From Lemma A.1 we may now conclude,

d

dt
[ht (f(t, ·))] = ht

(
∂tf(t, ·) +

1

2
Af(t, ·)

)
= 0.

Therefore t→ ht (f(t, ·)) is constant for t > 0 and hence, using Lemma A.1 again,

hT (PN ) = hT (f(T, ·)) = lim
t↓0

ht (f(t, ·)) = f(0, I) =

( ∞∑
n=0

1

n!

(
T

2

)n
AnPN

)
(I).
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