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Abstract

We study dilated holomorphic Lp space of Gaussian measures over Cn, denoted Hn
p,α with variance

scaling parameter α > 0. The duality relations (Hn
p,α)∗ ∼= Hp′,α hold with 1

p + 1
p′ = 1, but not isometrically.

We identify the sharp lower constant comparing the norms on Hp′,α and (Hn
p,α)∗, and provide upper and

lower bounds on the sharp upper constant. We prove several suggestive partial results on the sharpness of the
upper constant. One of these partial results leads to a sharp bound on each Taylor coefficient of a function in
the Fock space for n = 1.
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1 Introduction

This paper is concerned with the holomorphic Lp spaces associated to Gaussian measures on Cn. In the case
p = 2, such spaces are often called Segal–Bargmann spaces [3] or Fock spaces [9]. They are core examples in the
theory of holomorphic reproducing kernel Hilbert spaces, with connections to quantum field theory, stochastic
analysis, and beyond. The scaling of duality between these holomorphic Lp-spaces is still not fully understood;
this paper presents some new sharp results, and new puzzles about these dual norms.
∗Supported by NSF CAREER Award DMS-1254807

1



To fix notation, let α > 0, n ∈ N, and let γnα denote the following Gaussian probability measure on Cn:

γnα(dz) =
(α
π

)n
e−α|z|

2
λn(dz),

where λn is the Lebesgue measure on Cn. The spaces considered in this paper are of the form Lphol(γ
n
α) for

1 ≤ p <∞ and some α > 0, the subspaces of the full Lp(γnα)-spaces consisting of holomorphic functions. These
are Banach spaces in the usual Lp-norm. However, as discovered by Sjögren [7] and proved as [2, Proposition
1.5], in this scaling, with 1

p + 1
p′ = 1 as usual, Lphol(γ

n
α) and Lp

′
(γnα) are not dual to each other when p 6= 2. It

was shown by Janson, Peetre, and Rochberg [4] that the correct scaling requires the parameter α to dilate with p.
That is, we define the dilated holomorphic Lp space as

Hn
p,α ≡ L

p
hol(γ

n
αp/2) =

{
f ∈ Hol(Cn) :

∫ ∣∣∣f(z)e−α|z|
2/2
∣∣∣p λn(dz) <∞

}
, (1.1)

with norm

‖h‖p,α = ‖h‖Hn
p,α
≡
(∫
|h|p dγnαp/2

)1/p

. (1.2)

Similarly, if Λ ∈ (Hn
p,α)∗ is a bounded linear functional, denote its dual norm by

‖Λ‖∗p,α = ‖Λ‖(Hn
p,α)

∗ ≡ sup
g∈Hn

p,α\{0}

|Λ(g)|
‖g‖p,α

. (1.3)

(We de-emphasize the n-dependence of the norms ‖ · ‖p,α and ‖ · ‖∗p,α; it will always be clear from context.) It
was shown in [4] that Hn

p,α and Hn
p′,α are dual spaces for 1 < p < ∞. One of the two main theorems of the

present authors’ paper [2] was the following estimate on the sharp constants of comparison for the dual norms.

Theorem 1.1 (Theorem 1.2 in [2]). Let 1 < p <∞, and 1
p + 1

p′ = 1. Define the constant Cp by

Cp ≡ 2
1

p1/p
1

p′1/p
′ . (1.4)

Let n ∈ N and α > 0. Define 〈f, g〉α =
∫
Cn fg dγ

n
α. Then for any h ∈ Hn

p′,α,

‖h‖p′,α ≤ ‖〈·, h〉α‖∗p,α ≤ Cnp ‖h‖p′,α. (1.5)

Presently, we are interested in the sharpness of the inequalities in (1.5). In fact, the first inequality is sharp,
and this yields a new concise proof of a pointwise bound for the space Hn

p,α.

Theorem 1.2. Let 1 < p <∞, 1
p + 1

p′ = 1, and α > 0. Then

inf
h∈Hn

p′,α\{0}

‖〈·, h〉α‖∗p,α
‖h‖p′,α

= 1.

It follows that, for any z ∈ Cn, and any g ∈ Hn
p,α,

|g(z)| ≤ e
α
2
|z|2‖g‖p,α. (1.6)

Remark 1.3. The bound (1.6) is well-known; it can be found, for example, as [9, Theorem 2.8]. In fact, it is
common to define a supremum norm on holomorphic functions g as

‖g‖∞,α = sup
z∈Cn

g(z)e−
α
2
|z|2 ,

in which case (1.6) can be elegantly rewritten as ‖g‖∞,α ≤ ‖g‖p,α for 1 < p <∞.
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That the first inequality in (1.5) should hold sharply is natural to expect from the method of proof given in
[2]. Indeed, it is instructive to write (1.5) in the alternate form proven in our first paper. Note that Hn

2,α is a
closed subspace of L2(γnα); let Pnα : L2(γnα)→ Hn

2,α denote the orthogonal projection. In fact, Pnα is an integral
operator that is bounded from Lp(γnαp/2) to Hn

p,α for all 1 < p < ∞, as was originally shown in [4]. Denote by
‖Pnα ‖p→p ≡ ‖Pnα : Lp(γnα)→ Hn

p,α‖. In [2, Lemma 1.18], we proved that

1

‖Pnα ‖p→p
‖h‖p′,α ≤

1

Cnp
‖〈·, h〉α‖∗p,α ≤ ‖h‖p′,α. (1.7)

The 1/Cnp in the middle term comes from the global geometry underlying these spaces. Note from (1.1) that
Hn
p,α can be though of as consisting of “holomorphic sections”: functions F of the form F (z) = f(z)e−α|z|

2/2

for some holomorphic f ; the integrability condition for containment in Hn
p,α is then simply that F ∈ Lp(Cn, λn).

The factor 1/Cnp then arises from the constants relating the norms ‖ · ‖p,α and ‖ · ‖p′,α to the Lp(Cn, λn)- and

Lp
′
(Cn, λn)-norms, yielding p1/p and p′1/p

′
factors from the normalization coefficients of the measures γnαp/2 and

γnαp′/2. The first inequality in (1.7) then simplifies due to the first main theorem [2, Theorem 1.1], which states
that ‖Pnα ‖p→p = Cnp . The sharpness of the first inequality in (1.5) is indicative of the fact that the orthogonal
projection Pnα controls the geometry of the spaces Hn

p,α.
In this context, the second inequality in (1.7), and hence in (1.5), is simply Hölder’s inequality. In the

larger spaces Lp(Cn, λn) and Lp
′
(Cn, λn) where the section spaces Hn

p,α live, Hölder’s inequality is, of course,

sharp: if F ∈ Lp(Cn, λn), then the function G = |F |p−2F is in Lp
′
(Cn, λn) and ‖G‖p′ = ‖F‖p/p

′
p , so that

〈F,G〉 = ‖F‖pp = ‖F‖p‖G‖p′ . However, the function G is typically not a holomorphic section, and so it is not
a surprise that the same saturation argument fails in the spaces Hn

p,α. In fact, we can say more.

Theorem 1.4. Let 1 < p <∞, p 6= 2, 1
p + 1

p′ = 1, and α > 0. If g ∈ Hn
p,α and h ∈ Hn

p′,α are non-zero, then

|〈g, h〉α| < Cnp ‖g‖p,α‖h‖p′,α. (1.8)

Theorem 1.4 asserts that Hölder’s inequality is a strict inequality in the Segal-Bargmann spaces. It is a priori
possible that the inequality is nevertheless saturated by a sequence in Hn

p,α×Hn
p′,α, but we believe this is not the

case. Indeed, we conjecture that the second inequality in (1.5) is not sharp. To the question of the sharp constant,
we prove the following.

Theorem 1.5. Let 1 < p <∞, 1
p + 1

p′ = 1, n ∈ N, and α > 0. For g ∈ Hn
p,α and h ∈ Hn

p′,α nonzero, define

Rp,α(g, h) =
|〈g, h〉α|

‖g‖p,α‖h‖p′,α
.

Then
Cn/2p ≤ sup

g∈Hn
p,α\{0}

sup
h∈Hn

p′,α\{0}
Rp,α(g, h) ≤ Cnp . (1.9)

We can exhibit sequences in Hn
p,α ×Hn

p′,α that saturate (1.8) with Cn/2p in place of Cnp , as will be demonstrated
in the proof of Theorem 1.5 (cf. (3.10)); indeed, such a saturating sequence can be built from monomials. If the
same bound could be shown to hold not only for monomials but all holomorphic polynomials, this would prove
the sharpness of the Cn/2p -bound in general (since holomorphic polynomials are dense in Hn

p,α). This conjecture
seems to be quite difficult to prove. The final major results of this paper are two partial results in this direction,
summarized as follows.

Theorem 1.6. Let 1 < p <∞, n ∈ N, and α > 0. Let Mn denote the space of holomorphic monomials on Cn.
Then

sup
g∈Hn

p,α\{0}
sup
h∈Mn

Rp,α(g, h) = Cn/2p .
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That is: restricting one variable of Rp,α to run through monomials, but letting the other run freely over Hn
p,α

yields the conjectured global maximum.
Theorem 1.6 is proved as a corollary to Theorem 4.4 below, which has its own independently interesting

corollaries. In particular, we have the following result:

Corollary 1.7. Let 1 < p < ∞ and α > 0. Let f ∈ H1
p′,α and with the Taylor series

∑∞
k=0 akz

k. Then for any
j ∈ N ∪ {0}, we have

‖ajzj‖p,α ≤

∥∥∥∥∥
∞∑
k=0

akz
k

∥∥∥∥∥
p,α

= ‖f‖p,α,

and

|aj | ≤
(αp

2

)j/2
Γ
(
jp
2 + 1

)1/p ‖f‖p,α. (1.10)

In either inequality above, we have equality if and only if f(z) is a constant multiple of zj .

Corollary 1.7 is proven as Corollary 4.7. A non-sharp bound (but one independent of j) akin to (1.10) can
be found in [9, Ch. 2, Ex. 18], and a growth condition on Taylor coefficients can be found as Corollary 5 in [8].
We believe that the sharp estimate of (1.10) is new. Finally, we prove the following partial result: restricting to
Gaussian-like functions in H1

p,α yields the desired maximum.

Theorem 1.8. Let Gα denote the space of quadratic exponential functions in H1
2,α (cf. (5.3)). Then

sup
g,h∈Gα

Rp,α(g, h) =
√
Cp.

Given the Gaussian nature of the spaces H1
p,α, it is very natural to expect the maximum of Rp,α to be achieved

on “Gaussian” functions, in light of [5], for example. Theorem 1.8 is proved as Theorem 5.2 below.

2 The Sharp Lower Constant

Our overall goal in this section is to prove Theorem 1.2. To prove this theorem and others in the paper, many
integrals involving Gaussian and exponential functions will be calculated. Often the details of these calculations
will be omitted, but are based on the following formula (cf. [6]):

Lemma 2.1. Let A be a complex symmetric matrix, v a vector in Rk, and let (·, ·) denote the standard inner
product on Rk. Define the function f(x) = exp(−(x,Ax) + 2(v, x)). Then f ∈ L1(Rk) if and only if <(A) is
positive definite, and in this case,∫

Rk
e−(x,Ax)+2(v,x) dx =

πk/2√
det(A)

e(v,A
−1v). (2.1)

Theorem 1.2 has two claims: first, that

inf
h∈Hn

p′,α\{0}

‖〈·, h〉α‖∗p,α
‖h‖p′,α

= 1 (2.2)

and the infimum is achieved on functions of the form hαz (w) = eα〈w,z〉 for any z ∈ Cn. Secondly, for any z ∈ Cn,
and any g ∈ Hn

p,α,
|g(z)| ≤ e

α
2
|z|2‖g‖p,α (2.3)
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and the above equation is sharp.
As we stated in the introduction, (2.3) is well-known. In fact one can use it to prove the first part of the

Theorem 1.2. To see how, we first record a fact (first proved in [4]) that will be useful in the following arguments
as well. The projection Pnα : L2(γnα)→ Hn

p,α is given by the integral operator

(Pnα g)(z) =

∫
Cn
eα〈z,w〉g(w) γnα(dw) = 〈g, hαz 〉α, (2.4)

where for any z ∈ Cn we define the function hαz as

hαz (w) = eα〈w,z〉.

Since polynomials are dense in L2(γnα), we may extend this integral operator to act densely on any space in
which polynomials are dense. The first main theorem of [2] shows that Pnα is, in fact, bounded on Lp(γnαp/2),
with image in Hn

p,α. Now, any holomorphic polynomial g over Cn is in Hn
2,α and so Pnα g = g; since holomorphic

polynomials are dense in Hn
p,α, it therefore follows that

(Pnα g)(z) = 〈g, hαz 〉α = g(z), for all z ∈ Cn, g ∈ Hn
p,α. (2.5)

Remark 2.2. Since Hn
p,α ⊂ Lp(γnαp/2), it might seem more natural to expect that the reproducing formula for

functions in Hn
p,α should involve the reproducing kernel hαp/2z (w) = e

αp
2
〈z,w〉. This would be true if the inner

product used was 〈·, ·〉αp/2; it is a remarkable and useful fact that, using the fixed inner product 〈·, ·〉α for all Hn
p,α

spaces gives a consistent reproducing kernel for all of them.
Now we can state the following lemma:

Lemma 2.3. Let 1 < p <∞. If (2.3) holds for all g ∈ Hn
p,α and z ∈ Cn, then (2.2) holds.

Proof. Assume (2.3) holds for all g ∈ Hn
p,α. Note that by (1.5) we know that

inf
h∈Hn

p′,α\{0}

‖〈·, h〉α‖∗p,α
‖h‖p′,α

≥ 1 (2.6)

Assume that (2.3) holds for functions g in Hn
p,α. For any fixed z ∈ Cn, the functional 〈·, hαz 〉α is pointwise

evaluation at z, cf. (2.5). Thus, by (2.3), we know that

‖〈·, hαz 〉α‖∗p,α ≤ e
α
2
|z|2

However, one can easily calculate using Lemma 2.1 that

‖hαz ‖p′,α = e
α
2
|z|2 ,

proving that ‖〈·, hαz 〉‖∗p,α ≤ ‖hαz ‖p′,α. Thus, by (2.6) we have proven (2.2) and shown that this infimum is
achieved at each hαz , as desired.

Note that Lemma 2.3 actually proves Theorem 1.2 since (2.3) is known to hold for all g ∈ Hn
p,α and z ∈ Cn;

it is often referred to as Bargmann’s inequality. However, we have an alternate proof of Theorem 1.2 that proves
the result independently of the a priori truth of (2.3). That is, without assuming (2.3) is true, we can prove both
(2.2) and (2.3). This proof is based on the following lemma:

Lemma 2.4. Let n ∈ N, α > 0, and 1 < p <∞ with 1
p + 1

p′ = 1. Let h ∈ Hn
p′,α. Then

‖〈·, h〉α‖∗p,α = Cnp inf
f∈P−1

α h
‖f‖p′,α.

Furthermore, there exists a function f̃ ∈ P−1α h where the infimum is achieved.

The rest of this section is devoted to proving the Lemma 2.4 and using it to prove Theorem 1.2.
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2.1 A Relationship Between the Norm, the Dual Norm, and the Projection P n
α

Before we prove Lemma 2.4, we need some preliminary results. While we refer to the mappingPnα : Lp(γnαp/2)→
Hn
p,α as a “projection,” it is of course not a true orthogonal projection for p 6= 2 as in this case Hn

p,α is not a
Hilbert space. However, it acts like a projection in the following ways (as proven in [4]): Pnα is the identity on
elements in Hn

p,α (this was actually shown in (2.5)) and Pnα is “self-adjoint” in the following sense:

〈Pnα g, h〉α = 〈g, Pnαh〉α for all (g, h) ∈ Lp(γnα)× Lp′(γnα). (2.7)

As we alluded to in the Introduction, to prove a statement about the spaces Hn
p,α it can be useful to prove an

analogous statement in a corresponding Lebesgue measure setting. Indeed, the differing measures of γnαp/2 and
γnαp′/2 preclude us from using some basic results of duality in Lp spaces. To remove this complication, we define
a mapping gnp,α : Lp(γnαp/2)→ Lp(Cn, λn) as

(gnp,αf)(z) =
(pα

2π

)n/p
e−

α
2
|z|2f(z).

It is easy to check that gnp,α is an isometric isomorphism. Furthermore, define the set Snp,α as the image of Hn
p,α

under gnp,α above. That is,

Snp,α = {F : ‖F‖p,λ <∞, z 7→ F (z)e
α
2
|z|2 is holomorphic}

where ‖F‖p,λ is the Lp(Cn, λn) norm of F . The space Snp,α is the set of so-called “holomorphic sections”
mentioned in the introduction. Using the isomorphism gnp,α one can see that (Snp,α)∗ = Snp′,α as identified using
the usual Lebesgue integral pairing (G,H)λ =

∫
Cn GH dλn.

Define a new operator Qnα : Lp(Cn, λn)→ Lp(Cn, λn) as

Qnα = gnp,αP
n
α

(
gnp,α

)−1
.

Note that Qnα does not actually depend on p. Indeed, gnp,α only depends on p through multiplication by p-
dependent constant. From this fact, it is easy to see that

Qnα = gα,2P
n
α g
−1
α,2,

justifying the notation. By definition, the following diagram commutes:

Lp(γαp/2)
gnp,α //

Pnα
��

Lp(Cn, λn)

Qnα
��

Hn
p,α gnp,α

// Snp,α

Denote by ‖Qnα‖p→p the norm of Qnα as an operator on Lp(Cn, λn) and ‖Pnα ‖p→p the norm of Pnα as an operator
on Lp(γnαp/2). Since gnp,α and its inverse are isometric, it is not difficult to show that Pnα and Qnα share many
similar properties. Specifically,

1. ‖Qnα‖p→p = ‖Pnα ‖p→p,

2. Qnα is the identity on Snp,α and maps onto Snp,α for 1 < p <∞, and

3. Qnα is “self-adjoint” in the sense of (2.7) in the pairing (G,H)λ =
∫
Cn GH dλn.
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To precisely state the third fact above, we write

(QnαG,H)λ = (G,QnαH)λ for all (G,H) ∈ Lp(Cn, λn)× Lp′(Cn, λn). (2.8)

We can now state and prove a result analogous to Lemma 2.4 for the space of holomorphic sections. Below
‖ · ‖(Snp,α)∗ denotes the dual norm of Snp,α.

Lemma 2.5. Let H ∈ Snp′,α. Then

‖(·, H)λ‖(Snp,α)∗ = inf
F∈(Qnα)−1H

‖F‖p′,λ.

Furthermore, there exists some F̃ ∈ (Qnα)−1H ⊆ Lp′(Cn, λn) such that

inf
F∈(Qnα)−1H

‖F‖p′,λ = ‖F̃‖p′,λ.

Proof of Lemma 2.5. Let H ∈ Snp′,α be arbitrary. We prove the first equation of the lemma by showing that

‖(·, H)λ‖(Snp,α)∗ ≤ inf
F∈(Qnα)−1H

‖F‖p′,λ, and (2.9)

‖(·, H)λ‖(Snp,α)∗ ≥ inf
F∈(Qnα)−1H

‖F‖p′,λ. (2.10)

We first prove (2.9). Let F ∈ (Qnα)−1H be arbitrary. Then

‖(·, H)λ‖(Snp,α)∗ = sup
G∈Snp,α

|(G,H)λ|
‖G‖p,λ

= sup
G∈Snp,α

|(G,QnαF )λ|
‖G‖p,λ

= sup
G∈Snp,α

|(QnαG,F )λ|
‖G‖p,λ

= sup
G∈Snp,α

|(G,F )λ|
‖G‖p,λ

≤ sup
G∈Lp(Cn,λn)

|(G,F )λ|
‖G‖p,λ

= ‖F‖p′,λ.

Since F ∈ (Qnα)−1H was arbitrary, we have proven (2.9).
To prove (2.10), define the linear functional Λ : Snp,α → C as

Λ(G) = (G,H)λ.

Note that ‖(·, H)λ‖(Snp,α)∗ = ‖Λ‖, so that Λ is bounded. By the Hahn-Banach theorem there is a linear functional
Λ̃ : Lp(Cn, λn) → C that extends Λ without increasing its norm. As Λ̃ ∈ (Lp(Cn, λ))∗, there exists a function
F̃ ∈ Lp′(Cn, λn) such that

Λ̃(G) = (G, F̃ )λ.

First note that for any G ∈ Lp(Cn, λn) we have

(G,QnαF̃ )λ = (QnαG, F̃ )λ = Λ̃(QnαG) = Λ(QnαG) = (QnαG,H)λ = (G,H)λ,

proving F̃ ∈ (Qnα)−1H . Then

‖(·, H)λ‖(Snp,α)∗ = ‖Λ̃‖ = sup
G∈Lp(Cn,λn)

|(G, F̃ )λ|
‖G‖p,λ

= ‖F̃‖p′,λ ≥ inf
G∈(Qnα)−1H

‖G‖p′,λ,

proving (2.10). Combining (2.9) and the preceding inequality, we see that ‖F̃‖p′,λ = infG∈(Qnα)−1H ‖G‖p′,λ,
completing the lemma.

We can now provide a proof for Lemma 2.4:
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Proof of Lemma 2.4. For g ∈ Lp(γnαp/2) and h ∈ Lp′(γnαp′/2), a straightforward calculation reveals that

〈g, h〉α = Cnp · (gnp,αg, gnp′,αh)λ. (2.11)

Note that the constant Cnp pops up above since we are combining two different isometries: gnp,α and gnp′,α. A
straightforward combination of (2.11) and Lemma 2.5 completes the proof.

Remark 2.6. Before moving on to a proof of Theorem 1.2, we note here that we can use Lemma 2.4 to rederive
(1.5). That is, the inequality

‖h‖p′,α ≤ ‖〈·, h〉α‖∗p,α ≤ Cnp ‖h‖p′,α.

Let h ∈ Hn
p,α be arbitrary. For the first inequality, note that for any f ∈ (Pnα )−1h

‖h‖p′,α
‖Pnα ‖p′→p′

≤ ‖f‖p′,α. (2.12)

Thus,
‖h‖p′,α
‖Pnα ‖p′→p′

≤ inf
f∈P−1

α h
‖f‖p′,α.

Also, h ∈ P−1α h, so that
inf

f∈P−1
α h
‖f‖p′,α ≤ ‖h‖p′,α.

Putting these inequalities together gives us

‖h‖p′,α
‖Pnα ‖p′→p′

≤ inf
f∈P−1

α h
‖f‖p′,α ≤ ‖h‖p′,α.

Using Lemma 2.4 and the fact that ‖Pnα ‖p′→p′ = Cnp (from [2]) in the above equation gives us

‖h‖p′,α
Cnp

≤
‖〈·, h〉α‖∗p,α

Cnp
≤ ‖h‖p′,α.

Multiplying the above by Cnp gives us a proof of (1.5).

2.2 Proof of Theorem 1.2 Using Lemma 2.4

We are now ready to prove Theorem 1.2. We first prove

inf
h∈Hn

p′,α\{0}

‖〈·, h〉α‖∗p,α
‖h‖p′,α

= 1 (2.13)

and that this infimum is achieved. Note that by the proof of (1.5) in Remark 2.6, to prove equality in (2.13) it
suffices to show that there exists some h ∈ Hn

p,α and f ∈ (Pnα )−1h such that there is equality in (2.12). That is

‖h‖p′,α
Cnp

= ‖f‖p′,α. (2.14)

Let f(z) =
(pα
2π

)p/n
e−

α
2
|z|2 ; then Pnα f ≡ 1 ≡ hα0 (the z = 0 case of the function hαz (w) = eα〈w,z〉). A

straightforward computation shows that h = hα0 and f satisfy (2.14). This proves (2.13).
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Now, using (2.5), we have 〈g, hα0 〉α = g(0). We just showed that ‖〈·, h0〉α‖∗p,α = ‖h0‖p′,α, which means that
the following inequality is sharp:

|g(0)| ≤ ‖g‖p,α for all g ∈ Hn
p,α. (2.15)

Let z ∈ Cn be arbitrary. Let g ∈ Hn
p,α be arbitrary. Define a new function gz(w) = g(z + w)e−α〈w+z,z〉. Note

that gz is holomorphic and

‖gz‖pp,α =
(αp

2π

)n ∫
Cn
|g(z + w)e−α〈w+z,z〉|pe−αp|w|2/2 λn(dw)

=
(αp

2π

)n ∫
Cn
|g(y)e−α〈y,z〉|pe−αp|y−z|2/2 λn(dy)

= e−αp|z|
2/2

∫
Cn
|g(y)|p

(αp
2π

)n
e−αp|y|

2/2 λn(dy) = e−αp|z|
2/2‖g‖pp,α <∞,

proving that gz ∈ Hn
p,α. Applying (2.15) to gz yields the inequality

|g(z)| ≤ eα|z|2/2‖g‖p,α for all g ∈ Hn
p,α. (2.16)

A straightforward calculation shows that the inequality (2.16) is an equality when g = hαz , proving the inequality
sharp. The sharpness of (2.16) proves that ‖〈·, hαz 〉α‖∗p,α = eα|z|

2/2 = ‖hαz ‖p′,α, proving the infimum (2.13) is
achieved at each hαz and completing the proof of Theorem 1.2.

3 The Strictness of Hölder’s Inequality and a Lower Bound for the Sharp Up-
per Constant

As Theorem 1.2 is proven, we know that the left-hand inequality of (1.5) is sharp. For the remainder of the paper,
we will consider the right-hand inequality, that is

‖〈·, h〉α‖∗p,α ≤ Cnp ‖h‖p′,α. (3.1)

As we stated in the introduction, we do not know whether (3.1) is sharp, but Theorems 1.4, 1.5, 1.6 and 1.8
suggest that it is not sharp. We presently prove Theorems 1.4 and 1.5.

3.1 The Proof of Theorem 1.4

Here will prove that Hölder’s inequality is not sharp in the Segal-Bargmann spaces. Let 1 < p < ∞, p 6= 2,
g ∈ Hn

p,α, and h ∈ Hn
p′,α, neither identically 0. We will proceed by contradiction. That is, suppose that g and h

give equality in Hölder’s inequality (modified by the constant Cnp to account for the scaling of the spaces Hn
p,α).

Thus,

|〈g, h〉α| ≤
∫
Cn
|g(z)h(z)| γnα(dz) (3.2)

=
(α
π

)n ∫
Cn
|g(z)e−α|z|

2/2||h(z)e−α|z|
2/2|λn(dz)

≤
(α
π

)n(∫
Cn
|g(z)e−α|z|

2/2|p λn(dz)

)1/p(∫
Cn
|h(z)e−α|z|

2/2|p′ λn(dz)

)1/p′

(3.3)

=
(α
π

)n(2π

pα

)n/p( 2π

p′α

)n/p′
‖g‖Lp(γαp/2)‖h‖Lp′ (γαp′/2)

= Cnp ‖g‖Lp(γαp/2)‖h‖Lp′ (γαp′/2) = |〈g, h〉α|,

9



proving that both (3.2) and (3.3) are actually equalities. For equality in (3.3), we must have

|g(z)e−α|z|
2/2|p = βp|h(z)e−α|z|

2/2|p′

for some β > 0. Rearranging the above gives us

|g(z)| = β|h(z)|p′/pe−
α(p′−p)

2p
|z|2
. (3.4)

For (3.2) to be an equality, we must have

g(z)h(z) = eiθ0f(z), (3.5)

where θ0 ∈ [0, 2π] and f is a nonnegative real-valued function. By replacing g(z) with β−1e−iθ0g(z), we
preserve holomorphicity and the finiteness of the ‖ · ‖p,α-norm. Thus, without loss of generality, we may assume
that eiθ0 = β = 1, and replace Equations (3.4) and (3.5) with

|g(z)| = |h(z)|p′/pe−
α(p′−p)

2p
|z|2
, (3.6)

and
g(z)h(z) = f(z), where f is non-negative real-valued. (3.7)

Since g, h are holomorphic and not identically 0, they are each non-zero on an open dense subset of Cn; thus,
there is an open set U where neither g nor h vanishes. Then g/h is holomorphic on U , and

g(z)

h(z)
=
g(z)h(z)

|h(z)|2
=

f(z)

|h(z)|2
> 0 for z ∈ U.

Thus, g/h is a positive holomorphic function, and so it is equal to a positive constant c on U . Equation (3.6) then
shows that

c|h(z)| = |h(z)|p′/pe−
α(p′−p)

2p
|z|2
.

Solving for |h(z)| above and raising each side to the p
p−p′ power (which is possible as p 6= 2 and thus p 6= p′)

gives

|h(z)| = c1e
α
2
|z|2 , c1 = c

1
p′/p−1 .

Fix any point z = (z1, . . . , zn) ∈ U ; then there is some disk D ⊂ C such that {(ζ, z2, . . . , zn) : ζ ∈ D} ⊂ U .
Thus the function h1(ζ) = h(ζ, z2, . . . , zn) is holomorphic and non-vanishing on D, and we have

|h1(ζ)| = c1e
α
2
(|ζ|2+|z2|2+···+|zn|2).

The function h2(ζ) = c−11 e−
α
2
(|z2|2+···+|zn|2)h1(ζ) is therefore holomorphic and non-vanishing on D, and

|h2(ζ)| = e
α
2
|ζ|2 . It follows that h1 has a holomorphic logarithm ` on D, so

e
α
2
|ζ|2 = |h2(ζ)| = |e`(ζ)| = e<`(ζ), z ∈ D.

As exp is one-to-one on R, it follows that <`(ζ) = α
2 |ζ|

2 for ζ ∈ D. This is impossible, since ` is holomorphic,
but ζ 7→ α

2 |ζ|
2 is not harmonic. This concludes the proof.

10



3.2 The Proof of Theorem 1.5

As in the Introduction, define Rp,α(g, h) as

Rp,α(g, h) =
|〈g, h〉α|

‖g‖p,α‖h‖p′,α
.

Note that the sharp constant for (3.1) is equal to supg∈Hn
p,α\{0} suph∈Hn

p′,α\{0}
Rp,α(g, h), hence our interest in

this ratio. Theorem 1.5 concerns bounds on this ratio; namely that (1.9), reproduced below, holds:

Cn/2p ≤ sup
g∈Hn

p,α\{0}
sup

h∈Hn
p′,α\{0}

Rp,α(g, h) ≤ Cnp .

There are many ways to prove the right-hand side of (1.9). In particular, we can rewrite Theorem 1.4 in terms
of Rp,α(g, h) to say that for any g ∈ Hn

p,α and h ∈ Hn
p′,α we have

Rp,α(g, h) < Cnp .

By the above, we have
sup

g∈Hn
p,α\{0}

sup
h∈Hn

p′,α\{0}
Rp,α(g, h) ≤ Cnp . (3.8)

Thus, we need only prove the left-hand inequality of (1.9). To that end, we will consider the case where g and
h are monomials. Note that (by the rotational invariance of γnα) distinct monomials are orthogonal, so we will
consider only g = h. For k1, . . . , kn ∈ N, define the gk1,k2,...,kn(z) ≡ zk11 z

k2
2 . . . zknn . Note that

‖gk1,k2,...,kn‖pp,α =
(αp

2π

)n ∫
Cn
|z1|k1p|z2|k2p . . . |zn|knpe−(αp/2)(|z1|

2+|z2|2+...+|zn|2)λn(dz)

=
(αp

2π

)n n∏
j=1

∫
C
|zj |pkje−(αp/2)|zj |

2
λ(dzj)

=
n∏
j=1

‖gkj‖
p
p,α

where gk : C→ C is given by gk(z) = zk. Note, then, that

Rp,α(gk1,...,kn , gk1,...,kn) =

n∏
j=1

Rp,α(gkj , gkj ). (3.9)

Hence, to prove the left-hand side of (1.9), it suffices to show that

sup
k∈N

Rp,α(gk, gk) = C1/2
p . (3.10)

As usual, denote the Gamma function Γ(z) as

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0.

Then, using polar coordinates, we have

‖gk‖pp,α =
(αp

2π

)∫
C
|z|kpe−(αp/2)|z|2 λ(dz) =

(αp
2π

)∫ ∞
0

r

∫
S1

rkpe−(αp/2)r
2
dSdr

= (αp)

∫ ∞
0

(r2)kp/2re−(αp/2)r
2
dr.
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Using the substitution u = αp
2 r

2 yields

‖gk‖pp,α =

∫ ∞
0

(r2)kp/2e−(αp/2)r
2
(αp)rdr

=

(
2

αp

)kp/2 ∫ ∞
0

ukp/2e−udu =

(
2

αp

)kp/2
Γ(kp/2 + 1).

Thus, we have

Rp,α(gk, gk) =
|〈gk, gk〉α|

‖gk‖p,α‖gk‖p′,α
=

‖gk‖22,α
‖gk‖p,α‖gk‖p′,α

=

(
pp′

4

)k/2 Γ(k + 1)

Γ(kp/2 + 1)1/pΓ(kp′/2 + 1)1/p′
. (3.11)

Using the Gamma function relation Γ(z + 1) = zΓ(z), it is convenient to express this ratio as

Γ(k + 1)

Γ(kp/2 + 1)1/pΓ(kp′/2 + 1)1/p′
=

k

(kp/2)1/p(kp′/2)1/p′
· Γ(k)

Γ(kp/2)1/pΓ(kp′/2)1/p′

= Cp ·
Γ(k)

Γ(kp/2)1/pΓ(kp′/2)1/p′
. (3.12)

To properly analyze this expression, we will use a precise form of Stirling’s approximation for the Gamma
function: for any z ∈ C with <(z) > 0,

S(z) ≡ ln

(√
z

2π

(e
z

)z
Γ(z)

)
=

∫ ∞
0

2 arctan(t/z)

e2πt − 1
dt. (3.13)

See, for example, [1, (6.1.50)]. Thus, we can express the Gamma function precisely as

Γ(z) =
√

2π zz−
1
2 eS(z)−z. (3.14)

With this in hand, together with (3.11) and (3.12), we have the following expression for Rp,α(gk, gk).

Rp,α(gk, gk) = Cp ·
(
pp′

4

)k/2 Γ(k)

Γ(kp/2)1/pΓ(kp′/2)1/p′

= Cp ·
(
pp′

4

)k/2 √
2πkk−

1
2 eS(k)−k(√

2π(kp/2)kp/2−
1
2 eS(kp/2)−kp/2

)1/p (√
2π(kp′/2)kp

′/2− 1
2 eS(kp′/2)−kp′/2

)1/p′
= Cp ·

(
pp′

4

)k/2 kk−
1
2

(kp/2)k/2−1/2p(kp′/2)k/2−1/2p′
e
S(k)− 1

p
S(kp/2)− 1

p′ S(kp
′/2)

= C1/2
p · eS(k)−

1
p
S(kp/2)− 1

p′ S(kp
′/2)

.

Thus, to prove (3.10) and thus Theorem 1.5, it suffices to prove the following proposition.

Proposition 3.1. For any p ∈ (1,∞) \ {2} and any k ∈ N,

S(k)− 1

p
S(kp/2)− 1

p′
S(kp′/2) < 0.

Moreover, the limit of this expression as k →∞ is 0.
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Proof. Denote the integrand of S(x) as s(t, x):

s(t, x) =
2 arctan(t/x)

e2πt − 1
.

Note that s ∈ C∞((0,∞)2); the first two x derivatives are as follows:

∂s

∂x
(t, x) = − 1

t2 + x2
2t

e2πt − 1
,

∂2s

∂x2
(t, x) =

x

(t2 + x2)2
4t

e2πt − 1
.

Thus, for each t > 0, x 7→ s(t, x) is strictly convex on (0,∞). In particular, since 1
p + 1

p′ = 1 and 1
p ,

1
p′ ∈ (0, 1),

and since p 6= p′, we have

s(t, x) = s

(
t,

1

p

xp

2
+

1

p′
xp′

2

)
<

1

p
s
(
t,
xp

2

)
+

1

p′
s

(
t,
xp′

2

)
.

Since t 7→ s(t, x) is strictly positive, upon integration this inequality remains strict, and so

S(x) =

∫ ∞
0

s(t, x) dt <

∫ ∞
0

1

p
s
(
t,
xp

2

)
dt+

∫ ∞
0

1

p′
s

(
t,
xp′

2

)
dt =

1

p
S(xp/2) +

1

p′
S(xp′/2).

Taking x = k ∈ N proves the first statement of the proposition.
For the second statement, it suffices to show that limx→∞ S(x) = 0. As computed above, ∂s

∂x(t, x) < 0,
and so x 7→ s(t, x) is decreasing; in particular, for x ≥ 1 the integrand is ≤ 2 arctan(t)

e2πt−1 , which is an L1(0,∞)
function. Since limx→∞ arctan(t/x) = 0 for each fixed t, it follows from the Dominated Convergence Theorem
that limx→∞ S(x) = 0, completing the proof.

Remark 3.2. (1) Note, from (3.13), the statement limx→∞ S(x) = 0 is (up to a logarithm) precisely the usual
statement of Stirling’s approximation:

1 = lim
x→∞

Γ(x)√
2π
x

(
z
e

)z = lim
x→∞

eS(x).

We include the Dominated Convergence Theorem proof above just for completeness.

(2) The above computations are only valid for k > 0. However, it is easy to check that Rp,α(g0, g0) = 1 <

C
1/2
p , since g0 = 1.

Thus, we have completed the proof of Theorem 1.5. Let us also note, for use in the next section, that
Proposition 3.1 actually shows that, for each k ∈ N,

Rp,α(gk, gk) < C1/2
p . (3.15)

4 Monomials and the Ratio Rp,α(g, h)

Equation (3.15) suggests that Cn/2p is actually the supremum of the ratio Rp,α(g, h). One way to prove that this
would be to show that the ratio Rp,α is maximized in some sense on monomials. In this section we will prove a
partial result in this vein (Theorem 4.4) which has two interesting corollaries. We begin by stating a result that
will be useful in what follows.

Lemma 4.1. Let 1 < p <∞ and α > 0. If f ∈ H1
p,α, then the Taylor series of f centered at 0 converges to f in

the Lp(γ1αp/2) norm.
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The above result is well-known. For example, it can be found as [9, Ex. 5, Ch. 2]. We next define a nonlinear
operator Gnp,α(h) that will be central in proving Theorem 4.4, the main result of this section. Let 1 < p < ∞.
For h ∈ Lp(γnαp/2), define Gnp,α(h) as

Gnp,α(h)(z) ≡ |h(z)|p−2h(z)e−α(
p
2
−1)|z|2 . (4.1)

First we note that, if h ∈ Lp(γnαp/2), then Gnp,α(h) ∈ Lp′(γnαp′/2):

‖Gnp,α(h)‖p′,α =

((
αp′

2π

)n ∫
Cn

(
|h(z)|p−2|h(z)|e−α( p2−1)|z|

2
)p′

e−
αp′
2
|z|2dz

)1/p′

=

((
αp′

2π

)n(2π

αp

)n ∫
Cn
|h(z)|p

(αp
2π

)n
e−

αp
2
|z|2dz

)1/p′

=

(
p′

p

)n/p′
‖h‖p/p′p,α .

In fact, the function Gnp,α(h) has been designed to have the property that

〈h,Gnp,α(h)〉α =

(
2

p

)n
‖h‖pp,α = Cnp ‖h‖p,α‖Gnp,α(h)‖p′,α. (4.2)

That is, it gives equality in Hölder’s inequality (up to the scale constants required by the dilated Gaussian mea-
sures). Furthermore, for all g ∈ Lp′(γnαp′/2) we have

|〈h, g〉α| = Cnp ‖h‖p,α‖g‖p′,α ⇐⇒ g is a constant multiple of Gnp,α(h). (4.3)

By Theorem 1.4, Gnp,α(h) cannot be holomorphic if h is holomorphic, nonconstant, and p 6= 2, but we can
consider its projection into holomorphic space:

Lemma 4.2. Let 1 < p <∞, α > 0, and n ∈ N. For all f, h ∈ Hn
p,α\{0}, we have

|〈f, Pnα (Gnp,α(h))〉α|
‖f‖p,α

≤
|〈h, Pnα (Gnp,α(h))〉α|

‖h‖p,α
, (4.4)

and equality is achieved if and only if f is a constant multiple of h.

Proof. Assuming the premise of the lemma and using Hölder’s inequality, we have

|〈f, Pnα (Gnp,α(h))〉α|
‖f‖p,α

=
|〈f,Gnp,α(h)〉α|
‖f‖p,α

≤ Cnp ‖Gnp,α(h)‖p′,α

=
|〈h,Gnp,α(h)〉α|
‖h‖p,α

=
|〈h, Pnα (Gnp,α(h))〉α|

‖h‖p,α
,

where in the second line we used (4.2). This proves the first part of the lemma. For the second part, note that by
(4.3) we have equality above if and only if f is a constant multiple of Gnp′,α(Gnp,α(h)). However,

Gnp′,α(Gnp,α(h))(z) = |Gnp,α(h)(z)|p′−2Gnp,α(h)(z)e−α(
p
2
−1)|z|2

= |h(z)|(p−1)(p′−2)+(p−2)e−
α
2
((p′−1)(p−2)+(p′−2))|z|2h(z) = h(z),

as (p− 1)(p′ − 2) + (p− 2) = (p′ − 1)(p− 2) + (p′ − 2) = 0. Thus, we have equality in (4.4) if and only if f
is a constant multiple of h.
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Let N0 = N ∪ {0}. For α > 0, n ∈ N, and a multi-index j = (j1, j2, . . . , jn) ∈ Nn0 , define the function ψα,j
as

ψj,α(z) =

√
α|j|

j!
zj for z ∈ Cn, (4.5)

where we use the standard notations |j| = j1 + j2 + . . . + jn, j! = j1!j2! · . . . · jn!, and zj = zj11 z
j2
2 · . . . · z

jn
n .

The set {ψj,α}j∈Nn0 is an orthonormal basis in Hn
2,α. These functions also have the interesting property that

Pnα (Gp,α(ψj,α)) is a multiple of ψj,α.

Lemma 4.3. Let 1 < p < ∞, α > 0, and n ∈ N. For each multi-index j = (j1, j2, . . . , jn) ∈ Nn0 , the function
ψj,α defined in (4.5) satisfies

PnαG
n
p,α(ψj,α) =

(
2

p

)|j|p/2+n ∏n
k=1 Γ(jkp/2 + 1)√

j!
p ψj,α. (4.6)

In particular, there exists a constant Kj,p,α such that

PnαG
n
p,α(ψj,α) = Kj,p,αz

j. (4.7)

Proof. First note we have for any j ∈ Nn0

PnαG
n
p,α(ψj,α)(z) = PnαG

n
p,α

(
n∏
k=1

ψjk,α(zk)

)
= Pnα

n∏
k=1

G1
p,α(ψjk,α(zk)) =

n∏
k=1

P 1
αG

1
p,α(ψjk,α(zk)).

Thus, the general result will follow if we prove the lemma for n = 1. To that end, fix a nonnegative integer
j. Using the self-adjointness of P 1

α as well as the fact that P 1
α is the identity on H1

p,α we have for any other
nonnegative integer k:

〈
P 1
αG

1
p,α(ψj,α), ψk,α

〉
α

=
αk/2+(p−1)j/2+1

π
√
k!
√
j!
p−1

∫
C
|z|j(p−2)zj(z)ke−

αp
2
|z|2dz

=
αk/2+(p−1)j/2+1

π
√
k!
√
j!
p−1

∫ ∞
0

rj(p−1)+k+1e−
αp
2
r2
(∫ 2π

0
ei(j−k)θdθ

)
dr

=

(
2αpj/2+1

√
j!
p

∫ ∞
0

rjp+1e−
αp
2
r2dr

)
δjk

=

((
2

p

)jp/2+1 1√
j!
pΓ(jp/2 + 1)

)
δjk. (4.8)

By Lemma 4.1 the Taylor series of the exponential function converges in Lp(γ1αp/2), and so we use (4.8) to
compute

P 1
αG

1
p,α(ψj,α)(z) =

∞∑
k=0

〈
P 1
αG

1
p,α(ψj,α), ψk,α

〉
α
ψk,α(z) =

(
2

p

)jp/2+1 Γ(jp/2 + 1)√
j!
p ψj,α(z),

proving (4.6). Equation (4.7) follows from (4.6) as zj is a constant multiple of ψj,α.

We now can prove our partial result on the ratio Rp,α taking on maximal values on monomials:
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Theorem 4.4. Let 1 < p <∞, α > 0, and n ∈ N. For any f ∈ Hn
p,α\{0} and multi-index j ∈ Nn, we have

|〈f, zj〉α|
‖f‖p,α

≤ |〈z
j, zj〉α|
‖zj‖p,α

, (4.9)

or, equivalently,
Rp,α(f, zj) ≤ Rp,α(zj, zj). (4.10)

Furthermore, both inequalities (4.9) and (4.10) are sharp and are equality if and only if f(z) is a constant
multiple of zj.

Proof. Assume the premise of the theorem. First note that (4.9) and (4.10) are equivalent, as (4.10) is just (4.9)
with both sides of the inequality divided by ‖zj‖p′,α. Thus, to prove the rest of the lemma, it suffices to consider
only (4.9). To that end, we apply Lemma 4.2 to the functions f and ψj,α:

|〈f, Pnα (Gnp′,α(ψj,α))〉α|
‖f‖p,α

≤
|〈ψj,α, P

n
α (Gnp′,α(ψj,α))〉α|
‖ψj,α‖p,α

=
|〈zj, Pnα (Gnp′,α(ψj,α))〉α|

‖zj‖p,α
. (4.11)

By Lemma 4.3, dividing both sides of the inequality above by Kj,p,α yields (4.9). Note that by Lemma 4.2 we
have equality in (4.11) if and only if f is a constant multiple of ψj,α, which is equivalent to f(z) being a constant
multiple of zj, as desired.

Remark 4.5. By symmetry of Rp,α, Theorem 4.4 also implies that, for any fixed 1 < p <∞, α > 0, n ∈ N, and
j ∈ Nn, we have for all g ∈ Hn

p′,α

Rp,α(zj, g) ≤ Rp,α(zj, zj).

Theorem 4.4 is a weak form of the fully conjectured theorem: that supf,g Rp,α(f, g) = C
n/2
p (or equivalently

supf,g Rp,α(f, g) ≤ Cn/2p ). Indeed, Section 3.2 computes that Rp,α(zj, zj) < C
n/2
p for all j (and that Cn/2p is the

limit as j→∞), and so we have shown that

Rp,α(f, zj) < Cn/2p for all j ∈ Nn0 . (4.12)

Thus, restricting one of the variables in Rp,α to range through the space of monomials zj gives the global max-
imum result, proving Theorem 1.6. This is, of course, a far cry from the desired theorem, but it is suggestive.
We also have two interesting corollaries from Theorem 4.4. The first holds for all finite complex dimensions n,
while the second focuses on Taylor coefficients when n = 1. Both corollaries involve “projecting” a function
onto monomials. More specifically, fix a complex dimension n. For any multi-index j ∈ Nn, define the map
Pj,α : Hn

p,α → Span{zj} ⊆ Hn
p,α as

Pj,α(f) = 〈f, ψj,α〉αψj,α.

By Hölder’s inequality, this mapping is continuous. Heuristically, Pj,α(h) is “projecting” h onto the jth mono-
mial. The corollary below gives us more reason to call Pj,α a “projection,” despite the lack of a Hilbert space
structure to the space Hn

p,α.

Corollary 4.6. Let 1 < p < ∞, α > 0, and n ∈ N. The mapping Pj,α : Hn
p,α → Hn

p,α has norm 1. That is, if
f ∈ Hn

p,α, then
‖〈f, ψj,α〉αψj,α‖p,α ≤ ‖f‖p,α. (4.13)

Furthermore, we have equality if and only if f(z) is a constant multiple of zj.
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Proof. Assume the premise of the corollary. If f is the zero function, then the result follows. So assume f is not
the 0 function. As ψj,α is a scalar multiple of zj, by Theorem 4.4, we have

|〈f, ψj,α〉α|
‖f‖p,α

≤
|〈ψj,α, ψj,α〉α|
‖ψj,α‖p,α

=
1

‖ψj,α‖p,α
.

Multiplying the above by ‖ψj,α‖p,α‖f‖p,α yields (4.13). The equality condition again follows from the equality
condition in Theorem 4.4.

Now we can use Corollary 4.6 to prove another corollary on Taylor coefficients in the case where n = 1.

Corollary 4.7. Let 1 < p < ∞ and α > 0. Let f ∈ H1
p,α and with the Taylor series f(z) =

∑∞
k=0 akz

k. Then
for any j ∈ N0,

‖ajzj‖p,α ≤

∥∥∥∥∥
∞∑
k=0

akz
k

∥∥∥∥∥
p,α

= ‖f‖p,α, (4.14)

and

|aj | ≤
(αp

2

)j/2
Γ
(
jp
2 + 1

)1/p ‖f‖p,α. (4.15)

In either inequality above, we have equality if and only if f(z) is a constant multiple of zj .

Proof. Assume the premise of the corollary. We first prove (4.14). By Lemma 4.1, the Taylor series of f(z)
converges in norm, and so for any fixed j ∈ N, we have (using w as the integration variable here)

〈f, ψj,α〉αψj,α =

〈 ∞∑
k=0

akw
k, ψj,α(w)

〉
α

ψj,α(z) = aj〈wj , ψj,α(w)〉αψj,α(z) = ajz
j . (4.16)

Inequality (4.14) as well as the equality statement now follows from Corollary 4.6 and (4.16). To prove (4.15),
first note that

‖zj‖p,α =

(∫
C
|z|jp

(αp
2π

)
e−

αp
2
|z|2dz

)1/p

=

((
2

αp

)jp/2 ∫ ∞
0

(αp
2
r2
)jp/2

e−
αp
2
r2αprdr

)1/p

=

((
2

αp

)jp/2 ∫ ∞
0

ump/2e−udu

)1/p

=

(
2

αp

)j/2
Γ (jp/2 + 1)1/p .

Thus dividing (4.14) by ‖zj‖p,α yields (4.15), proving the corollary.

5 The Conjectured Sharp Constant and Quadratic Exponentials

Let M = {zN : N is a nonnegative integer}. We previously showed in (3.15) that, for dimension n = 1,

sup
g,h∈M

Rp,α(g, h) =
√
Cp.
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To strengthen our evidence for
√
Cp being the sharp constant for n = 1 we will prove a similar equality over a

larger family of functions that is more natural to the problem’s setting. To that end, we consider functions g in
the family

G =
{
ep(z) : p(z) is a polynomial

}
.

These functions are holomorphic but not generally in H1
p,α. In particular, if g(z) = ep(z) ∈ Hn

p,α, then by (2.16)
the function e<(p(z))−α|z|

2/2 is bounded on C by ‖g‖p,α, implying that the degree of p(z) must be no larger than
2. In fact, if p(z) is quadratic, then its leading coefficient must satisfy a certain inequality, as proven in the next
lemma:

Lemma 5.1. Let α > 0 and a, c ∈ C, and define g(z) = exp
(
αaz + α

2 cz
2
)
. If 1 ≤ p <∞, then f(z) ∈ H1

p,α if
and only if |c| < 1. In this case, we have

‖g‖p,α =
1

(1− |c|2)1/2p
exp

(
α

2

|a|2 + <(ca2)

1− |c|2

)
.

Proof. Define g(z) = e(αaz+
α
2
cz2) for some constants a, c ∈ C. Define a matrix A and a vector v as

A =

[
1−<(c) =(c)
=(c) 1 + <(c)

]
, v =

[
<(a)
−=(a)

]
.

Note that A is positive definite ⇐⇒ 1 − <(c) > 0 and 1 − <(c)2 − =(c)2 > 0 ⇐⇒ |c|2 < 1 ⇐⇒ |c| < 1.
Now we have

‖g‖pp,α =

∫
C
|e(αaz+

α
2
cz2)|p

(αp
2π

)
e−

αp
2
|z|2dz =

(αp
2π

)∫
R2

e(−(x,αp2 Ax)+2(αp2 v,x))dx.

By Lemma 2.1, the above integral converges if and only ifA is positive definite which holds if and only if |c| < 1,
proving the first part of the lemma. Assuming |c| < 1, we have

‖g‖pp,α =
(αp

2π

)∫
R2

e(−(x,αp2 Ax)+2(αp2 v,x))dx =
1√

1− |c|2
exp

(αp
2
v,A−1v

)
. (5.1)

One can compute the inner product (v,A−1v) as

(v,A−1v) =
1

1− |c|2
[<(a) −=(a)]

[
1 + <(c) −=(c)
−=(c) 1−<(c)

] [
<(a)
−=(a)

]
=
|a|2 + <(ca2)

1− |c|2
. (5.2)

Substituting (5.2) into (5.1) and taking pth roots gives the desired result.

In light of the above lemma, we define a subset Gα of G as the appropriate quadratic exponential functions

Gα = G ∩Hn
2,α =

{
exp

(
αaz +

α

2
cz2
)

: a, c ∈ C, |c| < 1
}
. (5.3)

We chose p = 2 in Hn
2,α above, but note that by Lemma 5.1 and the discussion that preceded it, Gα = G ∩Hn

p,α

for any 1 ≤ p <∞. We can now state the main theorem of this section.

Theorem 5.2. Let Gα be defined as in (5.3) and let 1 < p <∞. Then

sup
g,h∈Gα

Rp,α(g, h) =
√
Cp.
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The function Rp,α is a “Gaussian kernel”: it is defined on an Lp × Lp′ space with a Gaussian weight. It does
not quite fit the conditions of [5] (which asserts that, in a similar setup, Gaussian kernels have only Gaussian
maximizers), but given that landmark paper it is very natural to think that the maximum should occur on quadratic
exponential functions in this case as well. Thus, Theorem 5.2 provides more highly suggestive evidence that
maximum really is

√
Cp, at least in the n = 1 dimensional case.

We will break the proof of Theorem 5.2 into multiple lemmas. We begin by computing the ratio Rp,α(g, h)
for functions g, h ∈ Gα:

Lemma 5.3. Let g, h ∈ Gα be arbitrary with g(z) = exp
(
αaz + α

2 cz
2
)

and h(z) = exp
(
αbz + α

2 dz
2
)
. Then

Rp,α(g, h) =√
(1− |c|2)1/p(1− |d|2)1/p′

|1− cd|
exp

(
α

2
<

[
2ab+ a2d+ b2c

1− cd
− |a|

2 + a2c

1− |c|2
− |b|

2 + b2d

1− |d|2

])
. (5.4)

Proof. We first compute |〈g, h〉α|. This computation here is very similar although a bit more complicated to the
proof of Lemma 5.1. Define a matrix B and a vector w as

B =

[
2− (c+ d) −ic+ id

−ic+ id 2 + (c+ d)

]
, w =

[
a+ b

i(a− b)

]
.

As |c|, |d| < 1 it is easy to see that B has a positive definite real part. One can compute that

〈g, h〉α =
α

π

∫
R2

e−(x,
α
2
Bx)+2(α2w,x)dx =

2√
det(B)

=
1√

1− cd
e
α
2 (w,B−1w).

We compute
(
w,B−1w

)
as

(
w,B−1w

)
=

8ab+ 4a2d+ 4b2c

4(1− cd)
=

2ab+ a2d+ b2c

1− cd
. (5.5)

Combining (5.5) and (5.5) with Lemma 5.1 we have

Rp,α(g, h) =
|〈g, h〉α|

‖g‖p,α‖h‖p′,α

=

√
(1− |c|2)1/p(1− |d|2)1/p′

|1− cd|
exp

(
α

2
<

[
2ab+ a2d+ b2c

1− cd
− |a|

2 + a2c

1− |c|2
− |b|

2 + b2d

1− |d|2

])
,

completing the proof.

The next step is to understand the exponential term in (5.4) and to show that it is never greater than 1. To that
end, we have the following lemma:

Lemma 5.4. Fix b, c, d ∈ C where |c| < 1 and |d| < 1. Define the function f : R2 → R as

f(x, y) = <

[
2(x+ iy)b+ (x+ iy)2d+ b2c

1− cd
− |x+ iy|2 + (x+ iy)2c

1− |c|2
− |b|

2 + b2d

1− |d|2

]
. (5.6)

Then f has a unique critical point (x0, y0) that satisfies

x0 + iy0 =
b(d− c) + b(1− cd)

1− |d|2
. (5.7)

Furthermore, sup(x,y)∈R2 f(x, y) = f(x0, y0) = 0.
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Proof. We will prove this lemma using calculus. First we compute the partial derivatives of f :

∂f

∂x
= <

[
2b+ 2(x+ iy)d

1− cd
− 2(x+ iy)c

1− |c|2

]
− 2x

1− |c|2
,

∂f

∂y
= <

[
2ib+ 2i(x+ iy)d

1− cd
− 2i(x+ iy)c

1− |c|2

]
− 2y

1− |c|2

= −=
[

2b+ 2(x+ iy)d

1− cd
− 2(x+ iy)c

1− |c|2

]
− 2y

1− |c|2

We can rewrite the above as

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=
b+ (x− iy)d

1− cd
− (x− iy)c+ (x+ iy)

1− |c|2
. (5.8)

Suppose that (x0, y0) is a critical point. We then can set the above equation to 0 and solve for b, yielding

b =
(x0 − iy0)(c− d) + (x0 + iy0)(1− cd)

1− |c|2
. (5.9)

Using (5.9) one can verify that (5.7) holds. Furthermore, one can rewrite (5.7) as

0 =
(x0 + iy0) + bc

1− cd
− b+ bd

1− |d|2
. (5.10)

Setting (5.8) equal to 0, conjugating, and multiplying the result by x0 + iy0, as well as multiplying (5.10) by b
yield the two equations

0 =
(x0 + iy0)b+ (x0 + iy0)

2d

1− cd
− (x0 + iy0)

2c+ |x0 + iy0|2

1− |c|2
,

0 =
(x0 + iy0)b+ b

2
c

1− cd
− |b|

2 + b
2
d

1− |d|2
.

Adding the two equations above yields f(x0, y0) = 0. To complete the proof, we need to show that f takes on a
global maximum at (x0, y0). To that end, we compute the Hessian of f(x, y). First note that from (5.8) we have

1

2

∂

∂x

(
∂f

∂x
+ i

∂f

∂y

)
=

d

1− cd
− 1 + c

1− |c|2
1

2

∂

∂y

(
∂f

∂x
+ i

∂f

∂y

)
= i

(
−d

1− cd
− 1− c

1− |c|2

)
Thus, the Hessian matrix H of f at any point (x, y) is given by

H = 4

<( d
1−cd −

1+c
1−|c|2

)
=
(

d
1−cd −

c
1−|c|2

)
=
(

d
1−cd −

c
1−|c|2

)
<
(
−d
1−cd −

1−c
1−|c|2

) (5.11)

Thus, to show that f(x0, y0) is a global maximum, it suffices to show that H is negative definite. Let h11 be the
(1, 1) entry of H , and define a function g : D→ R (where D = {z ∈ C : |z| ≤ 1}) as

g(z) = <
(

z

1− cz
− 1 + c

1− |c|2

)
.
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Note that h11 = 4g(d). As g is the real part of a holomorphic function, it is harmonic and thus takes its maximum
and minimum values on ∂D, that is, the unit circle. By assumption d is in the interior of D, so we must have

1

4
h11 = g(d) < max

θ∈[−π,π]
g(eiθ). (5.12)

One can compute that

d

dθ
g(eiθ) =

d

dθ
<
(

1

e−iθ − c
− 1 + c

1− |c|2

)
= <

(
i

e−iθ

(e−iθ − c)2

)
= =

(
e−iθ

(e−iθ − c)2

)
.

Thus, we have a critical point of g(eiθ) exactly when =
(

e−iθ

(e−iθ−c)2

)
= 0, which is equivalent to

e−iθ

(e−iθ − c)2
= ±

∣∣∣∣ e−iθ

(e−iθ − c)2

∣∣∣∣ .
Using the fact that

∣∣∣ e−iθ

(e−iθ−c)2

∣∣∣ = 1
(e−iθ−c)(eiθ−c) we can solve the above equation to find two critical points: c+1

1+c

and c−1
1−c . As the circle ∂D is closed, the maximum of g must occur on one of these points and the minimum on

the other. A straightforward calculation yields

g

(
c+ 1

1 + c

)
= 0, g

(
c− 1

1− c

)
= − 2

1− |c|2
.

Hence, from (5.12) we have
h11 = 4g(d) < 4 max

θ∈[−π,π]
g(eiθ) = 0. (5.13)

Next we show that det(H) is positive. To that end, one can compute that

1

4
det(H) =

(
1

1− |c|2

)2

−
∣∣∣∣ d

1− cd
− c

1− |c|2

∣∣∣∣2
As |d| < 1, by the Maximum Modulus Principle, we thus have

1

4
det(H) >

(
1

1− |c|2

)2

− max
θ∈[−π,π)

∣∣∣∣ eiθ

1− ceiθ
− c

1− |c|2

∣∣∣∣2 . (5.14)

Note that for any real number θ, we have∣∣∣∣ eiθ

1− ceiθ
− c

1− |c|2

∣∣∣∣2 =

(
1

1− |c|2

)2 ∣∣∣∣ eiθ − ce−iθ − c

∣∣∣∣2 =

(
1

1− |c|2

)2

.

Plugging the above into (5.14) yields

1

4
det(H) >

(
1

1− |c|2

)2

− max
θ∈[−π,π)

∣∣∣∣ eiθ

1− ceiθ
− c

1− |c|2

∣∣∣∣2 = 0. (5.15)

By (5.13) and (5.15), the matrix H is negative definite, as desired.

Now we are in a position to prove Theorem 5.2.
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Proof of Theorem 5.2. By Lemmas 5.3 and 5.4, we have

sup
g,h∈Gα

Rp,α(g, h) = sup
g,h∈G̃α

Rp,α(g, h) = sup
c,d∈C,|c|,|d|<1

√
(1− |c|2)1/p(1− |d|2)1/p′

|1− cd|
. (5.16)

Note that, by the reverse triangle inequality, for |c|, |d| < 1 we have√
(1− |c|2)1/p(1− |d|2)1/p′

|1− cd|
≤

√
(1− |c|2)1/p(1− |d|2)1/p′

1− |c||d|
.

Hence, we have

sup
g,h∈Gα

Rp,α(g, h) = sup
x,y∈[0,1)

√
(1− x2)1/p(1− y2)1/p′

1− xy
. (5.17)

Fix x ∈ [0, 1) and consider the function hx(y) : [0, 1)→ [0,∞) as

hx(y) =
(1− x2)1/p(1− y2)1/p′

1− xy
. (5.18)

Then hx is differentiable and

h′x(y)
(1− x2)1/p(1− y2)1/p′−1

p′2y2(1− xy)2

(
2y2 + p′(1− y2)

2y2
x− 1

)
.

Thus, y0 is a critical point of hx if and only if

x = x(y) =
2y

2y2 + p′(1− y2)
=

2y

(2− p′)y2 + p′
. (5.19)

It is easy to see that x(0) = 0, x(1) = 1, and that x′(y) > 0 (the fact that p′ > 1 is important here). Thus, x(y)
is an invertible function that maps [0, 1] onto [0, 1]. Hence, hx has exactly one critical point yx and yx satisfies
(5.19). If y′ < yx, then x(y′) < x which implies h′x(y′) > 0. Similarly, if y′ > yx, then h′x(y′) < 0, proving that
yx is a local maximum for hx. Since yx is a unique critical point, it must be a global maximum for hx. Also, by
the invertibility of x(y), for every y ∈ [0, 1), there exists a unique x ∈ [0, 1) for which y = yx (namely, x(y)).
Thus, we can rewrite (5.17) as

sup
g,h∈Gα

Rp,α(g, h) = sup
x∈[0,1)

√
hx(yx) = sup

y∈[0,1)

√
hx(y)(y). (5.20)

A computation shows that

hx(y)(y) =
1

p′
((p′)2 − (2− p′)2y2)1/p((2− p′)y2 + p′)1−2/p. (5.21)

Note that, while hx(y)(y) is not formally defined at y = 1, it can be continuously extended to 1. In fact, define
g : [0, 1]→ [0,∞) as

g(y) =
1

p′
((p′)2 − (2− p′)2y2)1/p((2− p′)y2 + p′)1−2/p,

and note that g is continuous on [0, 1] and differentiable on (0, 1). For y ∈ (0, 1),

g′(y) =
2y

p′
(2− p′)2((p′)2 − (2− p′)2y2)(p′−1)/p′−1((2− p′)y2 + p′)(2−p

′)/p′ > 0,
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proving that g is increasing on its domain. Hence, combining equations (5.20) and (5.21) we have

sup
g,h∈Gα

Rp,α(g, h) = sup
y∈[0,1)

√
hx(y)(y) = sup

y∈[0,1]

√
g(y) = g(1)

=

√
((p′)2 − (2− p′)2)1/p((2− p′) + p′)1−2/p

p′
=
√
Cp

completing the proof.
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