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ABSTRACT. We prove strong hypercontractivity (SHC) inequalities for logarithmically subharmonic
functions on Rn and different classes of measures: Gaussian measures on Rn, symmetric Bernoulli
and symmetric uniform probability measures on R, as well as their convolutions. Surprisingly, a
slightly weaker strong hypercontractivity property holds for any symmetric measure on R. A log–
Sobolev inequality (LSI) is deduced from the (SHC) for compactly supported measures on Rn, still
for log–subharmonic functions. An analogous (LSI) is proved for Gaussian measures on Rn and
for other measures for which we know the (SHC) holds. Our log–Sobolev inequality holds in the
log-subharmonic category with a constant smaller than the one for Gaussian measure in the classical
context.

1. INTRODUCTION

In this paper, we prove some important inequalities – strong hypercontractivity (SHC) and
a logarithmic Sobolev inequality – for logarithmically subharmonic functions (cf. Definition 2.1
below). Our paper is inspired by work of Janson [15], in which he began the study of an important
property of semigroups called strong hypercontractivity. A rich series of subsequent papers by
Janson [16], Carlen [4], Zhao [20], and recently by Gross ([10, 11] and a survey [12]) was devoted
to this subject on the spaces Cn and, in papers by Gross, on complex manifolds. In contrast to all
the aforementionned papers, our results concern the real spaces Rn.

In the first part of the paper (Sections 3–4) we prove strong hypercontractivity in the log–
subharmonic setting: for 0 < p ≤ q <∞,

‖Ttf‖Lq(µ) ≤ ‖f‖Lp(µ) for t ≥ 1
2

log
q

p
(SHC)

for the dilation semigroup Ttf(x) = f(e−tx), for any logarithmically subharmonic function f ,
for different classes of measures µ: including Gaussian measures and some compactly supported
measures on R (symmetric Bernoulli and uniform probability measure on [−a, a] for a > 0). We
also show that, in numerous important cases, the convolution of two measures satisfying (SHC)
also satisfies (SHC).

Let us note that in the theory of hypercontractivity for general measures, the semigroup consid-
ered is the one associated to the measure by the usual technology of Dirichlet forms. The generator
of the semigroup (on a complete Riemannian manifold) takes the form −∆ + X where ∆ is the
Laplace-Beltrami operator and X is a vector field; hence, the semigroup restricted to harmonic
functions on the manifold is simply the (backward) flow of X . For Gaussian measure, X = x · ∇,
yielding the above flow Tt; this vector field is often called the Euler operator, denoted E. In a sense,
the point of this paper is to show that the strong hypercontractivity theorems about this flow
extend beyond harmonic functions to the larger class of logarithmically subharmonic functions.

The second part of the paper (Section 5) is devoted to Logarithmic Sobolev Inequalities (LSI) cor-
responding to the Strong Hypercontractivity property for log–subharmonic functions. We prove a
general implication (SHC)⇒ (LSI) for compactly supported measures on Rn for log–subharmonic
functions. (It is important to note that, while the general technique of this implication – differ-
entiating the inequalities in an appropriate fashion – are well-known, the technical details here
involved with regularizing subharmonic functions are quite difficult.) We also show that an anal-
ogous log–Sobolev inequality in the log–subharmonic domain holds for Gaussian measures on Rn
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and for other measures which satisfy the strong hypercontractivity (SHC) considered in the first
part. In both cases, the (LSI) we get is stronger than the classical one in the following sense. Let

tN (p, q) =
1
2

log
q − 1
p− 1

, tJ(p, q) =
1
2

log
q

p

denote the Nelson and Janson times (cf. [18, 15]), for 1 < p ≤ q <∞ (in fact, tJ makes sense for all
positive p ≤ q). The classical hypercontractivity for t ≥ c tN is equivalent, by Gross’s theorem in
[9], to a logarithmic-Sobolev inequality with the constant 2c:ˆ

|f |2 log |f |2dµ− ‖f‖22,µ log ‖f‖22,µ ≤ 2c
ˆ
fLfdµ

where L is the positive generator of the semigroup. We show that, in the category of logarithmi-
cally subharmonic functions, the strong hypercontractivity for t ≥ c tJ implies (LSI) with constant
c: ˆ

|f |2 log |f |2dµ− ‖f‖22,µ log ‖f‖22,µ ≤ c
ˆ
fEfdµ (LSI)

whereE is the Euler operator discussed above. Hence, one cannot obtain this stronger LSI by sim-
ply restricting the usual Gaussian LSI to log–subharmonic functions. We call the inequality (LSI)
a “strong LSI” both because it corresponds to the strong hypercontractivity and as the constant in
the energy integral is smaller than in the classical case (of the Gaussian LSI of [9]). (LSI) could also
be appropriately called an Euler type Logarithmic Sobolev Inequality.

We emphasize the fact that the strong (LSI) and the implication (SHC)⇒ strong (LSI) were never
observed before in holomorphic case, in the afore–mentionned papers on strong hypercontractiv-
ity. In [10], only the implication classical (LSI)⇒ (SHC) is proved. The authors of [13] observe
and extensively discuss the difficulty in approximating of subharmonic functions. Let us note that
the implication (SHC) ⇒ (LSI) in the log–subharmonic case does not follow as easily as in the
classical setting. Indeed, if f is log–subharmonic, the functions f |[−N,N ] and f1|f |<N are not log–
subharmonic on R, and the classical techniques of approximation by more regular (e.g. compactly
supported or bounded) functions fail.

Let us mention that some interesting Log-Sobolev type inequalities were proved for log–convex
functions and a large class of measures in [1]. Those inequalities are essentially different from ours,
whose right-hand side comes from the Dirichlet form of the semigroup, like in the classical LSI.

Our principal reference for the basic preliminaries is the book [2] which gives a very accessible
survey on hypercontractivity and on logarithmic–Sobolev inequalities.

Acknowledgment. We thank A. Hulanicki for calling the attention of the first and third authors
to hypercontractivity problems in the holomorphic category. Thanks also go to L. Gross for many
helpful conversations and to an anonimous referee for numerous improvements of the paper.

2. LOG–SUBHARMONIC FUNCTIONS

Definition 2.1. AnL1
loc upper semi-continuous function f : Rn → [−∞,+∞), not identically equal

to −∞, is called subharmonic if for every x, y ∈ Rn, one has the inequality:

f(x) ≤
 
O(n)

f(x+ αy) dα (2.1)

where O(n) is the orthogonal group of Rn and dα is the normalized Haar measure on it. (The
notation

ffl
is a reminder that the measure in question is normalized.) When f ∈ C2 then the

Definition 2.1 is equivalent to ∆f ≥ 0. Let us also recall that the subharmonic functions satisfy the
maximum principle.

A non-negative function g : Rn → [0,+∞) is called log–subharmonic (abbreviated LSH) if the
function log g is subharmonic.
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Remark 2.1. Definition 2.1 is evidently equivalent to insisting that f(x) ≤
ffl
∂B(x,r) f(t)σ(dt) for

every x ∈ Rn, where ∂B(x, r) is the sphere of radius r about the point x, and σ is normalized
Lebesgue measure on this sphere. Frequently, subharmonicity is stated in terms of averages over
solid ballsB(x, r) instead; the two approaches are equivalent for L1

loc upper-semicontinuous func-
tions. Subharmonic function (and ergo log-subharmonic functions) need not have very good local
properties. There are subharmonic functions that are discontinuous everywhere (see, for example,
[19]). In some of what follows, it will be convenient to work with continuous LSH functions; where
this restriction is in place, we have stated it explicitly.

Example 2.1. The following examples of LSH functions are well-known and easily verified.
(1) A convex function is subharmonic. On R, f is subharmonic if and only if f is convex.
(2) Let f be a holomorphic function on Cn. Then |f | is a log–subharmonic function (see [14] or

use Jensen’s inequality). Indeed, log |f | is actually harmonic on the complement of {f = 0}.
(3) Denote by 〈 , 〉 the scalar product on Rn, and fix a ∈ Rn. Then x 7→ exp〈a, x〉 is a log–

subharmonic function.

The main content of the next proposition is item 2, which takes some work to prove and will be
important in what follows.

Proposition 2.2. Let f, g be LSH, and let p > 0.
(1) The product fg is LSH, as is gp.
(2) The sum f + g is LSH.
(3) f is subharmonic.

Proof. Property 1 is evident. In order to prove 3 (note that non-negativity is built into the definition
of LSH functions), we use the fact that if a function ϕ : R → R is increasing and convex and h is
a subharmonic function then ϕ(h) is also subharmonic. We apply this fact with ϕ(x) = ex and
h = log f when f is LSH. To prove 2, we need the following lemma.

Lemma 2.3. Let ϕ : R2 → R be a convex function of two variables, increasing in each variable. If F and
G are subharmonic functions then ϕ(F,G) is also subharmonic.

Proof. We apply the Jensen inequality in dimension 2

ϕ(F (x), G(x)) ≤ ϕ

(ˆ
O(n)

F (x+ αy)dα,
ˆ
O(n)

G(x+ αy)dα

)
≤
ˆ
ϕ(F,G)(x+ αy)dα.

�

It is easy to verify that the function ϕ(x, y) = log(ex + ey) satisfies the hypotheses of the lemma: to
check its convexity, we write log(ex + ey) = x+ log(1 + ex−y), yielding the result since the function
t 7→ ln(1 + et) is convex. Hence, if f and g are LSH, then f = eF and g = eG for subharmonic
functions F,G, and so the lemma yields that ϕ(F,G) = log(f + g) is subharmonic. This ends the
proof of the proposition. �

The next lemma and corollary are based on Proposition 2.2. They are useful in much of the
following.

Lemma 2.4. Let Ω be a separable metric space, and let µ a Borel probability measure on Ω. Suppose
f : Ω× Rn → R satisfies

(1) The function x 7→ f(ω, x) is LSH and continuous for µ–almost every ω ∈ Ω.
(2) The function ω 7→ f(ω, x) is bounded and continuous for each x ∈ Rn.
(3) For small r > 0, there is a constant Cr > 0 so that, for all ω ∈ Ω and all x ∈ Rn, |f(ω, t)| ≤ Cr

for t ∈ B(x, r).

Then the function f̃(x) =
´

Ω f(ω, x)µ(dω) is LSH.
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Proof. By Varadarajan’s theorem (see Theorem 11.4.1 in [5]), there is a sequence of points ωj ∈ Ω
such that the probability measures

µn =
1
n

n∑
j=1

δωj

converge weakly to µ: µn ⇀ µ. Note that

f̃n(x) =
ˆ

Ω
f(ω, x)µn(dω) =

1
n

n∑
j=1

f(ωj , x),

and by Proposition 2.2 part (2), f̃n is LSH for each n. Moreover, since f( · , x) ∈ Cb(Ω), weak
convergence guarantees that f̃n(x) → f̃(x) for each x. Fix ε > 0; then since f̃n and f̃ are non-
negative, f̃n + ε and f̃ + ε are strictly positive and thus log(f̃n(x) + ε) → log(f̃(x) + ε) for each x.
Again using Proposition 2.2, f̃n + ε is LSH and so log(f̃n + ε) is subharmonic. Let r > 0 be small,
and consider  

∂B(x,r)
log(f̃(t) + ε) dt =

 
∂B(x,r)

lim
n→∞

log(f̃n(t) + ε) dt.

By assumption, |f(ω, t)| ≤ Cr for each ω ∈ Ω and t ∈ ∂B(x, r); hence, |f̃n(t)| ≤ Cr a well. This
means there is a uniform bound on log(f̃n+ε) on ∂B(x, r). We may therefore apply the dominated
convergence theorem to find that 

∂B(x,r)
log(f̃(t) + ε) dt = lim

n→∞

 
∂B(x,r)

log(f̃n(t) + ε) dt

≥ lim
n→∞

log(f̃n(x) + ε) = log(f̃(x) + ε),

where the inequality follows from the fact that log(f̃n + ε) is subharmonic. Hence, f̃ + ε is LSH
for each ε > 0. Finally, since f(ω, x) is continuous in x for almost every ω, the boundedness of
f in ω shows that f̃ is continuous. Thus the set where f̃ > −∞ is open. Therefore log(f̃(x) + ε)
is uniformly-bounded in ε on small enough balls around x, and a simple argument like the one
above shows that the limit as ε ↓ 0 can be performed to show that f̃ is LSH as required. �

Remark 2.5. It is possible to dispense with the requirement that f(ω, x) is continuous in x by using
Fatou’s lemma instead of the dominated convergence theorem; however, the continuity of f(ω, x)
in ω is still required for this argument. In all the applications we have planned for Corollary 2.4,
f(ω, x) is such that continuity in one variable implies continuity in the other, and so we need not
work harder to eliminate this hypothesis.

Remark 2.6. In Lemma 2.4, if LSH is replaced with the weaker condition lower-bounded subharmonic
(in the premise and conclusion of the statement), then the result follows from Definition 2.1 with
a simple application of Fubini’s theorem; moreover, the only assumption needed is that f( · , x) ∈
L1(Ω, µ) for each x.

Corollary 2.7. Suppose f : Rn → R is lower-bounded and subharmonic. Then the function

f̃(x) =
ˆ
O(n)

f(αx) dα

is subharmonic. Moreover, if f is also LSH and continuous, then so is f̃ . In either case, f̃ depends only
on the radial direction: there is a function g : [0,∞) → [−∞,∞) with f̃(x) = g(|x|), and g is non-
decreasing on [0,∞).

Proof. Suppose f is LSH and continuous. The reader may readily verify that the function (α, x) 7→
f(αx) satisfies all the conditions of Lemma 2.4. (The weaker statement for lower-bounded subhar-
monic f , not necessarily continuous, follows similarly via Remark 2.6.) Clearly averaging f over
rotations makes f̃ radially symmetric. Any radially symmetric subharmonic function is radially
non-decreasing, by the maximum principle. �
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3. HYPERCONTRACTIVITY INEQUALITIES FOR THE GAUSSIAN MEASURE

Let m be a probability measure on Rn. For p ≥ 1, we denote the norm on Lp(m) by ‖ ‖p,m. We
will denote by LpLSH(m) the cone of log-subharmonic functions in Lp(m). Let γ be the standard
Gaussian measure on Rn, i.e. γ(dx) = cn exp(−|x|2/2) dx, where dx is Lebesgue measure and
cn = (2π)−n/2.

Given a function f on Rn, and r ∈ [0, 1], we denote by fr the function x 7→ f(rx). The family
of operators Srf = fr, r ∈ [0, 1] is a multiplicative semigroup, whose additive form Ttf(x) =
f(e−tx) is considered in connection with holomorphic function spaces in [4, 10, 15, 20] and others
(including the second author’s paper [17] in the non-commutative holomorphic category). When f
is differentiable, the infinitesimal generatorE of (Tt)t≥0 equals−Ef whereE is the Euler operator

Ef(x) = x · ∇f.
If L is the Ornstein–Uhlenbeck operator L = −∆ + E acting in L2(Cn, γ) and f is a holomorphic
function then Lf = Ef , so (Tt)t≥0 and, equivalently, (Sr)r∈[0,1] act on holomorphic functions as
the Ornstein–Uhlenbeck semigroup e−tL (cf. [2] p.22–23).

Before showing the strong hypercontractivity of the semigroup Sr for the Gaussian measure and
LSH functions, let us show that the operators Sr areLp–contractions on non-negative subharmonic
functions, for any rotationally invariant probability measure.

Proposition 3.1. Let m be a probability measure on Rn which is O(n)-invariant. Then for f ≥ 0 subhar-
monic , r ∈ [0, 1], and p ≥ 1, we have

‖fr‖p,m ≤ ‖f‖p,m.
Moreover, this contraction property holds additionally in the regime 0 < p < 1 if f is LSH.

Proof. First consider the case p ≥ 1, and assume only that f ≥ 0 is subharmonic. Note that, since
f ≥ 0 and since m is O(n)-invariant,

‖fr‖pp,m =
ˆ

Rn

f(rx)p dm(x) =
ˆ
O(n)

ˆ
Rn

f(rx)p dm(αx) dα.

Changing variables using the linear transformation α in the inside integral and using Fubini’s
theorem, we have (replacing α−1 with α in the end)ˆ

Rn

ˆ
O(n)

f(rαx)p dα dm(x) =
ˆ

Rn

Sr h(x) dm(x),

where h(x) =
´
O(n) f(αx)p dα; i.e., with k = fp, h = k̃ in the notation of Corollary 2.7. Since

p ≥ 1, k is subharmonic, and so by Corollary 2.7 h is also subharmonic and radially increasing.
In particular, there is some non-decreasing g : [0,∞) → R such that h(x) = g(|x|). So Sr h(x) =
g(r|x|) ≤ g(|x|) = h(x) for r ∈ [0, 1]. Integrating over Rn we have ‖fr‖pp,m ≤

´
h(x) dx which

equals ‖f‖pp,m by reversing the above argument. This proves the result.

If 0 < p < 1, the above argument follows through as well since, if f ∈ LSH then k = fp is LSH
by Proposition 2.2. In particular, k is non-negative and subharmonic, and so by Corollary 2.7, so
is k̃. The rest of the proof follows verbatim.

�

We now show the strong hypercontractivity inequality for Gaussian measure and LSH func-
tions. That is: ‖Ttf‖q,γ ≤ ‖f‖p,γ whenever f is LSH and t ≥ tJ(p, q). This is a generalization
(from holomorphic functions to the much larger class of logarithmically-subharmonic functions)
of Janson’s original strong hypercontractivity theorem in [15]. Because our test functions f are
non-negative and the action of Tt commutes with taking powers of f , this can be reduced to the
following simplified form.

Theorem 3.2. Let f be a log–subharmonic function. Then for every r ∈ [0, 1], one has

‖fr‖1/r2,γ ≤ ‖f‖1,γ . (3.1)
5



Remark 3.3. The inequality (3.1) means that the operators Sr act as contractions between the spaces

Sr : L1
LSH(γ)→ L

1/r2

LSH(γ),

or, equivalently, the operator Tt is a contraction between the cones

Tt : L1
LSH(γ)→ Le

2t

LSH(γ).

In fact, by Proposition 2.2, one gets other hypercontractivity properties. Applying the theorem to
the function fp, it follows that the operators Sr are contractions

Sr : LpLSH(γ)→ L
p/r2

LSH(γ),

and the operators Tt are contractions

Tt : LpLSH(γ)→ Le
2tp

LSH(γ)

for any p > 0. Since Tt is an Lq contraction for any q (Proposition 3.1), by the semigroup property
the above implies that Tt is a contraction from Lp to Lq for any q ≥ e2tp. In other words, Tt is a
contraction from Lp to Lq provided that t ≥ 1

2 log(q/p), the Janson time tJ(p, q). This is the strong
hypercontractivity theorem proved in [15] for holomorphic functions on Cn ∼= R2n; here we prove
it for LSH functions on Rn.

Proof. The case where f = log |g| with g holomorphic on Cn is implicitly proved in [15] but is
not given in this form. Using the ideas of Janson, we will prove the general theorem. Nelson’s
classical hypercontractivity result plays a crucial role here as in Janson’s paper. Let Pt = e−tN be
the Ornstein–Uhlenbeck semigroup. Let us write it in the form

Ptf(x) =
ˆ
Mr(x, y)f(y) γ(dy) (3.2)

where r = e−t and Mr is the Mehler kernel

Mr(x, y) = (1− r2)−n/2 exp
(
− r2

1− r2
|x|2 +

2r
1− r2

〈x, y〉 − 1 + r2

1− r2
|y|2
)
. (3.3)

We can rewrite Equation 3.2 in terms of Lebesgue measure as Ptf(x) =
´
Kr(x, y)f(y) dy where

the modified kernel Kr is given by

Kr(x, y) = (1− r2)−n/2 exp
(
−|y − rx|

2

1− r2

)
.

EvidentlyKr(x, y) is constant in y on spheres around rx. This implies that if f ≥ 0 is subharmonic,
then for all t > 0 we have Ptf(x) ≥ f(e−tx) (indeed, this is at the core of Janson’s proof in [15]).
The classical hypercontractivity inequality of Nelson (cf. [18]) is given by:

‖Ptf‖q(t),γ ≤ ‖f‖p,γ
where q(t) = (p− 1)e2t + 1 and p > 1. Hence, for f ≥ 0 subharmonic, we have Nelson’s theorem
for the dilation semigroup:

‖f(e−tx)‖q(t),γ ≤ ‖f‖p,γ . (3.4)

Now take f to be LSH. The function f1/p is also LSH, so it is positive and subharmonic. Equation
3.4 applied to f1/p becomes(ˆ

fe−t(x)q(t)/pdγ(x)
)1/q(t)

≤
(ˆ

f(x)dγ(x))
)1/p

.

This implies that
‖fe−t‖q(t)/p,γ ≤ ‖f‖1,γ .

Observe that limp→∞
q(t)
p = e2t = 1

r2
where r = e−t. Applying Fatou’s lemma, we obtain ‖fr‖r−2,γ ≤

‖f‖1,γ , the desired result. �
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In the full hypercontractivity theory due to Nelson [18], tN (p, q) = 1
2 log q−1

p−1 is the smallest time
to contraction, for all Lp-functions. The analogous statement holds for Theorem 3.2; the exponent
1/r2 is optimal in this inequality (with Gaussian measure) over all LSH functions. In fact, it is
optimal when restricted just to holomorphic functions on Cn, as is proved (in an analogous non-
commutative setting) in [17]; here we present a slightly different proof.

Proposition 3.4. Let r ∈ (0, 1] and C > 0. Assume that for some p > 0, the following inequality holds for
every LSH function f :

‖fr‖p,γ ≤ C‖f‖1,γ . (3.5)
Then p ≤ 1/r2 and C ≥ 1.

Remark 3.5. If m is a probability measure then the Lp norm ‖f‖p,m is a non-decreasing function of
p. It follows that if Equation (3.5) holds for a p > 1 then it also holds for every q ∈ [1, p).

Proof. Consider the set of functions fa(x) = eax1 , which are all LSH for a > 0. An easy compu-
tation shows that ‖(fa)r‖p,γ = exp(r2a2p/2); in particular, ‖(fa)‖1,γ = exp(a2/2). The supposed
inequality (3.5) then implies that exp(r2a2p/2) ≤ C exp(a2/2) for all a > 0. Set s = r2p. Then
exp(a2(s− 1)/2) ≤ C for every real a. Letting a → 0 shows that C ≥ 1; letting a → ∞ shows that
s ≤ 1. �

Remark 3.6. Hypercontractive inequalities very typically involve actual contractions (i.e. constant
C = 1 in Proposition 3.4), since the time constant (tN or tJ in this case) are usually independent of
dimension, yielding an infinite-dimensional version of the inequality. Indeed, in Nelson’s original
work [18], one main technique was to show that hypercontractivity held in all dimensions up to
a fixed (dimension-independent) constant C > 1. The infinite-dimensional version then implies
that C = 1 is the best inequality, for if the best constant is > 1 or < 1, a tensor argument shows
that in infinite dimensions the constant is∞ or 0, respectively.

We saw that the exponent 1/r2 is maximal in the (SHC) inequality for Gaussian measures. Be-
low we show that it cannot be bigger for any probability measure with an exponential moment.
In the following, |x| refers to the Euclidean norm on Rn.

Proposition 3.7. Let µ be a probability measure with a finite exponential moment (i.e. ec|x| is µ-integrable
for some c > 0) and such that for a linear form h on Rn

ˆ
h(x)dµ(x) = 0 and

ˆ
h(x)2dµ(x) 6= 0. (3.6)

Fix r ∈ (0, 1). Assume that there exists q(r) > 0 such that

||fr||q(r),µ ≤ ||f ||1,µ (3.7)

for every LSH function f . Then q(r) ≤ r−2.

Remark 3.8. Observe that an O(n)-invariant probability measure with an exponential moment and
not equal to δ0 satisfies the condition (3.6).

Proof. One can assume that the µ-integral of h2 is 1. Take the LSH function f(x) = eεh(x) where
ε > 0. The inequality (3.7) implies that

ˆ
eεrq(r)h(x)dµ(x) ≤

(ˆ
eεh(x)dµ(x)

)q(r)
. (3.8)

Note that the last integral is finite for ε small enough, because µ has an exponential moment. Put
a = rq(r). We use the Taylor expansion ex = 1 + x + x2/2 + g(x) where g satisfies: |g(x)| ≤
(|x|3/6)e|x|. We get ˆ

eεah(x)dµ(x) = 1 +
a2ε2

2
+
ˆ
g(aεx)dµ(x).

where the last term is o(ε2). Similarly, we see that the right-hand side term of (3.8) can be written
as 1 + q(r)ε2/2 + o(ε2). It follows that a2 ≤ q(r), which means that q(r) ≤ r−2. �
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4. HYPERCONTRACTIVITY INEQUALITIES FOR PROBABILITY MEASURES

In this section we study hypercontractivity properties of LSH functions with respect to any
probability measure m. We have already seen in Proposition 3.1 that, for rotationally invariant
measures m, the semigroup Sr is always an Lp contraction.

Theorem 4.1. Fix q > 1 and r ∈ (0, 1]. Suppose that µ1 and µ2 are two probability measures on Rn which
verify the hypercontractivity inequality

‖fr‖q,µ ≤ ‖f‖1,µ (4.1)

for any continuous LSH function f . It at least one of µ1 and µ2 is compactly-supported, then the convolved
measure µ1 ∗ µ2 also satisfies (4.1).

Proof. Let f be a continuous LSH function, and suppose µ1 is compactly-supported. We haveˆ
f(rz)qd(µ1 ∗ µ2)(z) =

ˆ ˆ
f(rx+ ry)q dµ1(x) dµ2(y)

≤
ˆ (ˆ

f(x+ ry) dµ1(x)
)q

dµ2(y)

since the function x 7→ f(x + ry) is continuous LSH for each fixed y ∈ Rn, and µ1 satisfies (4.1).
Let h(y) =

´
f(x+ y) dµ1(x), so that we have proven that

‖fr‖qq,µ1∗µ2
≤
ˆ
h(ry)q dµ2(y) = ‖hr‖q1,µ2

. (4.2)

Since f is continuous, the function (x, y) 7→ f(x + y) is continuous in both variables, and also
LSH in each. Since suppµ1 is compact and f is continuous, all the conditions of Corollary 2.4
are satisfied, and so h is LSH. Thence, by the assumption of the theorem, the quantity on the
right-hand-side of Equation 4.2 is bounded above by ‖h‖q1,µ2

. By definition,

‖h‖1,µ2 =
ˆ
h(y) dµ2(y) =

ˆ ˆ
f(x+ y) dµ1(x) dµ2(y) = ‖f‖1,µ1∗µ2 ,

and this proves that Inequality 4.1 also holds for µ1 ∗ µ2. �

The Theorem 4.1 suggests the following

Conjecture. The convolution property of Theorem 4.1 holds without any assumptions on the measures
µ1, µ2.

It does not however seem easy to prove. This is due to the difficulty of proving that f ∗ µ is
upper semi-continuous when f is LSH, without any supplementary conditions on f or µ.

In the sequel we will only use Theorem 4.1 as stated, with µ1 equal to a symmetric Bernoulli
measure.

Most of the following results of this section concern the 1–dimensional case, i.e. log–convex
functions on the real line. In that case, one has the following surprisingly general hypercontrac-
tivity inequality.

Proposition 4.2. For every symmetric probability measure m on R, and for any logarithmically convex
function f on R, the following inequality is true for any r ∈ (0, 1]:

‖fr‖1/r,m ≤ ‖f‖1,m.

Remark 4.3. Translating this statement into additive language, the dilation semigroup Tt satisfies
strong hypercontractivity with time to contraction at most 2 · tJ , for any symmetric probability
measure on R, for log–convex functions. As explained above, a simple scaling f 7→ fp yields the
comparable result from Lp → Lq for q ≥ p > 0.
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Proof. By the log–convexity of f , for any x ∈ R

f(rx) ≤ f(0)1−rf(x)r,

which implies that f(rx)1/r ≤ f(0)1/r−1f(x). Then by m-integration,ˆ
f(rx)1/rdm(x) ≤ f(0)1/r−1||f ||1,m.

Since f is convex, f(0) ≤ 1
2 [f(x)+f(−x)] for all x. Integrating and using the symmetry ofm yields

f(0) ≤ ||f ||1,m. Consequently, ˆ
f(rx)1/rdm(x) ≤ ||f ||1/r1,m,

and the Proposition follows. �

Remark 4.4. Proposition 4.2 remains true for rotationally invariant measures m and log–convex
functions f on Rn. This proof fails, however, for general LSH functions on Rn when n ≥ 2.

Remark 4.5. Subject to additional regularity onm, the symmetry condition in Proposition 4.2 can be
replaced with the much weaker assumption that m is centred: i.e. m has a finite first moment, and´
xm(dx) = 0. In short, fix a log-convex f , and suppose thatm is regular enough that the function

η(r) =
´
f(rx)m(dx) is differentiable, so that η′(r) =

´
f ′(rx)xm(dx). (It is easy to see, from

convexity of f , that fr ∈ L1(m) for each r, provided f ∈ L1(m).) Then η′(0) = f ′(0)
´
xm(dx) = 0,

and since f is convex, f ′ is increasing which means that xf ′(rx) ≥ xf ′(x) for all x, r ≥ 0, so
η′(r) ≥ η′(0) = 0. Thus,

´
f dm = η(1) ≥ η(0) = f(0), and the rest of the above proof follows.

For this to work, it is necessary to assume (at minimum) that the functions ∂
∂rf(rx) = f ′(rx)x

are uniformly bounded in L1(m); a convenient way to achieve this is to assume that functions
g ∈ L1(m) for which x 7→ xg′(x) is also in L1(m) are dense in L1(m). The kinds of measures for
which such a Sobolev-space density is known is a main topic of our subsequent paper [8].

The problem in general is to find, for a fixed measure m, the maximal exponent q such that
‖fr‖q,m ≤ ‖f‖1,m for every r ∈ (0, 1] and any log-convex function f on R. For symmetric Bernoulli
measures we will show that the optimal exponent q is the same as for Gaussian measures.

Proposition 4.6. If m = 1
2(δ1 + δ−1) then

‖fr‖1/r2,m ≤ ‖f‖1,m (4.3)

for every r ∈ (0, 1] and any log-convex function f .

Remark 4.7. It follows from Proposition 4.6, and a simple rescaling argument, that the same strong
hypercontractivity inequality holds for any symmetric Bernoulli measure 1

2(δa + δ−a), a > 0. The
optimality of the index 1/r2 in the inequality (4.3) follows from Proposition 3.7.

Proof. Step 1. We justify that it is sufficient to prove the proposition for the two-parameter family
of functions h(x) = C exp(ax) with a ∈ R and C > 0. Take f strictly positive. Then there exists h
of the form C exp(ax) such that the functions f and h are equal on the set {−1,+1}. Assume now
that f is log-convex. Then f ≤ h on [−1, 1], and in particular f(r) ≤ h(r) and f(−r) ≤ h(−r). This
implies that ˆ

f(rx)1/r2 dm(x) ≤
ˆ
h(rx)1/r2 dm(x).

If the function h satisfies (4.3), we obtain

‖fr‖q,m ≤ ‖hr‖q,m ≤ ‖h‖1,m = ‖f‖1,m,

the last equality following from the fact that f and h coincide on the support of m. This gives the
inequality (4.3) for f .
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Step 2: We show the inequality (4.3) for f(x) = eax (the constant C obviously factors out of the
desired inequality). This is essentially an exercise. One has to prove that(ˆ

exp(ax/r)dm(x)
)r2
≤
ˆ

exp(ax)dm(x),

i.e.
(
cosh(ar )

)r2 ≤ cosh a for a real and r ∈ (0, 1]. Put s = 1/r. Then s ≥ 1 and the required
inequality becomes cosh(sa) ≤ (cosh a)s

2
. Taking logarithms and next dividing by s2a2, we are

left to prove that
log(cosh(sa))

s2a2
≤ log(cosh a)

a2
.

In other words, we must prove that the function log(coshx)/x2 is decreasing for x ≥ 0. Taking the
derivative, it is sufficient to see that ρ(x) = x tanhx− 2 log(coshx) is nonpositive for x ≥ 0. Well,
ρ(0) = 0, and ρ′(x) = x/ cosh2 x − tanhx = x−sinhx coshx

cosh2 x
. This last quotient is non-positive for its

numerator is equal to x− (sinh 2x)/2. �

Remark 4.8. Proposition 4.3 could be obtained from an inequality of A. Bonami [3] similarly to
the manner in which Theorem 3.2 was obtained from Nelson’s hypercontractivity theorem for
Gaussian measures. She proved that for symmetric Bernoulli measures the same classical hyper-
contractivity inequalities as for the Gaussian measure hold. In order to prove Proposition 4.3 for
a log-convex function f , one compares it to the affine function which takes the same value as f on
{−1, 1}. For a function on {−1, 1}, there is a unique affine function on the line which extends it.
Thus one can identify the space C{−1, 1} of functions on {−1, 1} and the space of affine functions
on the line. We omit the details.

Corollary 4.9. The symmetric uniform probability measure λa on [−a, a], a > 0, satisfies the strong
hypercontractivity property ‖fr‖1/r2,λa

≤ ‖f‖1,λa for all LSH functions.

Proof. Let mx = 1
2(δx + δ−x). It is easy to see that

µk := m 1
2
∗m 1

4
∗ . . . ∗m 1

2k
⇀ λ1, k →∞,

where we denote by⇀ the convergence in law. By the Proposition 4.6 (and the proceeding Remark
4.7) and Theorem 4.1, the inequality (4.3) holds for the measures µk. The supports of the measures
µk and λ1 are compact and included in the segment [−1, 1]. If f is log–convex on R, it is continuous
and the convergence

´ 1
−1 f dµk →

´ 1
−1 f dλ1 follows from the convergence in law µk ⇒ λ1. The

statement for all a > 0 now follows from a simple rescaling argument. �

Definition 4.1. For convenience, we introduce the notation (SHCc) for the strong hypercontrativity
coefficient of a probability measure on Rn: it is the supremum of the positive real numbers c such
that for every LSH function f , one has the strong hypercontractivity inequality:

||fr||r−c,µ ≤ ||f ||1,µ r ∈ (0, 1].

We have seen in Proposition 4.2 that for radial measures in dimension 1 the SHCc is at least 1. The
following proposition shows that this is not true in higher dimensions.

Proposition 4.10. In dimension bigger than one, the SHCc for radial measures can be 0.

Proof. For clarity of notation here and in the following, let N(x) = |x| denote the Euclidean norm
on Rn. Computing directly, one checks that for n > 1 this function is LSH (the laplacian of lnN(x)
for x nonzero and observe also that lnN(0) = −∞). Then take a probability measure µ with a
density s(x) = 0 for N(x) ≤ 1 and of the form: dN(x)−(n+2)dx for N(x) > 1. The function N(x) is
LSH and integrable for this measure. But it is clear that for every positive value of c, the function
N(rx)r

−c
is not µ-integrable for r near 0. �
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At the end of this Section we study the SHC properties for the probability measures

mp(dx) = cp exp(−N(x)p)dx, p > 0.

By Theorem 3.2 and Proposition 3.4 we already know that for p = 2, the SHCc is 2 in any Rn.
Proposition 3.7 implies that for any p > 0, the SHCc is not greater than 2.

Proposition 4.11. (a) In any dimension and for p ≥ 1 the SHCc of the probability measure mp is at
most p.

(b) In dimension bigger than one, the result of Proposition 4.10 is true for any p > 0.
(c) For p = 1 and in dimension one, the SHCc is 1.

Proof. (a) Take a function of the form f(x) := exp(AN(x)p)dx with 0 < A < 1. As N(x) is con-
vex and positive, the function N(x)p is also convex for p ≥ 1 and then also SH. This implies that
exp(AN(x)p) is LSH. Moreover, it is mp integrable. Fix r between 0 and 1. The integrability of the
function f(rx)q(r) implies that q(r) ≤ r−p, which implies that the SHCc is at most p.

(b) The proof is the same as for (a), but one uses the fact that in dimension bigger than one, the
function N(x)p is SH for every positive value of p.

(c) For the case p = 1, n = 1, one uses part (a) and the fact that in dimension one, the SHCc is at
least one. �

Open question. Is the SHCc= p for mp when 1 < p < 2 or when p = 1 and the dimension is
bigger than 1?

5. LOGARITHMIC SOBOLEV INEQUALITIES FOR LSH FUNCTIONS

Recall that the classical Gaussian Logarithmic Sobolev Inequality, cf. [2, 9], is

Ent(f2) =
ˆ
|f |2 log |f |2dγ − ‖f‖22,γ log ‖f‖22,γ ≤ 2

ˆ
fLfdγ = 2EL(f) (5.1)

where γ is the standard Gaussian measure,L = −∆+E is the generator of the Ornstein–Uhlenbeck
semigroup and f ∈ A, a standard algebra contained in the domain of the operator L. For the
Ornstein–Uhlenbeck semigroup A can be chosen as the space of C∞ functions with slowly in-
creasing derivatives. The expression Ent(f) is called the entropy of f and EL(f) is the Dirichlet
form or energy of f , with respect to the generator L of the Ornstein-Uhlenbeck semigroup, cf.[2].

The celebrated theorem of Gross [9] establishes the equivalence between the hypercontractivity
property of a semigroup Tt with invariant measure µ and the log–Sobolev inequality relative to the
generator L of Tt. More precisely, recalling the Nelson time tN = 1

2 ln q−1
p−1 , the hypercontractivity

inequalities ‖Ttf‖q,µ ≤ ‖f‖p,µ for t ≥ c tN (p, q) for 1 < p ≤ q < ∞ are, together, equivalent to the
single log–Sobolev Inequality

Ent(f2) =
ˆ
|f |2 log |f |2dµ− ‖f‖22,µ log ‖f‖22,µ ≤ 2c

ˆ
fLf dµ = 2cEL(f). (5.2)

In the Gaussian case these inequalities indeed hold with c = 1.

In this section we will prove that a strong Log-Sobolev Inequality

Ent(f2) =
ˆ
|f |2 log |f |2dµ− ‖f‖22,µ log ‖f‖22,µ ≤ c

ˆ
fEf dµ = cEE(f) (5.3)

holds for log–subharmonic functions f and compactly supported measures µ for which a (SHC)
property holds. As the Dirichlet form (or energy) on the right-hand side of (5.3) are taken with
respect to the generator E of the considered dilation semigroup Ttf(x) = f(e−tx), the inequality
(5.3) may also be called an Euler type LSI.
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Observe that all the above-mentionned inequalities have L1 versions. If in (5.1) we consider
f > 0 and we substitute f =

√
g, then using the formulas

´
fLfdγ =

´
(∇f)2dγ and∇f = ∇g

2
√
g we

get

Ent(g) ≤ 1
2

ˆ
(∇g)2

g
dγ. (5.4)

Let f be LSH, and set g = f2 in (5.3). Using the fact that Eg = 2fEf we can write the inequality
(5.3) as

Ent(g) =
ˆ
g log g dµ− ‖g‖1,µ log ‖g‖1,µ ≤

c

2

ˆ
Eg dµ. (5.5)

It may seem surprising that the integrals
´
fEf dµ from (5.3) and, equivalently,

´
Eg dµ from

(5.5) are positive when f and g are LSH functions. The following proposition explains this phe-
nomenon, which holds more generally for subharmonic functions.

Proposition 5.1. Let m be a probability measure on Rn which is O(n) invariant, and let g ∈ C1 be a
subharmonic function. Then

I =
ˆ
Eg(x)dm(x) ≥ 0.

Proof. We have

I =
ˆ
dm(x)

ˆ
O(n)

Eg(αx) dα,

where dα denotes the Haar measure on O(n). Denote by σ the normalized Lebegue measure on
the unit sphere Sn−1. If r = ‖x‖, we haveˆ

O(n)
Eg(αx) dα =

ˆ
Sn−1

(Eg)(ru)σ(du) = r

ˆ
Sn−1

∂g

∂r
(ru)σ(du)

= r
∂

∂r

ˆ
Sn−1

g(ru)σ(du) ≥ 0

because the function r 7→
´
Sn−1 g(ru)σ(du) is increasing (cf. Corollary 2.7). �

5.1. Log-Sobolev Inequalities for measures with compact support. The following techniques
work, in principle, quite generally. However, the usual approximation techniques to guarantee
integrability (convolution approximations and cut-offs) are unavailable in the category of sub-
harmonic functions. As such, we include this section which develops the relevant log-Sobolev
inequalities in all dimensions, but only for compactly–supported measures (i.e. do the cut-off in
the measure rather than the test functions). Extension of these results to a much larger class of
measures is the topic of [8].

Theorem 5.2. Let µ be a probability measure on Rn with compact support. Suppose that for some c > 0,
the following strong hypercontractivity property holds: for 0 < p ≤ q <∞ and f ∈ LpLSH(µ),

‖fe−t‖q,µ ≤ ‖f‖p,µ for t ≥ c · 1
2 log q

p .

Then for any log–subharmonic function f ∈ C1 the following logarithmic Sobolev inequality holds:ˆ
f2 log f2dµ− ‖f‖22,µ log ‖f‖22,µ ≤ c

ˆ
fEfdµ. (5.6)

Remark 5.3. (1) The condition f ∈ C1 is natural to ensure a good sense of the expression Ef in
(5.6). In the classical case in [2] one supposes f ∈ A ⊂ C∞ and such an LSI inequality is
equivalent to the hypercontractivity property ([2], Theorem 2.8.2).

(2) In the case of strong hypercontractivity with optimal q = p/r2 (symmetric Bernoulli mea-
sures and their convolutions, symmetric uniform measures on [−a, a]), the constant c is
equal to 1. Also Gaussian measures on Rn have the constant c = 1 but evidently they
are not covered by the Theorem 5.2. When q = p/r (any symmetric measure on R), the
constant c is equal to 2. The time tJ = 1

2 log q
p appearing in Theorem 5.2 is Janson’s time.
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(3) Theorem 5.2 is stated and proved here for compactly-supported measures, a class not in-
cluding the most important Gaussian measures. In the end of this section we will show
that the same strong log-Sobolev inequality of Euler type holds for Gaussian measures in
all dimensions.

Let us reiterate that the following proof applies to a much wider class of measures, but the precise
regularity conditions are complicated by the fact that cut-off approximations do not preserve the
cone of log–subharmonic functions. This will be covered in [8].

Proof. Let p = 2 and t be the critical time t = c · 1
2 log q

p . Then the variable r = e−t satisfies
q(r) = 2r−2/c. The method of proof is classical and consists of differentiating the function

α(r) = ‖fr‖q(r),µ
at r = 1. By strong hypercontractivity, α(r) ≤ α(1), so α′(1) ≥ 0 if we prove the existence of this
derivative.

Define β(r) = α(r)q(r) =
´
f(rx)q(r)dµ(x) and let βx(r) = f(rx)q(r), so that β(r) =

´
βx(r)dµ(x).

Then
∂

∂r
log βx(r) = q′(r) log f(rx) +

q(r)
f(rx)

x · ∇f(rx).

Since q′(r) = − 2
rcq(r), we compute

β′x(r) = − 2
rc
fr(x)q(r) log fr(x)q(r) +

q(r)
r
fr(x)q(r)−1(Ef)r(x). (5.7)

Let 0 < ε < 1. As f ∈ C1, the expression on the right-hand side of (5.7) is bounded for r ∈ (1− ε, 1]
and x ∈ supp(µ) (which is compact). The Dominated Convergence Theorem then implies that

β′(r) =
∂

∂r

ˆ
βx(r) dµ(x) =

ˆ
β′x(r)dµ(x). (5.8)

Finally, since α(r) = β(r)1/q(r) and β > 0, we have that α is C1 on (1− ε, 1] and a simple calculation
shows that

α′(r) =
α(r)

q(r)β(r)

[
2
rc
β(r) log β(r) + β′(r)

]
.

Now, taking r = 1, applying α′(1) ≥ 0 and the formulas (5.7) and (5.8) we obtain

0 ≤ 2
c
β(1) log β(1) + β′(1)

=
2
c
‖f‖22,µ log ‖f‖22,µ −

2
c

ˆ
f2 log f2dµ+ 2

ˆ
fEfdµ,

and this is the logarithmic Sobolev inequality (5.6). �

For p > 0 we define spaces LpE(µ) = {f ; f ∈ Lp(µ) and Ef ∈ Lp(µ)} and Lp(µ) logLp(µ) =
{f ;

´
fp| log fp|dµ < ∞} (we think that the notation Lp logLp is more appropriated than Lp logL

that can sometimes be met). The former is a Sobolev space, the latter an Orlicz space, related to
the logarithmic Sobolev inequality 5.6; indeed, in the case p = 2, they are the spaces for which the
right– and left–hand sides (respectively) of that inequality are finite.

Appealing to the surprising Proposition 4.2, and Theorem 5.2, we have the following.

Corollary 5.4. Let µ be a symmetric probability measure on R. Then for any log-subharmonic function
f ∈ L2(µ) logL2(µ) ∩ L2

E(µ) ∩ C1 the following logarithmic Sobolev inequality holds:ˆ
f2 log f2dµ− ‖f‖2L2(µ) log ‖f‖2L2(µ) ≤ 2

ˆ
fEfdµ.

Remark 5.5. In the classical case it is sufficient to suppose only f ∈ L2
E(µ); this actually implies that

f ∈ L2(µ) logL2(µ). The proof of this fact involves approximation by more regular (e.g. compactly
supported or bounded) functions, and these tools are unavailable to us here.
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Proof. By Proposition 4.2 the measure µ as well as the measures µN = µ|[−N,N ] + µ([−N,N ]c)δ0

verify the strong hypercontractivity property for LSH functions with q = p/r and c = 2. Let f
verify the hypothesis of the corollary, and set f ε = f + ε; it is easy to check that f ε also verifies all
the conditions of the corollary. By Theorem 5.2, for each Nˆ

(f ε)2 log(f ε)2dµN − ‖f ε‖22,µN
log ‖f ε‖22,µN

≤ 2
ˆ
f εEf εdµN .

When N → ∞, µN ⇀ µ (weak convergence), and since f ε ∈ C1 and is strictly positive, all the
functions (f ε)2, (f ε)2 log(f ε)2, and f εEf ε are continuous; hence the integrals in the last formula
converge to analogous integrals in terms of f ε with respect to the measure µ. Finally, we can let
ε ↓ 0 to achieve the result, by the Monotone Convergence Theorem. �

Corollary 5.6. Let µ be a symmetric probability measure on R. Then for any log–subharmonic function
f ∈ L1(µ) logL1(µ) ∩ L1

E(µ) ∩ C1 the following logarithmic Sobolev inequality holds:ˆ
f log fdµ− ‖f‖1,µ log ‖f‖1,µ ≤

ˆ
Efdµ.

Proof. The proof is similar to the proof of the Corollary 5.4. Note, nevertheless, that Corollary
5.6 does not follow from Corollary 5.4 because the hypothesis Ef ∈ L1(µ) is weaker than the
condition Ef ∈ L2(µ) supposed in Corollary 5.4 (all other integrability hypotheses are equivalent
by the transformation f 7→ f2 which maps L2 onto L1). �

5.2. Log-Sobolev Inequality for Gaussian measures. We formulate two versions of the strong
Logarithmic Sobolev Inequality for log-subharmonic functions and Gaussian measures: in the
classical context L2(γ) ( Theorem 5.7) and in the more natural and technically simpler case L1(γ)
(Theorem 5.8).

Both cases are nearly equivalent since f ∈ L2(γ) and log–subharmonic is equivalent to f2 ∈
L1(γ) and log–subharmonic. But the integration hypotheses of the theorems are slightly different,
cf. the discussion in the proof of the Corollary 5.6.

Theorem 5.7. Let γ be the Gaussian measure with density 1√
(2π)n

e−|x|
2/2 on Rn. Then for any LSH and

C1 function f ∈ L2(γ) logL2(γ) ∩ L2
E(γ) the following logarithmic Sobolev inequality holdsˆ

f2 log f2dγ − ‖f‖22,γ log ‖f‖22,γ ≤
ˆ
fEfdγ. (5.9)

Theorem 5.8. Let γ be as in Theorem 5.7. Then for any LSH and C1 function g ∈ L1(γ) logL1(γ)∩ L1
E(γ)

the following logarithmic Sobolev inequality holdsˆ
g log gdγ − ‖g‖1,γ log ‖g‖1,γ ≤

1
2

ˆ
Egdγ. (5.10)

Note that the method of the proof of Corollary 5.4 cannot be applied because we do not know if
the measures γN have the strong hypercontractivity property with Gaussian constant c = 1; by the
Theorem 4.2 they have it with c = 2 and we would obtain a weaker inequality with the constant 2
before the energy term EE(f). Instead, we will use the classical LSI for Gaussian measures.

Proof. Let us prove Theorem 5.8; the proof of Theorem 5.7 is similar.
It is sufficient to consider the case g = exp(h) with h ∈ C2 and ∆h ≥ 0. It follows that

∆g ≥ (∇g)2

g

which combined with the L1 version of the classical LSI (5.4) gives

Ent(g) ≤ 1
2

ˆ
∆gdγ.
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We also have ˆ
Egdγ =

ˆ
∆gdγ.

Finally

Ent(g) ≤ 1
2

ˆ
Egdγ

what is our strong LogSI(5.10). �

Remark 5.9. For the log–subharmonic functions f(x) = eax, a > 0 there is equality in (5.9) and
(5.10). Thus the constant c = 1 is optimal in (5.9) and the constant 1

2 is optimal in (5.10).

Remark 5.10. Letm = 1
2(δ1+δ−1) and let µk denote the normalized convolution powersm∗k. By the

Central Limit Theorem(CLT), the measures µk converge in law to γ. As the Theorem 5.2 applies
to the measures µk, one can prove the strong LSI’s for the measure γ on R using a strengthened
version of the CLT, cf. [7]. Strong LSI’s are proven in [7] also for Gaussian measures γ on Rn,
n ≥ 2, using approximation of γ by uniform spherical measures. This approach mirrors, to some
extent, Gross’s proof of the Gaussian log-Sobolev inequality in [9].

A direct proof of SHC inequality for γ using Proposition 4.6 is also a corollary of results of [7].

Remark 5.11. In principle, the strong LSI for Gaussian measures or other non-compactly supported
measures should follow from the strong hypercontractivity inequalities of Theorem 3.2 via an ap-
proach like that in the proof of Theorem 5.2. As we have mentioned, there are challenging regu-
larization issues (due to the nature of logarithmically subharmonic functions) which complicate
these techniques. Along the same lines, any measure for which the Logarithmic Sobolev Inequal-
ity holds for LSH functions should also satisfy strong hypercontractive estimates (this was proved
in the restricted context of holomorphic functions in [10]). Thus an equivalence

SHC ⇐⇒ strong LSI

is a natural conjecture. These issues will be dealt with in a future publication [8].
Other important open problems to be studied are:

– proving SHC for semigroups with other generators L
– SHC inequalities for non-symmetric Bernoulli and uniform measures
– a general convolution property, weakening the strong assumptions of Theorem 4.1.
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