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Abstract
We introduce a two-parameter family of diffusion processes (BN

r,s(t))t≥0, r, s > 0, on the general linear
group GLN that are Brownian motions with respect to certain natural metrics on the group. At the same time,
we introduce a two-parameter family of free Itô processes (br,s(t))t≥0 in a faithful, tracial W ∗-probability
space, and we prove that the process (BN

r,s(t))t≥0 converges to (br,s(t))t≥0 in noncommutative distribution as
N → ∞ for each r, s > 0. The processes (br,s(t))t≥0 interpolate between the free unitary Brownian motion
when (r, s) = (1, 0), and the free multiplicative Brownian motion when r = s = 1

2 ; we thus resolve the open
problem of convergence of the Brownian motion on GLN posed by Philippe Biane in 1997.
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1 Introduction

1.1 Main Theorems and Discussion

Let MN denote the space of N ×N complex matrices, and let GLN denoted the Lie group of invertible matrices
in MN . In this paper, we will address the behavior of Brownian motion on this group as N → ∞. In fact, we
introduce a two-parameter family BN

r,s of diffusion processes that are all left-invariant Brownian motions with
respect to a family of metrics on GLN (achieved by scaling the inner product by independent factors r, s > 0 on
the real and imaginary parts of the Lie algebra); see Definitions 1.3 and 1.5. The canonical Brownian motion on
GLN coincides with BN

1
2
, 1
2

, while the degenerate case BN
1,0 is Brownian motion on the unitary group UN .

Our main concern is with the large-N limit of the finite-dimensional (noncommutative) distributions of these
(r, s)-Brownian motions. To be precise: the classical distribution of the stochastic process BN

r,s is a measure on
paths taking values in GLN , and it is very difficult to make sense of a large-N limit of such objects (though
attempts have been made in the analogous case of UN -valued processes, cf. [11, 12]). Motivated instead by
random matrix theory and free probability, we study statistics of the process that live in an N -independent space.
For a single random matrix ensemble X = XN taking values in the normal matrices in MN , the standard
object of study is the empirical spectral distribution: the random probability measure on C that places equal
weights at the eigenvalues of the matrix. This measure is captured by its (random) trace moments: random
variables of the form {tr(XkX∗m) : k,m ∈ N}, where tr = 1

NTr is the normalized trace on MN and X∗ is
the adjoint (conjugate transpose) of X . For a collection X1, . . . , Xn of random matrix ensembles that do not
generally commute, the natural analog is the noncommutative distribution: the collection of all random variables
tr(f(X1, X

∗
1 , . . . , Xn, X

∗
n)) for all noncommutative polynomials f in the matrices and their adjoints.

The main theorem of this paper is the identification of the large-N limit of the noncommutative distribution
of any finite collection of instances of the Brownian motion BN

r,s(t1), . . . , BN
r,s(tn). In the limit, one does not

find the distribution of a diffusion, or any (classical) Itô process at all. Rather, the limit is a free Itô process br,s,
which we refer to as a free multiplicative (r, s)-Brownian motion; see Definition 1.6. (Sections 2.2 and 2.3 give
brief recollections of the basics of free probability and free stochastic analysis, with some references to more in
depth treatments.) That is: the limit of BN

r,s is identified as a one-parameter family of operators {br,s(t)}t≥0 in
a tracial noncommutative probability space (A , τ), whose finite-dimensional noncommutative distributions are
precisely the large-N limits of those of BN

r,s. As is standard in noncommutative probability, we refer to this as
convergence of the process (as this is the strongest notion of convergence that makes sense for noncommutative
stochastic processes whose distributions are not measures on a fixed path space).

Theorem 1.1. For r, s > 0, let BN
r,s be an (r, s)-Brownian motion on GLN , and let br,s be a free multiplicative

(r, s)-Brownian motion. Then (BN
r,s(t))t≥0 on GLN converges, as a noncommutative stochastic process, to

(br,s(t))t≥0 asN →∞. More precisely: if n ∈ N and f is any noncommutative polynomial in 2n indeterminates,
then for any t1, . . . , tn ≥ 0,

Etr
[
f(BN

r,s(t1), BN
r,s(t1)∗, . . . , BN

r,s(tn), BN
r,s(tn)∗)

]
= τ [f(br,s(t1), br,s(t1)∗, . . . , br,s(tn), br,s(tn)∗)] +O

(
1

N2

)
.

(1.1)

Theorem 1.1 is proved in Section 5. It answers a question left by Biane in [2]. The main result of that
paper was the analogous statement of Theorem 1.1 for the canonical Brownian motion UN on the unitary group
UN . In that paper, Biane introduced the free unitary Brownian motion for the first time; it has now become
a standard tool used in free probability theory (see [7], [28], and many others). Biane’s proof had two main
steps: first establishing the convergence for a fixed time t > 0, and then using group properties resepcted by the
process and its limit (namely independent multiplicative increments) together with complementary asymptotic
freeness results to extend the convergence to all finite-dimensional distributions. Since a single instance UN (t)

2



of the unitary Brownian motion is a unitary (hence normal) matrix, the spectral theorem is available. Thus the
noncommutative distribution becomes the empirical spectral distribution νt, whose limit is then computed via a
careful analysis of the characters of irreducible representation of UN . See Definition 1.7 for a closed formula for
the limiting moments of this distribution; these moments will come into play in the present analysis as well.

Our proof is similarly broken into two parts, first establishing the convergence for a fixed t, and then lever-
aging more general asymptotic freeness results (cf. Section 2.3) to extend to convergence of the process. For a
single t, the story is quite different. The process BN

r,s is almost surely never normal (cf. Proposition 4.15), and so
the empirical spectral distribution of BN

r,s(t) has no simple connection to the noncommutative distribution of the
process (it is not even a continuous function of the moments in the limit). In [2, p. 19], Biane states “It is very
likely that the process (Γt)t∈R+” (which is our process BN

r,s with r = s = 1
2 ) “is the limit in distribution. . . of

the Brownian motion with values in GLN . . . but we have not proved this.” He goes on to list a partial result,
showing that the convergence holds for a single time t ≥ 0 for the self-adjoint process Γ∗tΓt, which, he states,
can be computed following the same general outline as his analysis of the heat kernel on UN but using the spher-
ical functions for the pair (GLN ,UN ) in the place of the characters of UN . It is possible that a more involved
representation theoretic approach like this might yield a proof of our Theorem 1.1 for a single time t, but such a
proof has not appeared in the literature in the 17 years since this question was posed.

Our approach is more geometric, using a structure theorem for the Laplacian on GLN proved in the author’s
earlier joint paper [9], and associated concentration of heat kernel measure results from that paper. (A similar
approach was indepednently developed by Guillaume Cébron in [5, Theorem 4.6], and is used there to give a
somewhat different proof of the special case of Theorem 1.1 for a single time t ≥ 0 and for the canonical case
r = s = 1

2 .) These ideas go back to earlier papers by Eric Rains [22] and Ambar Sengupta [25]. To give a
little more detail presently: for a single time t ≥ 0, we compare the left- and right-hand sides of (1.1) using
stochastic calculus. Each can be represented as a stochastic integral involving noncommutative polynomials of
lower order (thanks to the linearity of the diffusion and drift coefficients in (1.5)), and the proof proceeds by a
careful induction using the following key concentration of measure result, which is another main theorem of the
present paper.

Theorem 1.2. Let n ∈ N, t1, . . . , tn ≥ 0, and letB1,N
r,s (t1), . . . , Bn,N

r,s (tn) be independent copies of the Brownian
motion BN

r,s(·) at these times. These operators possess a limit joint distribution, and, for any noncommutative
polynomials in 2n indeterminates, there is a constant C = C(r, s, t1, . . . , tn, f, g) such that

Cov
[
tr(f(B1,N

r,s (t1), . . . , B1,N
r,s (tn)∗)), tr(g(B1,N

r,s (t1), . . . , Bn,N
r,s (tn)∗))

]
≤ C

N2
. (1.2)

Theorem 1.2 is proved in Section 3. It is a multivariate extension of the technology in [9, Sections 3 & 4].

1.2 Definitions, Notation, and Auxiliary Results

To motivate our interest in the diffusions BN
r,s (formally defined below), let us briefly discuss the complexity of

the Lie group GLN as compared to UN . The Lie algebra Lie(GLN ) = glN = MN possesses no Ad(GLN )-
invariant inner product (as it is not of compact type, cf. [15]). However, GLN is the complexification of UN ,
which in particular gives the decomposition of its Lie algebra glN = uN ⊕ iuN , where uN = Lie(UN ) consists
of skew-Hermitian matrices.

The standard inner product on uN is 〈ξ, η〉 = −Tr(ξη), which is Ad(UN )-invariant. It extends to the
real Hilbert-Schmidt inner product 〈ξ, η〉 = <Tr(ξη∗) on glN which, while not Ad(GLN )-invariant, remains
invariant under conjugation by UN . It is surely not the only such Ad(UN )-invariant inner product on glN . The
simplest generalization is given by scaling the inner product independently on the two part of the decomposition
glN = uN ⊕ iuN . This is closely related to the two-parameter Segal–Bargmann transform of Driver and Hall (cf.
[8]) whose large-N limit is the topic of [9], and is the real motivation for the present discussion. Let us define
the inner products now.
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Definition 1.3. Let r, s > 0. Define the real inner product 〈·, ·〉r,s on glN by

〈ξ1 + iη1, ξ2 + iη2〉Nr,s = −1

r
NTr(ξ1ξ2)− 1

s
NTr(η1η2), ξ1, ξ2, η1, η2 ∈ uN . (1.3)

That is: 〈·, ·〉Nr,s makes uN and iuN orthogonal, and its restrictions to these two orthocomplementary subspaces
are positive scalar multiples of the Hilbert-Schmidt inner product.

Remark 1.4. The inner product 〈·, ·〉Nr,s may alternatively be written in the form

〈A,B〉Nr,s =
1

2

(
1

s
+

1

r

)
N<Tr(AB∗) +

1

2

(
1

s
− 1

r

)
N<Tr(AB).

We scale with NTr in order to produce a meaningful limit as N → ∞. That is must scale opposite to the trace
tr = 1

NTr used to define the limit moments is a consequence of the fact that, in general, the Laplacian scales
opposite to the metric.

Any real inner product on glN gives rise to a left-invariant Riemannian metric on GLN , and hence to a
left-invariant Laplacian and associated diffusion process: the Brownian motion.

Definition 1.5. Let r, s > 0. Let ∆N
r,s denote the Laplace-Beltrami operator on GLN associated to the left-

invariant Riemannian metric induced by the inner product 〈·, ·〉Nr,s (cf. (2.8)). The diffusion process BN
r,s(t) on

GLN , started at BN
r,s(0) = IN , with generator 1

2∆N
r,s, is called an (r, s)-Brownian motion on GLN . Fix a

probability space (Ω,F ,P) from which the random matrices BN
r,s(t) are sampled, and denote E =

∫
Ω · dP.

Theorem 1.1 characterizes the large-N limit of BN
r,s(t) as a noncommutative stochastic process. To do so, we

introduce the following free stochastic processes (for a discussion of free stochastic calculus, see Section 2.2).

Definition 1.6. Fix r, s ≥ 0. Let (A , τ) be a W ∗-probability space that contains two freely independent free
semicircular Brownian motions x and y. For t ≥ 0, let

wr,s(t) = i
√
r x(t) +

√
s y(t). (1.4)

The free multiplicative Brownian motion of parameters r, s, denoted br,s, is the unique solution to the following
free stochastic differential equation:

dbr,s(t) = br,s(t) dwr,s(t)−
1

2
(r − s)br,s(t) dt, br,s(0) = 1. (1.5)

Note that, when r = s = 1
2 , wr,s(t) = 1√

2
(ix(t) + y(t)) which is the variance-normalized circular Brownian

motion (the large-N limit of the appropriately scaled Brownian motion on the Lie algebra MN , cf. [26]), more
commonly denoted Zt. In this case, setting Γt = b 1

2
, 1
2
(t), (1.5) reduces to

dΓt = Γt dZt, Γ0 = 1, (1.6)

which is the left-invariant version of the free multiplicative Brownian motion referenced in [2, 3]. We may also
consider the degenerate case (r, s) = (1, 0). Let u(t) = b1,0(t); then (1.5) becomes

du(t) = iu(t) dx(t)− 1

2
u(t) dt, u(0) = 1 (1.7)

which is the free SDE for the (left) free unitary Brownian motion, introduced in [2].
In order to prove Theorem 1.1, we need to describe more concretely the noncommutative distribution of br,s;

to that end, we introduce the following indispensable constants, which are (extensions) of the moment of the free
unitary Brownian motion.
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Definition 1.7. For each t ∈ R, there exists a unique probability measure νt on C∗ = C \ {0} with the following
properties. For t > 0, νt is supported in the unit circle U; for t < 0, νt is compactly supported in R+ = (0,∞);
and ν0 = δ1. In all cases, νt is determined by its moments: ν0(t) ≡ 1 and, for n ∈ Z \ {0},

νn(t) ≡
∫
C∗
un νt(du) = e−

|n|
2
t

|n|−1∑
k=0

(−t)k

k!
|n|k−1

(
|n|
k + 1

)
. (1.8)

The existence of the measure was proved in [1] for t < 0 and in [2] for t > 0. In the latter case, it is the a.s.
limit of the empirical spectral distribution of the free unitary Brownian motion; in the former case, it has a similar
description in terms of a positive free diffusion process sometimes called multiplicative Brownian motion.

The two parts of the proof of Theorem 1.1 (convergence for a single t, and then asymptotic freeness of incre-
ments to extend to multiple t) rely on the following auxiliary results. They are fairly straightforward computations
using the Itô formula, and their proofs are outlined in Section 4.

Proposition 1.8. Let r, s, t ≥ 0 and n ∈ N. Then

τ [br,s(t)
n] = τ [br,s(t)

∗n] = νn((r − s)t), (1.9)

τ [(br,s(t)br,s(t)
∗)n] = νn(−4st), (1.10)

τ
[
br,s(t)

2br,s(t)
∗2] = e4st + 4st(1 + st)e(3s−r)t. (1.11)

Equations (1.9) and (1.10) were proved in the author’s paper [16, Theorems 1.3 & 1.5]. They are included here
to show how they can be derived more directly from the limit process br,s(t); the final steps of the calculations
are in Corollaries 4.5 and 4.8. Equation (1.11) is needed in the proof of Proposition 1.10 below. In particular,
comparing (1.10) and (1.11) shows that br,s(r) is never normal if r, s, t > 0, as holds for finite N as well.

Remark 1.9. Proposition 4.15 below shows the unsurprising fact that BN
r,s is non normal for all t > 0 (with

probability 1), since the submanifold of normal matrices is of codimension > 1 and is therefore a polar set for
the diffusion BN

r,s. One might hope to be able to prove this directly using Itô’s formula, but the best one can do
in that framework is a calculation akin to (1.10) and (1.11) which shows the weaker statement that for each fixed
t > 0, BN

r,s(t) is a.s. non-normal.

Finally, we will use the fact that the free stochastic process (br,s(t))t≥0 inherits all of the invariant properties
from BN

r,s(t) that qualify it as a Brownian motion.

Proposition 1.10. For r, s > 0 and N ∈ N, the GLN Brownian motion (BN
r,s(t))t≥0 has independent, stationary

multiplicative increments. If N ≥ 2, then, with probability 1, BN
r,s(t) is not a normal matrix for any t > 0.

For r, s ≥ 0, the free multiplicative Brownian motion (br,s(t))t≥0 is invertible for all t ≥ 0, and has freely
independent, stationary multiplicative increments. If s > 0, then br,s(t) is not a normal operator for any t > 0.

Remark 1.11. A simple time change argument shows that if s = 0, then br,0 is unitary, and u(t) ≡ br,0(t/r) is a
free unitary Brownian motion for any r > 0. The same applies to BN

r,0, which we define (in this degenerate case)
as the solution to the SDE (2.11) below.

2 Background

In this section, we briefly outline the technology needed to prove the results in this paper: stochastic calculus for
matrix-valued Itô processes (particularly for invertible random matrices), the corresponding stochastic calculus
in the free probability setting, and the notion of asymptotic freeness that ties the two together.
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2.1 Stochastic Calculus on GLN
Let G be a connected Lie group, with Lie algebra g. For ξ ∈ g, the associated left-invariant vector field on G is
denoted ∂ξ:

(∂ξf) (g) =
d

dt

∣∣∣∣
t=0

f(g exp(tξ)), f ∈ C∞(G). (2.1)

Let 〈·, ·〉 be a real inner product on g, and let β be an orthonormal basis for (g, 〈·, ·〉). Then the Laplace-Beltrami
operator on G for the Riemannian metric induced by 〈·, ·〉 is

∆G =
∑
ξ∈β

∂2
ξ , (2.2)

which does not depend on the particular orthonormal basis used.
IfG ⊂MN is a linear Lie group, then the Brownian motion onG (the diffusion process with generator 1

2∆G)
may be constructed as the solution to a stochastic differential equation. Fix an orthonormal basis β for g, and let
W (t) denote the following Wiener process in g:

W (t) =
∑
ξ∈β

Wξ(t) ξ,

where {Wξ : ξ ∈ β} are i.i.d. standard R-valued Brownian motions. Then the Brownian motion B(t) is deter-
mined by the Stratonovich SDE

dB(t) = B(t) ◦ dW (t), W (0) = IN . (2.3)

While convenient for proving geometric invariance, the Stratonovich form is less well-adapted to computation.
We can convert (2.3) to Itô form. The result, due to McKean [18, p. 116], is

dB(t) = B(t) dW (t) +
1

2
B(t)

∑
ξ∈β

ξ2

 dt, B(0) = IN . (2.4)

See, also, [13].
Let us specialize to the case of interest, with G = GLN and glN equipped with an AdUN -invariant inner

product 〈·, ·〉Nr,s of (1.3). To clarify: let 〈·, ·〉uN denote the following real inner product on uN :

〈ξ, η〉uN = −NTr(ξη). (2.5)

Then the inner product 〈·, ·〉Nr,s on glN = uN ⊕ iuN is given by

〈ξ1 + iη1, ξ2 + iη2〉Nr,s =
1

r
〈ξ1, ξ2〉uN +

1

s
〈η1, η2〉uN . (2.6)

It is straightforward to check that, if βN is an orthonormal basis for uN with respect to 〈·, ·〉uN , then

βNr,s =
{√

rξ : ξ ∈ βN
}
∪
{√

siξ : ξ ∈ βN
}

(2.7)

is an orthonormal basis for glN with respect to 〈·, ·〉Nr,s. Equation (2.2) and a straightforward application of the
chain rule in (2.1) then shows that the Laplace-Beltrami operator is

∆N
r,s =

∑
ξ∈β

(r∂2
ξ + s∂2

iξ). (2.8)
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Remark 2.1. In [9, 16], we used the elliptic operator

ANs,t =

(
s− t

2

) ∑
ξ∈βN

∂2
ξ +

t

2

∑
ξ∈βN

∂2
iξ = ∆N

s−t/2,t/2.

The linear change of parameters was convenient for our discussion of the two-parameter Segal–Bargmann trans-
form, and so all of the theorems in [16] are stated using this language as well.

We will have frequent use for the following “magic formula”; it was stated and proved as [9, Proposition 3.1],
but it surely goes back further (for example to the work of Sengupta [25], and Gordina [14] where it was used in
the context of infinite dimensional orthogonal groups). If βN is an orthonormal basis of uN , then∑

ξ∈βN

ξAξ = −tr(A)IN , A ∈MN . (2.9)

In particular, taking A = IN yields ∑
ξ∈βN

ξ2 = −IN . (2.10)

Combining this with (2.7) gives ∑
ξ∈βNr,s

ξ2 = −(r − s)IN ,

and so, by (2.4), the UN -invariant Brownian motion BN
r,s(t) is determined by the Itô SDE

dBN
r,s(t) = BN

r,s(t) dW
N
r,s(t)−

1

2
(r − s)BN

r,s(t) dt, (2.11)

where WN
r,s(t) =

∑
ξ∈βNr,sWξ(t) ξ. It will be convenient to express this Itô process in a slightly different form.

Let us choose the following orthonormal basis βN for uN :

βN =

{
1√
N
Ejj ,

1√
2N

(Ejk − Ekj),
1√
2N

i(Ejk + Ejk) : 1 ≤ j < k ≤ N
}
, (2.12)

where Ejk is the matrix unit with a 1 in the (j, k)-entry and 0 elsewhere. Then it is strightforward to check that

WN
r,s(t) =

√
r
∑
ξ∈βN

Bξ(t) ξ + i
√
s
∑
ξ∈βN

Biξ(t) ξ =
√
r iXN (t) +

√
s Y N (t),

where XN (t) and Y N (t) are independent GUEN Brownian motions. That is: the matrices XN (t), Y N (t) are
Hermitian, the diagonal entries are R-valued Brownian motions of variance t/N , and the entries [XN (t)]jk and
[Y N (t)]jk with 1 ≤ j < k ≤ N are complex Brownian motions of total variance t/N (i.e. 1√

2
(B(t) + iB′(t))

where B(t), B′(t) are independent R-valued Brownian motions of variance t/N ). This is a convenient represen-
tation, due to the following easily-verified stochastic calculus rules that apply to matrix stochastic integrals with
respect to (linear combinations of) XN (t) and Y N (t).

Lemma 2.2. Let Θ(t),Θ1(t),Θ2(t) be MN -valued stochastic processes that are adapted to the filtration Ft of
XN (t) and Y N (t), with all entries in L2(Ω,F ,P). Then, for any t ≥ 0, the following hold:

E
(∫ t

0
Θ1(s) dXN (s) Θ2(s)

)
= E

(∫ t

0
Θ1(s) dY N (s) Θ2(s)

)
= 0 (2.13)∫ t

0
dXN (s) Θ(t) dXN (s) =

∫ t

0
dY N (s) Θ(t) dY N (s) =

∫ t

0
tr(Θ(s)) ds · IN (2.14)∫ t

0
dXN (t) Θ(s) dY N (s) =

∫ t

0
dY N (s) Θ(s) dXN (s) = 0. (2.15)

7



Moreover, let Θ1(t) and Θ2(t) be MN -valued Itô processes: solutions to SDEs of the form

dΘ(t) = f1(Θ(t)) dXN (t) f2(Θ(t)) + g1(Θ(t)) dY N (t) g2(Θ(t)) + h(Θ(t)) dt, (2.16)

for Lipschitz functions f1, f2, g1, g2, h : MN →MN . Then the following Itô product rules hold:

d(Θ1(t)Θ2(t)) = dΘ1(t) ·Θ2(t) + Θ1(t) · dΘ2(t) + dΘ1(t) · dΘ2(t) (2.17)

Θ1(t) dXN (t) Θ2(t) dt = Θ1(t) dY N (t) Θ2(t) dt = 0. (2.18)

Lemma 2.2 is straightforward to verify from the standard Itô calculus for vector-valued processes. Note, for
example, that (2.14) is a consequence of the magic formula (2.9).

Remark 2.3. The global Lipschitz assumption on the drift and diffusion coefficient functions in (2.16) guarantee
the existence of a unique solution for all time by the standard theory, cf. [10]. In all the examples considered
presently, these functions will be first-order polynomials in the matrix entries.

2.2 Free Stochastic Calculus

For an introduction to noncommutative probability theory, and free probability in particular, we refer the reader
to [21]. We assume familiarity with noncommutative probability spaces and W ∗-probability spaces. The reader
is directed to [17, Sections 1.1–1.3] for a quick introduction to free additive (semicircular) Brownian motion, and
to [7, Section 1.3] for a brief introduction to free unitaty Brownian motion. Also, we give a brief discussion of
free independence at the beginning of Section 2.3 below.

Let (A , τ) be a faithful, tracial W ∗-probability space. To fix notation, for a ∈ A denote its noncom-
mutative distribution as ϕa. I.e. letting C〈X,X∗〉 denote the noncommutative polynomials in two variables,
ϕa : C〈X,X∗〉 → C is the linear functional

ϕa(f) = τ(f(a, a∗)), f ∈ C〈X,X∗〉.

A free semicircular Brownian motion x(t) is a self-adjoint stochastic process (x(t))t≥0 in A such that x(0) = 0,
Var(x(1)) = 1, and the additive increments of x are stationary and freely independent: for 0 ≤ t1 < t2 < ∞,
ϕx(t2)−x(t1) = ϕx(t2−t1), and x(t2) − x(t1) is freely independent from the W ∗-subalgebra A ⊃ At1 ≡
W ∗{x(t) : 0 ≤ t ≤ t1}. Since x(t) is a bounded self-adjoint operator, its distribution is given by a compactly-
supported probability measure on R; the freeness of increments and stationarity then implies that ϕx(t2)−x(t1) is
the semicircle law: setting t = t2 − t1,

τ [(x(t2)− x(t1))n] =

∫ 2
√
t

−2
√
t
sn

1

2πt

√
4t− s2 ds, n ∈ N.

In [26], it was proven that, if XN (t) is a GUEN Brownian motion, then the process (XN (t))t≥0 converges to a
free semicircular Brownian motion: for any n and any t1, t2, . . . , tn ≥ 0, and any noncommutative polynomial
f ∈ C〈X1, . . . , Xn〉,

lim
N→∞

Etr[f(XN (t1), . . . , XN (tn))] = τ [f(x(t1), . . . , x(tn))].

Appealing to Lemma 2.2, this paves the way to free stochastic differential equations.
Let x(t) and y(t) be two freely independent free semicircular Brownian motions in a W ∗-probability space

(A , τ), and let At = W ∗{x(s), y(s) : 0 ≤ s ≤ t}. Let θ(t), θ1(t), θ2(t) be processes that are adapted to the
filtration At. The free Itô integral ∫ t

0
θ1(s) dx(s) θ2(s) (2.19)
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is defined in precisely the same manner as Itô integrals of real-valued processes with respect to real Brownian
motion: as L2(At, τ)-limits of sums

∑
j θ1(tj)(x(tj)− x(tj−1))θ2(tj) over partitions {0 = t0 ≤ · · · ≤ tn = t}

as the partition width supj |tj−tj−1| tends to 0. Standard Picard iteration techniques show that, if f1, f2, g1, g2, h
are Lipschitz functions then the integral equation

b(t) = 1 +

∫ t

0
f1(b(s)) dx(s) f2(b(s)) +

∫ t

0
g1(b(s)) dy(s) g2(b(s)) +

∫ t

0
h(b(s)) ds, (2.20)

has a unique adapted solution b(t) ∈ At satisfying b(0) = 1.

Remark 2.4. We are over-simplifying here: (2.19) should really be a sum of such terms (or a limit thereof)
representing the stochastic integral of a biprocess. It is only possible to make sense of Lipschitz functional
calculus for self-adjoint (or at least normal) biprocesses; in the simplified form of (2.19), this would require θ1 =
θ2. Otherwise, we are restricted to polynomial functions f1, f2, g1, g2, h, and the (global) Lipschitz requirement
then limits the theory to first-order polynomials. Fortunately, that is sufficient for the present purposes (cf. (1.5)).
The question of extending a more general theory of existence of solutions to free stochastic differential equations
involving non-self-adjoint biprocesses is an active area of current research.

As usual, we use differential notation to express (2.20) in the form

db(t) = f1(b(t)) dx(t) f2(b(t)) + g1(b(t)) dy(t) g2(b(t)) + h(b(t)) dt, b(0) = 1. (2.21)

We refer to (2.21) as a free stochastic differential equation. Solutions of such equations are called free Itô
processes. The matrix stochasic calculus of Lemma 2.2 has a precise analogue for free Itô processes.

Lemma 2.5. Let (A , τ) be a W ∗-probability space containing two freely independent free semicircular Brow-
nian motions x(t) and y(t), adapted to the filtration {At}t≥0. Let θ(t), θ1(t), θ2(t) be processes adapted to At.
Then, for any t ≥ 0, the following hold:

τ

(∫ t

0
θ1(s) dx(s) θ2(s)

)
= τ

(∫ t

0
θ1(s) dy(s) θ2(s)

)
= 0 (2.22)∫ t

0
dx(s) θ(s) dx(s) =

∫ t

0
dy(s) θ(s) dy(s) =

∫ t

0
τ(θ(s)) ds (2.23)∫ t

0
dx(s) θ(s) dy(s) =

∫ t

0
dy(s) θ(s) dx(s) = 0. (2.24)

Moreover, if θ1(t) and θ2(t) are free Itô processes, then the following Itô product rules hold:

d(θ1(t)θ2(t)) = dθ1(t) · θ2(t) + θ1(t) · dθ2(t) + dθ1(t) · dθ2(t) (2.25)

θ1(t) dx(t) θ2(t) dt = θ1(t) dy(t) θ2(t) dt = 0. (2.26)

For a proof of Lemma 2.5, see [4].

2.3 Asymptotic Freeness

Definition 2.6. Let (A , τ) be a noncommutative probability space. Unital ∗-subalgebras A1, . . . ,Am ⊂ A
are called free with respect to τ if, given any n ∈ N and k1, . . . , kn ∈ {1, . . . ,m} such that kj−1 6= kj for
1 < j ≤ n, and any elements aj ∈ Akj with τ(aj) = 0 for 1 ≤ j ≤ n, it follows that τ(a1 · · · an) = 0.
Random variables a1, . . . , am are said to be freely independent if the unital ∗-algebras Aj = 〈aj , a∗j 〉 ⊂ A
they generate are free.
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Free independence is a ∗-moment factorization property. By centering ai − τ(ai)1A ∈ Ai, the freeness
rule allows (inductively) any moment τ(aε1k1 · · · a

εn
kn

) to be decomposed as a polynomial in moments τ(aεi ) in the
variables separately. For example, if a, b are freely independent then τ(aεbδ) = τ(aε)τ(bδ), while

τ(aε1bδ1aε2bδ2) = τ(aε1)τ(aε2)τ(bδ1bδ2) + τ(aε1aε2)τ(bδ1)τ(bδ2)− τ(aε1)τ(aε2)τ(bδ1)τ(bδ2),

for any ε, ε1, ε2, δ, δ1, δ2 ∈ {1, ∗}. In general, if a1, . . . , an are freely independent, then their noncommutative
joint distribution ϕa1,...,an (a linear functional on C〈X1, . . . , Xn, X

∗
1 , . . . , X

∗
n〉) is determined by the individual

distributions ϕa1 , . . . , ϕan (linear functionals on C〈X,X∗〉).
Let L∞−(Ω,F ,P) =

⋂
p>1 L

p(Ω,F ,P), and let MN ⊗ L∞− denote the algebra of N × N matrices with
entries in L∞−(Ω,F ,P). There are scant few non-trivial instances of free independence in the noncommutative
probability space (MN ⊗ L∞−,Etr). However, asymptotic freeness abounds.

Definition 2.7. Let n ∈ N. For each N ∈ N, let AN1 , . . . , A
N
n be random matrices in MN ⊗ L∞−. Say that

(AN1 , . . . , A
N
n ) are asymptotically free if there is a noncommutative probability space (A , τ) containing freely

independent random variables a1, . . . , an such that (AN1 , . . . , A
N
n ) converges in noncommutative distribution to

(a1, . . . , an).

The general mantra for producing asymptotically free random matrices is as follows.

If AN1 , . . . , A
N
n are random matrices whose distribution is invariant under unitary conjugation, and

possess a joint limit distribution, then they are asymptotically free.

The first result in this direction was proved in [26], where the matrices ANj were taken to have the form
ANj = UNj D

N
j (UNj )∗ where UN1 , . . . , U

N
n are independent Haar-distributed unitaries, and DN

j are determin-
istic diagonal matrices with uniform bounds on their trace moments. This was later improved to include all
deterministic matrices (with uniform bounds on their operator norms) in [27]; see, also, [6, 30] for related results.
We will use the following form of the mantra, which is a weak form of [20, Theorem 1].

Theorem 2.8 (Mingo, Śniady, Speicher, 2007). LetAN1 , . . . , A
N
n be independent random matrices in MN⊗L∞−,

with the following properties.

(1) The joint law of AN1 , . . . , A
N
n is invariant under conjugation by unitary matrices in UN .

(2) There is a joint limit distribution: for any noncommutative polynomial f ∈ C〈X1, . . . , Xn, X
∗
1 , . . . , X

∗
n〉,

limN→∞ Etr(f(AN1 , . . . , A
N
n , (A

N
1 )∗, . . . , (ANn )∗)) exists.

(3) The fluctuations are O(1/N2): for any noncommutative polynomials f, g as in (2), there is a constant
C = C(f, g) so that

Cov
[
tr
(
f(AN1 , . . . , A

N
n , (A

N
1 )∗, . . . , (ANn )∗)

)
, tr
(
g(AN1 , . . . , A

N
n , (A

N
1 )∗, . . . , (ANn )∗)

)]
≤ C

N2
.

Then AN1 , . . . , A
N
n are asymptotically free.

Remark 2.9. [20, Theorem 1] has a much stronger assumption than (3): it also assumes that the classical cu-
mulants kr in normalized traces of noncommutative polynomials are o(1/N r) for all r > 2, thus producing a
so-called second-order limit distribution. However, this stronger assumption is used only to produce a stronger
conclusion: that the matrices are asymptotically free of second-order. Following the proof, it is relatively easy to
see that Theorem 2.8 is proved along the way, at least in the case n = 2. To go from 2 to general finite n can be
achieved by induction together with the associativity of freeness; cf. [29, Proposition 2.5.5(iii)]. See, also, [19]
where this is proved more explicitly in the harder case of real random matrices (where UN -invariance is replaced
with ON -invariance).

10



3 Heat Kernels on GLnN
Here we generalize the technology we developed in [9, Sections 3.4 & 4.1] to independent products of heat kernel
measures on GLN .

3.1 Laplacians on GLnN
Let n,N ∈ N. Then GLnN = GLN × · · · × GLN is a Lie group of real dimension 2nN2. Its Lie algebra is
glnN = glN ⊕ · · · ⊕ glN . For ξ ∈ glN , and 1 ≤ j ≤ n, let ξj denote the vector (0, . . . , 0, ξ, 0, . . . , 0) ∈ glnN
(with ξ in the jth component). The Lie product on glnN is then determined by [ξj , ηk] = δjk(ξjηk − ηkξj) for
1 ≤ j, k ≤ n. In particular, if j 6= k and ξ, η ∈ glN , then the left-invariant derivations ∂ξj and ∂ηk on C∞(GLnN )
commute. To be clear, note that, for f ∈ C∞(GLnN ),

(∂ξjf)(A1, . . . , An) =
d

dt

∣∣∣∣
t=0

f(A1, . . . , Aj−1, Aje
tξ, Aj+1, . . . , An). (3.1)

Let βNr,s denote an orthonormal basis for glN (with respect to 〈·, ·〉Nr,s, as in (2.7)). For 1 ≤ j ≤ n, define

∆j,N
r,s =

∑
ξ∈βNr,s

∂2
ξj
. (3.2)

Note that ∆j,N
r,s and ∆k,N

r,s commute for all j, k. Now, fix t1, . . . , tn > 0. Then the operator

t1∆1,N
r,s + · · ·+ tn∆n,N

r,s

is elliptic, essentially self-adjoint on C∞c (GLnN ), and non-positive. We may therefore use the spectral theorem to
define the bounded operator

e
1
2

(t1∆1,N
r,s +···+tn∆n,N

r,s ) = e
1
2
t1∆1,N

r,s · · · e
1
2
tn∆n,N

r,s .

Define the heat kernel measure µn,Nr,s;t1,...,tn on GLnN by∫
GLnN

f dµn,Nr,s;t1,...,tn =
(
e

1
2

(t1∆1,N
r,s +···+tn∆n,N

r,s )f
)

(InN ), f ∈ Cc(GLnN ), (3.3)

where InN = (IN , . . . , IN ) ∈ GLnN . In particular, let K1, . . . ,Kn ⊂ GLN be compact sets; by approximating
1K1×···×Kn with a continuous function, we see that

µn,Nr,s;t1,...,tn(K1 × · · · ×Kn) =
(
e

1
2
t1∆N

r,s1K1

)
(IN ) · · ·

(
e

1
2
tn∆N

r,s1Kn

)
(IN ) = µ1,N

r,s;t1
(K1) · · ·µ1,N

r,s;tn(Kn).

Since µ1,N
r,s;t is the heat kernel measure on GLN corresponding to ∆N

r,s, it is the distribution of the Brownian
motion BN

r,s(t), and so we have shown the following.

Lemma 3.1. Let (B1,N
r,s (t))t≥0, . . . , (B

n,N
r,s (t))t≥0 be n independent (r, s)-Brownian motions on GLN . Then the

joint law of the random vector (B1,N
r,s (t1), . . . , Bn,N

r,s (tn)) is µn,Nr,s;t1,...,tn .
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3.2 Multivariate Trace Polynomials

Let J be an index set (for our purposes in this section, we will usually take J = {1, . . . , n} for some n ∈ N).
Let EJ denote the set of all nonempty words in J × {1, ∗}, EJ =

⋃
n∈N(J × {1, ∗})n. Let vJ = {vε : ε ∈ EJ}

be commuting variables, and let
P(J) = C[vJ ]

be the algebra of (commutative) polynomials in the variables vJ . That is: as a C-vector space, P(J) has as its
standard basis 1 together with the monomials

vε(1) · · · vε(k) , k ∈ N, ε(1), . . . , ε(k) ∈ EJ , (3.4)

and the (commutative) product on P(J) is the standard polynomial product.
We may identify monomials in C〈Xj , X

∗
j : j ∈ J〉 with the variables vε, via

Υ(Xε1
j1
· · ·Xεk

jk
) = v((j1,ε1),...,(jk,εk)).

Extending linearly, Υ: C〈Xj , X
∗
j : j ∈ J〉 ↪→ P(J) is a linear inclusion, identifying C〈Xj , X

∗
j : j ∈ J〉 with

the linear polynomials in P(J). The algebra P(J) is the “universal enveloping algebra” of C〈Xj , X
∗
j : j ∈ J〉,

in the following sense: any linear functional ϕ on C〈Xj , X
∗
j : j ∈ J〉 extends (via Υ) uniquely to an algebra

homomorphism ϕ̃ : P(J) → C. Conversely, any algebra homomorphism P(J) → C is determined by its
restriction to Υ(C〈Xj , X

∗
j : j ∈ J〉), which intertwines a unique linear functional on C〈Xj , X

∗
j : j ∈ J〉. Hence,

the noncommutative distribution ϕ{aj : j∈J} of J random variables can be equivalently represented as an algebra
homomorphism P(J)→ C.

Definition 3.2. For a monomial (3.4), the trace degree is defined to be

deg(vε(1) · · · vε(k)) = |ε(1)|+ · · ·+ |ε(k)|,

where |ε| = n if ε ∈ (J × {1, ∗})n. More generally, if P ∈ P(J), then deg(P ) is the maximal trace degree of
the monomial terms in P . Define deg(0) = 0. Note that deg(PQ) = deg(P ) + deg(Q), and deg(P + Q) ≤
max{deg(P ), deg(Q)} for P,Q ∈P(J). For d ∈ N, denote by Pd(J) the subspace

Pd(J) = {P ∈P(J) : deg(P ) ≤ d}.

Note that Pd(J) is finite dimensional (if J is finite), and P(J) =
⋃
d≥1 Pd(J).

We now introduce a kind of functional calculus for P(J).

Definition 3.3. Let (A , τ) be a noncommutative probability space. Let J be an index set, and let {aj : j ∈ J}
be specified elements in A . For n ∈ N, and (J × {1, ∗})n 3 ε = ((j1, ε1), . . . , (jn, εn)), define

aε ≡ aε1j1 · · · a
εn
jn
.

We define for each P ∈ P(J) a complex number Pτ (aj : j ∈ J) as follows: for ε ∈ EJ , [vε]τ (aj : j ∈ J) =
τ(aε); and, in general, the map P 7→ Pτ (aj : j ∈ J) is an algebra homomorphism from P(J) to C.

In other words: Pτ is the unique algebra homomorphism extending (via Υ) the linear functional ϕ{aj : j∈J} on
C〈Xj , X

∗
j : j ∈ J〉 (i.e. the noncommutative distribution of {aj : j ∈ J}).

Example 3.4. Let J = {1, 2}, and consider P(J) 3 P = v(1,∗),(2,1),(1,1) − 2v2
(2,1), which has trace degree 3;

then
Pτ (a1, a2) = τ(a∗1a2a1)− 2 (τ(a2))2 .

We generally refer to the functions {Pτ : P ∈P(J)} as (multivariate) trace polynomials.

Notation 3.5. For N ∈ N, in the noncommutative probability space (MN , tr), we denote the evaluation map
P 7→ Ptr of Definition 3.3 as P 7→ PN . Thus, if A1, . . . , An ∈ MN ⊗ L∞−, and P is as in Example 3.4, then
PN (A1, . . . , An) = tr(A∗1A2A1)− 2 (tr(A2))2, which is a random variable, to be clear.
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3.3 Intertwining Formula

The following “magic formulas” appeared as [9, Proposition 1]; note that (2.10) is a special case of (3.5).

Proposition 3.6. Let βN be an orthonormal basis for uN with respect to the inner product (2.5). Then for any
A ∈MN ∑

ξ∈βN

ξAξ = −tr(A)IN , (3.5)

∑
ξ∈βN

tr(Aξ)ξ = − 1

N2
A. (3.6)

For the remainder of this section, we usually suppress the indices r, s for notational convenience; so, for
example, ∆j,N ≡ ∆j,N

r,s for 1 ≤ j ≤ n. Let J = {1, . . . , n} throughout.

Theorem 3.7. Let j ∈ J . There are collections
{
Qjε : ε ∈ EJ

}
and

{
Rjε,δ : ε, δ ∈ EJ

}
in P(J) with the follow-

ing properties.

(1) For each ε ∈ EJ , Qjε is a finite sum of monomials of homogeneous trace degree |ε| such that

∆j,N ([vε]N ) = [Qjε]N .

(2) For each ε, δ ∈ EJ , Rjε,δ is a finite sum of monomials of homogeneous trace degree |ε|+ |δ| such that

r
∑
ξ∈βN

(∂ξj [vε]N )(∂ξj [vδ]N ) + s
∑
ξ∈βN

(∂iξj [vε]N )(∂iξj [vδ]N ) =
1

N2
[Rjε,δ]N ,

for any orthonormal basis βN of uN .

Please note that Qjε and Rjε,δ do not depend on N . The 1/N2 in (2) comes from the magic formula (3.6), as we
will see in the proof.

Proof. Fix EJ 3 ε = ((j1, ε1), . . . , (jm, εm)); then [vε]N (A1, . . . , An) = tr(Aε1j1 · · ·A
εm
jm

). Applying the prod-
uct rule, for any ξ ∈ βN we have

∂2
ξj

([vε]N ) =

m∑
k=1

δj,jktr(Aε1j1 · · · (Ajkξ
2)εk · · ·Aεmjm ) (3.7)

+ 2
∑

1≤k<`≤m
δj,jkδj,j`tr(A

ε1
j1
· · · (Ajkξ)

εk · · · (Aj`ξ)
ε` · · ·Aεmjm ). (3.8)

Similarly, ∂2
iξj

is given by the same formula but possibly with some minus signs in some of the terms (depending
on εk, ε`). For convenience, let β+

N = βN and β−N = iβN . Magic formula (2.10) gives
∑

ξ∈β±N
ξ2 = ∓IN , and

so summing over β±N we have, for each k,∑
ξ∈β±N

tr(Aε1j1 · · · (Ajkξ
2)εk · · ·Aεmjm ) = ±[vε]N ,

where the ± on the left and right do not necessarily match (we will not keep careful track of signs through this
proof). Thus, (3.7) summed over β±N gives some integer multiple n±j (ε) of [vε]N . Summing the terms in (3.8)
over ξ ∈ β±N , using (3.5), yields∑

ξ∈β±N

tr(Aε1j1 · · · (Ajkξ)
εk · · · (Aj`ξ)

ε` · · ·Aεmjm ) = ±[vεk,` ]N [vε′k,` ]N ,
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where εk,` is a substring of ε (running between index k or k + 1 and index ` − 1 or `, depending on εk, ε`) and
ε′k,` is the concatenation of the two remaining substrings of ε when εk,` is removed. Hence, define

Qj,±ε = n±(ε)vε + 2
∑

1≤k<`≤m
±δj,jkδj,j`vεk,`vε′k,` .

Note that |ε| = |εk,`| + |ε′k,`| for each k, `; so Qj,±ε are homogeneous of trace degree |ε|. The above argument
shows that ∑

ξ∈β±N

∂2
ξj

[vε]N = [Qj,±ε ]N ,

and so setting Qjε = rQj,+ε + sQj,−ε completes item (1) of the theorem.
For item (2), fix EJ 3 δ = ((h1, δ1), . . . , (hp, δp)); then [vδ]N (A1, . . . , An) = tr(Aδ1h1 · · ·A

δp
hp

). Thus, for
ξ ∈ βN ,

(∂ξ[vε]N )(∂ξ[vδ]N ) =
m∑
k=1

p∑
`=1

δj,jkδj,h`tr(A
ε1
j1
· · · (Ajkξ)

εk · · ·Aεmjm )tr(Aδ1h1 · · · (Ah`ξ)
δ` · · ·Aδphp). (3.9)

(To be clear: the terms δj,jkδj,h` are indicator functions, not related to the string δ ∈ EJ .) Taking ∂iξj instead
yields the same formula, possibly with some minus signs inside the sum (depending on εk and δ`). We can write
each term in (3.9) in the form

±tr(ξAε
(k)

)tr(ξAδ
(`)

)

where ε(k) and δ(`) are certain cyclic permutations of ε and δ. Using (3.6), summing over ξ ∈ β±N then yields

1

N2

m∑
k=1

p∑
`=1

±δj,jkδj,h` [vε(k)δ(`) ]N ,

where ε(k)δ(`) denotes the concatenation; in particular, |ε(k)δ(`)| = |ε|+ |δ|. Thus, setting

Rj,±ε,δ =

m∑
k=1

p∑
`=1

±δj,jkδj,h`vε(k)δ(`)

(where the ± on the two sides do not necessarily match), we have shown that∑
ξ∈β±N

(∂ξj [vε]N )(∂ξj [vδ]N ) =
1

N2
[Rj,±ε,δ ]N .

SetRjε,δ ≡ rR
j,+
ε,δ +sRj,−ε,δ ; thenRjε,δ has homogeneous trace degree |ε|+ |δ|, and so satisfies item (2), concluding

the proof of the theorem.

Theorem 3.8 (Intertwining Formula). For j ∈ J , let
{
Qjε : ε ∈ EJ

}
and

{
Rjε,δ : ε, δ ∈ EJ

}
be the collections in

P(J) given in Theorem 3.7. Define the following operators on P(J):

Dj
r,s =

∑
ε∈EJ

Qjε
∂

∂vε
and Ljr,s =

∑
ε,δ∈EJ

Rjε,δ
∂2

∂vε∂vδ
. (3.10)

Then D
j
r,s and L

j
r,s preserve trace degree (when (r, s) 6= (0, 0)), and, for all P ∈P(J),

∆j,N
r,s ([P ]N ) =

[(
Dj
r,s +

1

N2
Ljr,s

)
P

]
N

(3.11)
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Proof. The proof is almost identical to the proof of [9, Theorem 3.26]; we repeat it here. Let VN : GLnN →MEJ
N

be the map
(VN (A1, . . . , An)) ((j1, ε1), . . . , (jm, εm)) = tr(Aε1j1 · · ·A

εm
jm

).

Then, by definition, [P ]N = P ◦VN . By the chain rule, if ξ ∈ glN then

∂2
ξj
PN = ∂2

ξj
(P ◦VN ) =

∑
ε∈E

∂ξj

[(
∂P

∂vε

)
(VN ) · ∂ξj [vε]N

]
=
∑
ε∈E

(
∂P

∂vε

)
(VN ) · ∂2

ξj
([vε]N ) +

∑
ε,δ∈E

(
∂2P

∂vε∂vδ

)
(VN ) ·

(
∂ξj [vε]N

) (
∂ξj [vδ]N

)
from which it follows that

∆j,N
r,s PN =

∑
ε∈E

(
∂P

∂vε

)
(VN ) ·∆j,N

r,s ([vε])

+
∑
ε,δ∈E

(
∂2P

∂vε∂vδ

)
(VN ) ·

r ∑
ξ∈βN

(∂ξj [vε])(∂ξj [vδ]) + s
∑
ξ∈iβN

(∂ξj [vε])(∂ξj [vδ]N )

 .
Combining this equation with the results of Theorem 3.7 completes the proof.

This prompts us to define the following operators.

Definition 3.9. Let t = (t1, . . . , tn) for some t1, . . . , tn > 0. Define

Dt
r,s =

1

2

n∑
j=1

tjD
j
r,s, Lt

r,s =
1

2

n∑
j=1

tjL
j
r,s.

Corollary 3.10. For any t = (t1, . . . , tn) ∈ Rn+, and d ∈ N, Dt
r,s and Lt

r,s preserve the finite dimensional space
Pd(J), and

e
1
2

(t1∆1,N
r,s +···+tn∆n,N

r,s )PN = [eD
t
r,s+

1
N2L

t
r,sP ]N , P ∈Pd(J).

In particular, eD
t
r,s+

1
N2L

t
r,s and eD

t
r,s are well-defined operators on the space P(J).

Proof. Since D
j
r,s and L

j
r,s preserve trace degree, the corollary follows by expanding the exponentials as power

series of operators acting on the finite dimensional spaces Pd(J) and [Pd(J)]N .

Remark 3.11. Since ∆j,N
r,s commute for 1 ≤ j ≤ n, it is natural to expect the same holds for the intertwining

operators Dj
r,s and L

j
r,s. This is true, and follows easily from examining the explicit form of the coefficients of

these operators given in Theorem 3.7. One must be careful about drawing such conclusions in general, however;
the map P 7→ PN is generally not one-to-one, due to the Cayley-Hamilton Theorem. It is asymptotically one-to-
one, in the sense that its restriction to Pd(J) is one-to-one for all sufficiently large N (depending on d), and this
can be used to prove this commutation result. Note, however, that [Dj

r,s,L
j
r,s] 6= 0 in general.

3.4 Concentration of Measure

We restate a general linear algebra result here, given as [9, Lemma 4.1].
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Lemma 3.12. Let V be a finite dimensional normed C-space and supposed that D and L are two operators on
V . Then there exists a constant C = C(D,L, ‖ · ‖V ) <∞ such that, for any linear functional ψ ∈ V ∗,∣∣ψ(eD+εLx)− ψ(eDx)

∣∣ ≤ C‖ψ‖V ∗‖x‖V |ε|, x ∈ V, |ε| ≤ 1, (3.12)

where ‖ · ‖V ∗ is the dual norm on V ∗.

Coupled with Corollary 3.10, this gives the following.

Proposition 3.13. Let P ∈ P(J). Let t = (t1, . . . , tn) ∈ Rn+. Then there is a constant C = C(r, s, t, P ) so
that, for all N ∈ N, ∣∣∣∣∣

∫
GLnN

PN dµ
n,N
r,s;t −

(
eD

t
r,sP

)
(1)

∣∣∣∣∣ ≤ C

N2
,

where, for Q ∈P(J), Q(1) is the complex number given by evaluating all variables of Q at 1.

Proof. Let d = deg(P ); then P ∈Pd(J). By definition (3.3),∫
GLnN

PN dµ
n,N
r,s;t =

(
e

1
2

(t1∆1,N
r,s +···+tn∆n,N

r,s )PN

)
(InN ).

(To be clear: the function PN is not compactly-supported, so this does not fall strictly into the purview of (3.3);
that the formula extends to such trace polynomials follows from Langland’s Theorem; cf. [24, Theorem 2.1 (p.
152)]. See [9, Appendix A] for a concise sketch of the proof.) From Corollary 3.10, therefore∫

GLnN
PN dµ

n,N
r,s;t =

[
eD

t
r,s+

1
N2L

t
r,sP

]
N

(InN ) =
(
eD

t
r,s+

1
N2L

t
r,sP

)
(1).

Note that ψ1(P ) = P (1) is a linear functional on the finite dimensional space Pd(J); thus the result follows
from (3.12) by choosing any norm ‖ · ‖Pd(J) on V = Pd(J), and setting

C(r, s, t, P ) = C(Dt
r,s,L

t
r,s, ‖ · ‖Pd(J))‖ψ1‖Pd(J)∗‖P‖Pd(J),

thus concluding the proof.

We now come to the main theorems of this section.

Theorem 3.14. Let (B1,N
r,s (t))t≥0, . . . , (B

n,N
r,s (t))t≥0 be independent Brownian motions on GLN . Then these

matrix processes have a joint limit distribution: for any m ∈ N, j1, . . . , jm ∈ {1, . . . , n}, t1, . . . , tn ≥ 0 and
ε1, . . . , εm ∈ {1, ∗},

lim
N→∞

Etr(Bj1,N
r,s (tj1)ε1 · · ·Bjm,N

r,s (tjm)εm) exists.

Proof. Let t = (t1, . . . , tn). The given expected trace is computed in terms of the joint law µn,Nr,s;t of the indepen-
dent Brownian random matrices as

Etr(Bj1,N
r,s (tj1)ε1 · · ·Bjm,N

r,s (tjm)εm) =

∫
GLnN

tr(Aε1j1 · · ·A
εm
jm

)µn,Nr,s;t(dA1 · · · dAn) =

∫
GLnN

[vε]N dµ
n,N
r,s;t

where ε = ((j1, ε1), . . . , (jm, εm)). Proposition 3.13 thus shows that the limit as N →∞ exists, and is equal to(
eD

t
r,svε

)
(1).

Remark 3.15. In light of Theorem 1.1, we can identify the joint limit in Theorem 3.14 as the increments
br,s(t1), br,s(t1)−1br,s(t

′
2), . . . , br,s(t

′
n−1)−1br,s(t

′
n) where tj = t1 + · · ·+ tj for 1 ≤ j ≤ n.
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Theorem 3.16. Let P,Q ∈ P(J), and let t = (t1, . . . , tn) ∈ Rn+. There is a constant C2 = C2(r, s, t, P,Q)
such that ∣∣∣Cov

µn,Nr,s;t
(PN , QN )

∣∣∣ ≤ C2

N2
. (3.13)

Theorem 3.16 is a generalization of [16, Proposition 4.13], and the proof is very similar. First, we need a lemma
on intertwining complex conjugation, which is elementary to prove and left to the reader; cf. [16, Lemma 3.11].

Lemma 3.17. Given ε ∈ EJ , define ε∗ ∈ EJ by ((j1, ε1), . . . , (jn, εn))∗ = ((jn, ε
∗
n), . . . , (j1, ε

∗
1)) where 1∗ = ∗

and ∗∗ = 1. Define C : P(J)→P(J) to be the conjugate linear homomorphism satisfying C(vε) = vε∗ for all
ε ∈ EJ . Then for all N ∈ N

PN = [C(P )]N , P ∈P(J). (3.14)

Proof of Theorem 3.16. The covariance of C-valued random variablesF,G is Cov(F,G) = E(FG)−E(F )E(G).
Define D

t,N
r,s = Dt

r,s + 1
N2L

t
r,s. From Lemma 3.17, we may write PNQN = [PQ∗]N , and so, from (3.3) and

Corollary 3.10, we have
E
µn,Nr,s;t

(PNQN ) =
(
eD

t,N
r,s (PQ∗)

)
(1). (3.15)

Similarly,
E
µn,Nr,s;t

(PN ) · E
µn,Nr,s;t

(QN ) =
(
eD

t,N
r,s P

)
(1) ·

(
eD

t,N
r,s Q∗

)
(1). (3.16)

Now, set

ΨN
1 ≡

(
e−D

t,N
r,s P

)
(1), ΨN

∗ ≡
(
e−D

t,N
r,s Q∗

)
(1), ΨN

1,∗ ≡
(
e−D

t,N
r,s (PQ∗)

)
(1), (3.17)

Ψ1 ≡
(
e−D

t
r,sP

)
(1), Ψ∗ ≡

(
e−D

t
r,sQ∗

)
(1), Ψ1,∗ ≡

(
e−D

t
r,s(PQ∗)

)
(1). (3.18)

Thus, (3.15) and (3.16) show that

Cov
µn,Nr,s;t

(PN , QN ) = ΨN
1,∗ −ΨN

1 ΨN
∗ . (3.19)

We estimate this as follows. First

|ΨN
1,∗ −ΨN

1 ΨN
∗ | ≤ |ΨN

1,∗ −Ψ1,∗|+ |Ψ1,∗ −Ψ1Ψ∗|+ |Ψ1Ψ∗ −ΨN
1 ΨN
∗ |. (3.20)

Referring to (3.18), note that Dt
r,s is a first-order differential operator; it follows that eD

t
r,s is an algebra homo-

morphism, and so the second term in (3.20) is 0. The first term is bounded by 1
N2 ·C(r, s, t, PQ∗) by Proposition

3.13. For the third term, we add and subtract ΨN
1 Ψ∗ to make the additional estimate

|Ψ1Ψ∗ −ΨN
1 ΨN
∗ | ≤ |Ψ∗||Ψ1 −ΨN

1 |+ |ΨN
1 ||Ψ∗ −ΨN

∗ |
≤ |Ψ∗||Ψ1 −ΨN

1 |+
(
|Ψ1|+ |ΨN

1 −Ψ1|)|Ψ∗ −ΨN
∗ |

≤ 1

N2
· |Ψ∗|C(r, s, t, P ) +

(
|Ψ1|+

1

N2
· C(r, s, t, P )

)
· 1

N2
· C(r, s, t, Q∗)

=
1

N2
· (|Ψ∗|C(r, s, t, P ) + |Ψ1|C(r, s, t, Q∗)) +

1

N4
· C(r, s, t, P )C(r, s, t, Q∗). (3.21)

Combining (3.21) with (3.19) – (3.20) and the following discussion shows that the constant

C2(r, s, t, P,Q) = C(r, s, t, PQ∗)+C(r, s, t, P )C(r, s, t, Q∗)+ |Ψ∗|C(r, s, t, P )+ |Ψ1|C(r, s, t, Q∗) (3.22)

verifies (3.13), proving the proposition.
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This brings us to the proof of Theorem 1.2. For convenience, we restate that the desired estimate is

Cov
[
tr(f(B1,N

r,s (t1), . . . , Bn,N
r,s (tn)∗)), tr(g(B1,N

r,s (t1), . . . , Bn,N
r,s (tn)∗))

]
≤ C2

N2
, (3.23)

for any f, g ∈ C〈X1, . . . , Xn, X
∗
1 , . . . , X

∗
n〉, for some constantC2 = C2(r, s, t, f, g); hereB1,N

r,s (·), . . . , Bn,N
r,s (·)

are independent (r, s)-Brownian motions on GLN .

Proof of Theorem 1.2. Setting t = (t1, . . . , tn), the covariance in (3.23) is precisely

Cov
µn,Nr,s;t

([Υ(f)]N , [Υ(g)]N )

and so the result follows immediately from Theorem 3.16.

Theorem 1.2, in the special case f = g, implies that the convergence to the joint limit distribution in Theorem
3.14 is, in fact, almost sure.

Corollary 3.18. Let (B1,N
r,s (t))t≥0, . . . , (B

n,N
r,s (t))t≥0 be independent Brownian motions on GLN . Then, for any

t1, . . . , tn ≥ 0 and any f ∈ C〈X1, . . . , Xn, X
∗
1 , . . . , X

∗
n〉, the random variable tr(f(B1,N

r,s (tn), . . . , Bn,N
r,s (tn)∗)

converges to its mean almost surely.

This follows immediately from the O(1/N2) covariance estimate of Theorem 1.2, together with Chebyshev’s
inequality and the Borel-Cantelli lemma.

Finally, we note that we have proven asymptotic freeness of independent (r, s)-Brownian motions.

Corollary 3.19. Let t1, . . . , tn > 0 and let B1,N
r,s (t1), . . . , Bn,N

r,s (tn) be independent random matrices sampled
from (r, s)-Brownian motion. Then these random matrices are asymptotically free.

Proof. Summarizing Theorem 2.8: to verify that a collection of random matrix ensembles is asymptotically free,
it sufficies to show that the collection possesses a limit distribution (which we verified in this case in Theorem
3.14) whose fluctuations are O(1/N2) (which we refified in Theorem 1.2), and that the joint distribution of the
matrices for each fixed in N is invariant under UN -conjugation. This last properly holds trivially in our case, as
the heat kernel is UN -invariant (since the inner product is). Hence, independent (r, s)-Brownian motion samples
verify all the conditions of Theorem 2.8, concluding the proof.

4 Invariance Properties and Moments of the (r, s)-Brownian Motions

In this section, we compute the relevant moments of the free multiplicative (r, s)-Brownian motion summarized
in Proposition 1.8, and prove the basic invariance properties of both BN

r,s and br,s needed to extend our main
Theorem 1.1 from a single time to multiple times, summarized in Proposition 1.10.

4.1 Moment Calculations

We begin by reiterating the following differential characterization of the constants νn(t) from (1.8).

Lemma 4.1. Let {νn : n ≥ 0} be the functions in (1.8), and let %n(t) = e
n
2
tνn(t). The functions %n are uniquely

determined by the initial conditions %n(0) = νn(0) = 1 for all n, %1(t) ≡ 1, and the following system of coupled
ODEs for n ≥ 2:

%′n(t) = −
n−1∑
k=1

k%k(t)%n−k(t).
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Indeed, in [2], this connection was the key step in identifying the distribution of a free unitary Brownian motion
as the limit distribution (at each fixed time t) of a Brownian motion UNt on UN . It is also independently proved
in [9, Lemma 5.4, Eq. (5.23)].

Lemma 4.2. Let br,s(t) be defined by (1.5); for short, let b = br,s(t). Set a = ar,s(t) = e
1
2

(r−s)tb. Then

da = a dw, (4.1)

where w = wr,s(t) of (1.4).

Proof. Since t 7→ e
1
2

(r−s)t is a free Itô process with de
1
2

(r−s)t = 1
2(r − s)e

1
2

(r−s)t dt, (2.25) shows that

da = de
1
2

(r−s)t · b+ e
1
2

(r−s)t · db+ de
1
2

(r−s)t · db.

The last term is 0, while the first two simplify to

da =
1

2
(r − s)e

1
2

(r−s)tb dt+ e
1
2

(r−s)t(b dw − 1

2
(r − s)b dt) = a dw,

by (1.5).

We also record the following Itô formula for dwr,s(t) products.

Lemma 4.3. Let t ≥ 0 and let ε, δ ∈ {1, ∗}. For any adapted process θ = θ(t),

dwε θ dwδ = (s± r)τ(θ) dt, (4.2)

where the sign is − if ε = δ and + if ε 6= δ.

Lemma 4.3 is an immediate computation from (2.23) – (2.26).
We use (4.1) to give a recursive formula for the powers of ar,s(t).

Proposition 4.4. For n ∈ N∗,

d(an) =

n∑
k=1

ak dw an−k + (s− r)1n≥2

n−1∑
k=1

kakτ(an−k) dt. (4.3)

Proof. When n = 1, (4.3) reduces to (4.1). We proceed by induction, supposing that (4.3) has been verified up
to level n. Then, using the Itô product rule (2.25), together with (4.1) and (4.3), gives

d(an+1) = d(a · an) = da · an + a · d(an) + da · d(an)

= a dw an +
n∑
k=1

ak+1 dw an−k + (s− r)
n−1∑
k=1

kak+1τ(an−k) dt+
n∑
k=1

a dw ak dw an−k.

The first two terms combine, reindexing ` = k + 1, to give
∑n+1

`=1 a
` dw an+1−`. From (4.2), the last terms are

(s− r)
n∑
k=1

τ(ak)an+1−k dt

which, when combined with the penultimate terms, yields (4.3) at level n + 1. This concludes the inductive
proof.
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Corollary 4.5. The moments of a = ar,s(t) are τ(an) = %n((r − s)t); consequently, the moments of b = br,s(t)
are τ(bn) = νn((r − s)t), verifying (1.9).

Proof. Since a(0) = b(0) = 1, τ(a(0)n) = 1 = %n(0). Taking the trace of (4.3) and using (2.22), we have

dτ(an) = (s− r)1n≥2

n−1∑
k=1

kτ(ak)τ(an−k) dt. (4.4)

Thus d
dtτ(a) = 0 = %′1((r − s)t). If s = r, (4.4) asserts that τ(an) = τ(a(0)n) = 1 = %n(0 · t) for all n. On the

other hand, if s 6= r, let %̃n(t) = τ(ar,s(t/(r − s))n); then the chain rule applied to (4.4) shows that

%̃′n(t) = −1n≥2

n−1∑
k=1

k%̃k(t)%̃n−k(t).

By Lemma 4.1, it follows that %̃n(t) = %n(t) for all n, t ≥ 0. Hence, τ(ar,s(t)
n) = %n((r − s)t) =

e
n
2

(r−s)tνn((r − s)t), as claimed. As defined in Lemma 4.2, we therefore have

τ(bn) = τ [(e−
1
2

(r−s)ta)n] = e−
n
2

(r−s)t%n((r − s)t) = νn((r − s)t),

verifying (1.9), and concluding the proof.

We now turn to the moments of br,s(t)br,s(t)∗. A different exponential scaling from Lemma 4.2 is in order
here.

Lemma 4.6. Let cr,s(t) = e−stbr,s(t); for short, let c = cr,s(t). Then

d(cc∗) = 2
√
s c dy c∗, (4.5)

where y = y(t).

Proof. First note that cc∗ = e−2stbb∗. As in Lemma 4.2, we have

d(cc∗) = −2s cc∗ dt+ e−2std(bb∗). (4.6)

By the Itô product rule (2.25) and (1.5),

d(bb∗) = db · b∗ + b · db∗ + db · db∗

= b dw b∗ − 1

2
(r − s)bb∗ dt+ b dw∗ b∗ − 1

2
(r − s)bb∗ dt+ b dw dw∗ b∗

= b(dw + dw∗)b∗ − (r − s)bb∗ dt+ (r + s)bb∗ dt

where the last equality follows from Lemma 4.3. Note that dw + dw∗ = 2
√
s dy, and so this simplifies to

d(bb∗) = 2
√
sb dy b∗ + 2s bb∗ dt. Combining this with (4.6) yields the result.

Proposition 4.7. For n ∈ N∗,

d[(cc∗)n] = 2
√
s

n∑
k=1

(cc∗)k−1c dy c∗(cc∗)n−k + 4s1n≥2

n−1∑
k=1

k(cc∗)kτ [(cc∗)n−k] dt. (4.7)
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Proof. When n = 1, (4.7) reduces to (4.6), so we proceed by induction: suppose that (4.7) has been verified up
to level n. Then we use the Itô product formula (2.25), together with (4.6) and (4.7), to compute

d[(cc∗)n+1] = d(cc∗) · (cc∗)n + cc∗ · d[(cc∗)n] + d(cc∗) · d[(cc∗)n]

= 2
√
s c dy c∗(cc∗)n + 2

√
s

n∑
k=1

(cc∗)kc dy c∗(cc∗)n−k + 4s
n−1∑
k=1

k(cc∗)k+1τ [(cc∗)n−k] dt

+ 4s
n∑
k=1

c dy c∗(cc∗)k−1c dy c∗(cc∗)n−k.

Reindexing ` = k+1, the first two terms combine to give 2
√
s
∑n+1

`=1 (cc∗)`−1c dy c∗(cc∗)n+1−`. In the last term,
we use (2.23) to yield

dy c∗(cc∗)k−1c dy = τ(c∗(cc∗)k−1c) dt = τ [(cc∗)k] dt.

Hence, reindexing j = n+ 1− k, the final sum is

4s

n∑
k=1

τ [(cc∗)k](cc∗)n+1−k dt = 4s

n∑
j=1

(cc∗)jτ [(cc∗)n+1−j ].

Also reindexing the penultimate sum with ` = k + 1, the last two sums combine to give

4s
n∑
`=2

(`− 1)(cc∗)`τ [(cc∗)n+1−`] dt+ 4s
n∑
j=1

(cc∗)jτ [(cc∗)n+1−j ].

Note that the first sum could just as well be started at ` = 1 (since that term is 0), and these two combine to give
the second term in (4.7), concluding the inductive proof.

Corollary 4.8. The moments of cc∗ are τ [(cc∗)n] = %n(−4st); consequently, the moments of bb∗ are τ [(bb∗)n] =
νn(−4st), verifying (1.11).

Proof. Since b(0) = 1, τ [(cc∗(0))n] = 1 = %n(0) for all n. Taking the trace of (4.7), we have

dτ [(cc∗)n] = 4s1n≥2

n−1∑
k=1

kτ [(cc∗)k]τ [(cc∗)n−k] dt. (4.8)

Thus d
dtτ(cc∗) = 0 = %′1(−4st). If s = 0, (4.8) asserts that τ [(cc∗)n] = τ [(cc∗(0))n] = 1 = %n(0 · t) for all n.

If s 6= 0, let %̂n(t) = τ [((cc∗)(−t/4s))n]; then the chain rule applied to (4.8) shows that

%̂′n(t) = −1n≥2

n−1∑
k=1

k%̂k(t)%̂n−k(t).

By Lemma 4.1, it follows that %̂n(t) = %n(t) for all n, t ≥ 0. Hence,

τ [(cc∗)n)] = %n(−4st) = e
n
2

(−4s)tνn(−4st),

as claimed. As defined in Lemma 4.6, we therefore have

τ [(bb∗)n] = τ [(e2stcc∗)n] = e−2nst%n(−4st) = νn(−4st),

verifying (1.10), and concluding the proof.
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Finally, we calculate τ(b2b∗2). We need the following cubic moment as part of the recursive computation.

Lemma 4.9. Let a = e
1
2

(r−s)tb as in Lemma 4.2. Then

τ(a2a∗) = (1 + 2st)e(s+r)t. (4.9)

Proof. From the Itô product rule (2.25), we have

d(a2a∗) = da · aa∗ + a · da · da∗ + a2da∗ + (da)2 · a∗ + da · a · da∗ + a · da · da∗.

Lemma 4.2 asserts that da = a dw. To compute dτ(a2a∗), we can ignore the first three terms that have trace 0
by (2.22); the last three terms become

a dw a dw a∗ + a dw a dw∗ a∗ + a2 dw dw∗ a∗ = (s− r)τ(a)aa∗ dt+ (s+ r)τ(a)aa∗ dt+ (s+ r)a2a∗ dt

by Lemma 4.3. Taking traces, we therefore have

dτ(a2a∗) = 2sτ(a)τ(aa∗) dt+ (s+ r)τ(a2a∗) dt. (4.10)

In Corollary 4.5, we computed that τ(a) = %1((r−s)t) = e
1
2

(r−s)tν1((r−s)t), which, referring to (1.8), is equal
to 1. Similarly, in Corollary 4.8, we calculated that τ(bb∗) = ν1(−4st) = e2st, and so τ(aa∗) = e(r−s)tτ(bb∗) =
e(r+s)t. Hence, (4.10) reduces to the ODE

d

dt
τ(a2a∗) = 2se(r+s)t + (s+ r)τ(a2a∗), τ(a2a∗(0)) = 1.

It is simple to verify that (4.9) is the unique solution of this ODE.

Remark 4.10. As a sanity check, note that in the case (r, s) = (1, 0) (4.9) shows that τ(b2b∗) = e−
3
2
tτ(a2a∗) =

e−t/2. As pointed out in (1.7), b1,0(t) = u(t) is a free unitary Brownian motion, and so τ(b2b∗) = τ(b) in this
case; thus, we have consistency with (1.8).

Proposition 4.11. Let a = e
1
2

(r−s)tb as in Lemma 4.2. Then

τ(a2a∗2) = 4st(1 + st)e(s+r)t + e2(s+r)t (4.11)

and thus (1.11) holds true.

Proof. Expanding, once again, using the Itô product rule (2.25), we have

d(a2a∗2) = da · aa∗2 + a · da · a∗2 + a2 · da∗ · a∗ + a2a∗ · da∗ (4.12)

+ (da)2 · a∗2 + da · a · da∗ · a∗ + da · aa∗ · da∗ (4.13)

+ a · da · da∗ · a∗ + a · da · a∗ · da∗ + a2 · (da∗)2. (4.14)

The terms in (4.12) all have trace 0. We simplify the terms in (4.13) and (4.14) using da = a dw and Lemma 4.3
as follows:

(4.13) = a dw a dw a∗2 + a dw a dw∗ a∗2 + a dw aa∗ dw∗ a∗

= (s− r)τ(a)aa∗2 dt+ (s+ r)τ(a)aa∗2 dt+ (s+ r)τ(aa∗)aa∗ dt,

and

(4.14) = a2 dw dw∗ a∗2 + a2 dw a∗ dw∗ a∗ + a2 dw∗ a∗ dw∗ a∗

= (s+ r)a2a∗2 dt+ (s+ r)τ(a∗)a2a∗ dt+ (s− r)τ(a∗)a2a∗ dt.
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Taking traces, and using the fact (from Lemma 4.9) that τ(a∗)τ(a2a∗) is real, this yields

dτ(a2a∗2) = 2sτ(a)τ(aa∗2) dt+ (s+ r)[τ(aa∗)]2 dt+ (s+ r)τ(a2a∗2) dt+ 2sτ(a∗)τ(a2a∗) dt.

Using (4.9), together with (1.10) and the fact (pointed out in the proof of Lemma 4.9) that τ(a) = 1, gives

d

dt
τ(a2a∗2) = 4s(1 + 2st)e(s+r)t + (s+ r)e2(s+r)t + (s+ r)τ(a2a∗2). (4.15)

It is easy to verify that (4.11) is the unique solution to this ODE with initial condition 1. Substituting b =

e
1
2

(s−r)ta then yields (1.11).

Remark 4.12. Again, as a sanity check, (1.11) reduces to τ(b2b∗2) = 1 when s = 0; this is consistent with the
fact that b is unitary in this case.

4.2 Invariance Properties

Proposition 1.10 summarizes the main properties of both the matrix Brownian motions BN
r,s(t) on GLN and its

limit (br,s(t))t≥0. We will prove these properties separately for finite N versus the limit, although in many cases
the proofs are extremely similar.

We begin by noting that the invertibility of BN
r,s(t) follows from the SDE (2.11).

Proposition 4.13. The diffusion BN
r,s(t) is invertible for all t ≥ 0 (with probability 1); the inverse BN

r,s(t)
−1 is a

right-invariant version of an (r, s)-Brownian motion.

Proof. Fix a Brownian motion WN
r,s(t) =

√
r iXN (t) +

√
s Y N (t) on glN , so that BN

r,s(t) is the solution of
(2.11) with respect to WN

r,s(t). Then define ANr,s(t) to be the solution to

dANr,s(t) = −dWN
r,s(t)A

N
r,s(t)−

1

2
(r − s)ANr,s(t) dt. (4.16)

Note that −XN (t) and −Y N (t) are also independent GUEN Brownian motions, so ANr,s(t) is a right-invariant
version of BN

s,t(t). (Indeed, the reader can readily check that, if ∂ξ is replaced with the right-invariant derivative
d
dtf(exp(−tξ)g), thus defining a right-invariant Laplacian, the associated Brownian motion satisfies (4.16).) To
simplify notation, let W = WN

r,s(t), B = BN
r,s(t), and A = ANr,s(t). Using the Itô product rule (2.17), we have

d(BA) = dB ·A+B · dA+ dB · dA

= B dW A− 1

2
(r − s)BAdt−B dW A− 1

2
(r − s)BAdt−B (dW )2A.

From (2.14) – (2.18), we compute exactly as in Lemma 4.3 that (dW )2 = (s − r)IN dt. This shows that
d(BA) = 0. Since BN

r,s(0) = ANr,s(0) = IN , it follows that BA = IN , so ANr,s(t) = BN
r,s(t)

−1, as claimed.

Proposition 4.14. The multiplicative increments of (BN
r,s(t))t≥0 are independent and stationary.

Proof. Let 0 ≤ t1 < t2 < ∞, and let Ft1 denote the σ-field generated by {XN (t), Y N (t)}0≤t≤t1 . From the
defining SDE (2.11), we have

BN
r,s(t2)−BN

r,s(t1) =

∫ t2

t1

BN
r,s(t) dW

N
r,s(t)−

1

2
(r − s)

∫ t2

t1

BN
r,s(t) dt,
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or, in other words,

BN
r,s(t1)−1BN

r,s(t2) = IN +

∫ t2

t1

BN
r,s(t1)−1BN

r,s(t) dW
N
r,s(t)−

1

2
(r − s)

∫ t2

t1

BN
r,s(t1)−1BN

r,s(t) dt. (4.17)

This shows that the process CN (t) = BN
r,s(t1)−1BN

r,s(t) for t ≥ t1 satisfies the SDE

dCN (t) = CN (t) d(WN
r,s(t)−WN

r,s(t1))− 1

2
(r − s)CN (t) dt.

Note thatWN
r,s(t)−WN

r,s(t1) =
√
r i(XN (t)−XN (t1))+

√
s (Y N (t)−Y N (t1)). Since (XN (t)−XN (t1))t≥t1

and (Y N (t) − Y N (t1))t≥t1 are independent GUEN Brownian motions, and since CNt1 = IN , it follows that
(CN (t))t≥t1 is a version of (BN

r,s(t))t≥0. This shows, in particular, that the multiplicative increments are station-
ary. Moreover, (4.17) shows that BN

r,s(t1)−1BN
r,s(t2) is measurable with respect to the σ-field generated by the

increments (WN
r,s(t)−WN

r,s(t1))t1≤t≤t2 , which is independent from Ft1 (since the additive increments of XN (t)

and Y N (t) are independent). Since all the random matrices BN
r,s(t

′) with t′ ≤ t1 are Ft1-measurable, it follows
that (BN

r,s(t))t≥0 has independent multiplicative increments, as claimed.

Proposition 4.15. For r, s > 0 and N ≥ 2, with probability 1, BN
r,s(t) is non-normal for all t > 0.

Proof. Let Mnor
N denote the set of normal matrices. Let DN denote the 2N (real) dimensional space of diagonal

matrices in MN , and TN ⊂ UN the N (real) dimensional maximal torus of diagonal unitary matrices. The map
Φ: DN × UN → Mnor

N given by Φ(D,U) = UDU∗ is smooth, and (by the spectral theorem) surjective. Since
Φ(D,U) = Φ(D,TU) for any T ∈ TN , the map descends to a smooth surjection Φ̃ : DN × UN/TN → Mnor

N .
It follows that

dimR(Mnor
N ) ≤ dimR(DN ) + dimR(UN/TN ) = 2N +N2 −N = N2 +N.

Thus, as a submanifold of MN (which has real dimension 2N2), codimR(Mnor
N ) ≥ 2N2−(N2 +N) = N2−N .

This is ≥ 2 for N ≥ 2.
The manifold GLN is an open dense subset of MN , and the generator ∆N

r,s is easily seen to be a non-
degenerate elliptic operator on C∞(MN ). Thus, by the main theorem of [23], Mnor

N is a polar set for the diffusion
generated by 1

2∆N
r,s; i.e. the hitting time of Mnor

N for (BN
r,s(t))t>0 is +∞ almost surely. This concludes the

proof.

Remark 4.16. If D is in the open dense subset of DN with all eigenvalues distinct, then the stabilizer of D
in UN is exactly equal to TN ; thus the map Φ̃ above is generically a local diffeomorphism. It follows that
dimR(Mnor

N ) = N2 +N .

Now we turn to the similar properties of the free Itô process br,s. In many cases the proofs are nearly identical
to the above ones, in which case we only highlight the necessary differences.

Proposition 4.17. For all r, s, t ≥ 0, the free multiplicative (r, s)-Brownian motion br,s(t) is invertible; the
inverse ar,s(t) = br,s(t)

−1 satisfies the free SDE

dar,s(t) = −dwr,s(t) ar,s(t)−
1

2
(r − s) ar,s(t) dt. (4.18)

Proof. The proof proceeds very similarly to the proof of Proposition 4.13: using (2.23) – (2.26) instead of (2.14)
– (2.18), we compute that d(br,s(t)ar,s(t)) = 0, which shows, since br,s(0) = ar,s(0) = 1, that br,s(t)ar,s(t) = 1.
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In this infinite-dimensional setting, we must also verify that ar,s(t)br,s(t) = 1. To that end, to simplify notation,
let at = ar,s(t), bt = br,s(t), and wt = wr,s(t). Then we have

d(atbt) = dat · bt + at · dbt + dat · dbt

= −dwt atbt −
1

2
(r − s)atbt dt+ atbt dwt −

1

2
(r − s)atbt dt− dwt atbt dwt

= [atbt, dwt]− (r − s)atbt dt− dwt atbt dwt.

From Lemma 4.3,
dwt atbt dwt = (s− r)τ(atbt).

Thus, atbt satisfies the free SDE

d(atbt) = [atbt, dwt] + (r − s)[atbt − τ(atbt)],

with initial condition a0b0 = 1. Notice that the free SDE dθt = [θt, dwt] + (r− s)[θt − τ(θt)] holds true for any
constant process θt; thus, with initial condition θ0 = 1 uniquely determining the solution, we see that atbt = 1
as well.

Proposition 4.18. The multiplicative increments of (br,s(t))t≥0 are freely independent and stationary.

The proof of Proposition 4.18 is virtually identical to the proof of Proposition 4.14; one need only replace the
σ-fields Ft with the von Neumann algebras At = W ∗{x(t′), y(t′) : 0 ≤ t′ ≤ t}.

Proposition 4.19. For r ≥ 0 and s > 0, br,s(t) is non-normal for all t > 0.

Proof. Let bt = br,s(t); we compute that

[bt, b
∗
t ]

2 = (btb
∗
t )

2 − bt(b∗t )2bt − b∗t b2t b∗t + (b∗t bt)
2,

and so
τ
(
[bt, b

∗
t ]

2
)

= 2τ [(btb
∗
t )

2]− 2τ [b2t (b
∗
t )

2].

We now use (1.8), (1.10), and (1.11) to expand this:

τ [(btb
∗
t )

2]− τ [b2t (b
∗
t )

2] = ν2(−4st)− (e4st + 4st(1 + st)e(3s−r)t)

= e4st(1 + 4st)− (e4st + 4st(1 + st)e(3s−r)t)

= 4ste3st[est − (1 + st)e−rt].

Since r ≥ 0, e−rt ≤ 1, and since st > 0, est > 1 + st. It follows that τ([bt, b
∗
t ]

2) > 0 for t > 0, proving that bt
is not normal.

5 Convergence of the Brownian Motions

This final section is devoted to the proof of Theorem 1.1: that the process (BN
r,s(t))t≥0 converges in noncommu-

tative distribution to the process (br,s(t))t≥0. We first show the convergence of the random matrices BN
r,s(t) for

each fixed t ≥ 0; the multi-time statement then follows from asymptotic freeness considerations.

25



5.1 Convergence for a Fixed t

We begin by noting the single-t version of Theorem 1.2, which was proved in [16, Proposition 4.13]. For any
r, s > 0 and t ≥ 0, and any noncommutative polynomials f, g ∈ C〈X,X∗〉, there is a constant Cr,s(t, f, g) such
that

Cov
[
tr
(
f(BN

r,s(t), B
N
r,s(t)

∗)
)
, tr
(
g(BN

r,s(t), B
N
r,s(t)

∗)
)]
≤ Cr,s(t, f, g)

N2
, (5.1)

where Cr,s(t, f, g) depends continuously on t.
We now proceed to prove the fixed-t case of Theorem 1.1. The idea is to compare the SDE for BN

r,s(t) to the
free SDE for br,s(t), and inductively show that traces of ∗-moments differ by O(1/N2), using (5.1).

Theorem 5.1. Let r, s, t ≥ 0. Let n ∈ N and let ε = (ε1, . . . , εn) ∈ {1, ∗}n. Then there is a constant C ′r,s(t, ε)
that depends continuously on r, s, t so that

∣∣Etr
(
BN
r,s(t)

ε1 · · ·BN
r,s(t)

εn
)
− τ(br,s(t)

ε1 · · · br,s(t)εn)
∣∣ ≤ C ′r,s(t, ε)

N2
. (5.2)

Remark 5.2. We remark again that this result was proved, in the special case r = s, in [5] (using different
techniques). In fact, Cébron’s method could well be adapted to give an alternate proof of this result that does
not rely explicitly on an inductive analysis of stochastic differential equations, although in some sense the central
idea is the same.

Proof. In the case n = 0, (5.2) holds true vacuously with C ′r,s(t,∅) = 0. When n = 1, as computed in (1.9)
we have τ(br,s(t)

ε1) = ν1((r − s)t), and so (5.2) follows immediately from [16, Theorem 1.3]. From here, we
proceed by induction: assume that (5.2) has been verified up to, but not including, level n.

Fix ε = (ε1, . . . , εn) ∈ {1, ∗}n. Let ANr,s(t) = e
1
2

(r−s)tBN
r,s(t), so that, following precisely the proof of

Lemma 4.2 but using (2.17) instead of (2.25), we have

dANr,s(t) = ANr,s(t) dW
N
r,s(t). (5.3)

For convenience, denote A = ANr,s(t), and denote Aε = Aε1 · · ·Aεn . Then, using the Itô product rule (2.17), we
have

d(Aε) =
n∑
j=1

Aε1 · · ·Aεj−1 · dAεj ·Aεj+1 · · ·Aεn (5.4)

+
∑

1≤j<k≤n
Aε1 · · ·Aεj−1 · dAεj ·Aεj+1 · · ·Aεk−1 · dAεk ·Aεk+1 · · ·Aεn . (5.5)

From (2.15) and (5.3), the terms in (5.5) become

Aε1 · · ·Aεj−1 · dAεj ·Aεj+1 · · ·Aεk−1 · dAεk ·Aεk+1 · · ·Aεn

= Aε1 · · ·Aεj−1Aε
′
j dW εj Aε

′′
jAεj+1 · · ·Aεk−1Aε

′
k dW εk Aε

′′
kAεk+1 · · ·Aεn

where W = WN
r,s(t), and 1′ = 1, 1′′ = ∗′ = 0, and ∗′′ = ∗. As in Lemma 4.3, (2.14) – (2.18) show that, for any

adapted process Θ, and any ε, δ ∈ {1, ∗},

dW ε Θ dW δ = (s± r) tr(Θ) dt (5.6)

where the sign is − if ε = δ and + if ε 6= δ. Hence, the terms in (5.5) become

(s± r)tr(Aε
′′
jAεj+1 · · ·Aεk−1Aε

′
k)Aε1 · · ·Aεj−1Aε

′
jAε

′′
kAεk+1 · · ·Aεn .
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Now, note that the expected value of all the terms in (5.4) is 0 by (2.13) and (5.3). Therefore, taking Etr in (5.4)
and (5.5), we have

d

dt
Etr(Aε) =

∑
1≤j<k≤n

(s± r)E
[
tr(Aε

′′
jAεj+1 · · ·Aεk−1Aε

′
k)tr(Aε1 · · ·Aεj−1Aε

′
jAε

′′
kAεk+1 · · ·Aεn)

]
.

It is possible for one of the two trace terms to be trivial, in two special cases.

• If j = 1 and k = n, and if ε1 = ∗ and εn = 1, then the first trace term is equal to tr(Aε), while the second
one is just tr(IN ) = 1.

• For 1 ≤ j < n, if k = j+ 1, and εj = 1 while εk = ∗, then the second trace term is equal to tr(Aε), while
the first one is just tr(IN ) = 1.

In all other (ε, j, k) configurations, each trace term involves a non-trivial string of length < n. Note that, in both
these exceptional cases, the two exponents must be different, and so the factor in front is s+ r. We separate out
these cases as follows:

d

dt
Etr(Aε) = (s+ r)1(ε1,εn)=(∗,1)Etr(Aε) + (s+ r)

n−1∑
j=1

1(εj ,εj+1)=(1,∗)Etr(Aε)

+
∑̃

1≤j<k≤n
(s± r)E

[
tr(Aε

′′
jAεj+1 · · ·Aεk−1Aε

′
k)tr(Aε1 · · ·Aεj−1Aε

′
jAε

′′
kAεk+1 · · ·Aεn)

]
,

where
∑̃

indicates that the sum excludes the at-most-n terms accounted for in the special cases. Define

κ(ε) = 1(ε1,εn)=(∗,1) +
n−1∑
j=1

1(εj ,εj+1)=(1,∗),

and let
ε1
j,k = (ε′′j , . . . , ε

′
k), ε2

j,k = (ε1, . . . , ε
′
j , ε
′′
k, . . . , εn).

Thus we have shown that Etr(Aε) satisfies the ODE

d

dt
Etr(Aε) = κ(ε)(s+ r)Etr(Aε) +

∑̃
1≤j<k≤n

(s± r)E
[
tr(Aε

1
j,k)tr(Aε

2
j,k)
]
, (5.7)

where all the terms in the sum are expectations of products of traces of words in A and A∗ of length strictly less
than n. Since A(0) = IN , the unique solution of this ODE (in terms of these functions in the sum) is

Etr(AεT ) = eκ(ε)(s+r)T +
∑̃

1≤j<k≤n
(s± r)

∫ T

0
eκ(ε)(s+r)(T−t) E

[
tr(A

ε1j,k
t )tr(A

ε2j,k
t )

]
dt (5.8)

where we have written At = ANr,s(t) to emphasize the different times of evaluation. Now returning to Bt =

BN
r,s(t) = e−

1
2

(r−s)tAt, and noting that the total length of the two strings ε1
j,k and ε2

j,k is n, the same as the length
of ε, this gives

Etr(Bε
T ) = e[κ(ε)(s+r)−n

2
(r−s)]T

+
∑̃

1≤j<k≤n
(s± r)

∫ T

0
e[κ(ε)(s+r)−n

2
(r−s)](T−t)e

n
2

(r−s)t E
[
tr(B

ε1j,k
t )tr(B

ε2j,k
t )

]
dt. (5.9)
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Now, repeating this derivation line-by-line, we find that, setting bt = br,s(t),

τ(bεT ) = e[κ(ε)(s+r)−n
2

(r−s)]T

+
∑̃

1≤j<k≤n
(s± r)

∫ T

0
e[κ(ε)(s+r)−n

2
(r−s)](T−t)e

n
2

(r−s)tτ(b
ε1j,k
t )τ(b

ε2j,k
t ) dt. (5.10)

The principal difference is that, when applying the free Itô product rule (2.25), the trace τ factors through com-
pletely, while in the matrix Itô product rule (2.17), only the trace tr factors through, while the expectation E does
not. Thus, the desired quantity (on the left-hand-side of (5.2)) at time T is equal to

∑̃
1≤j<k≤n

(s± r)
∫ T

0
e[κ(ε)(s+r)−n

2
(r−s)](T−t)e

n
2

(r−s)t
(
E
[
tr(B

ε1j,k
t )tr(B

ε2j,k
t )

]
− τ(b

ε1j,k
t )τ(b

ε2j,k
t )

)
dt. (5.11)

Again to simplify notation, fix j, k in the sum and let B` = B
ε`j,k
t and b` = b

ε`j,k
t for ` = 1, 2. Then we expand

the difference as

E[tr(B1)tr(B2)]− τ(b1)τ(b2) = Cov[tr(B1), tr(B2)] + Etr(B1)Etr(B2)− τ(b1)τ(b2), (5.12)

and the last two terms may be written (by adding and subtracting τ(b1)Etr(B2)) as

Etr(B1)Etr(B2)− τ(b1)τ(b2) = Etr(B2) · [Etr(B1)− τ(b1)] + τ(b1) · [Etr(B2)− τ(b2)]. (5.13)

We now appeal to the inductive hypothesis. By construction, all the terms in the sum
∑̃

have both strings ε1
j,k

and ε2
j,k of length strictly < n. As such, the inductive hypothesis yields that |Etr(B`) − τ(b`)| ≤ C`(t)/N

2 for
constants C`(t) that depend continuously on t (and all of the hidden parameters r, s, ε). It follows, in particular,
that the constants Etr(B2) are uniformly bounded in N and t ∈ [0, T ]. Thus, the terms in (5.13) are bounded by
C(t)/N2 for some constant C(t) that is uniformly bounded in t ∈ [0, T ]. By (5.1), the covariance term in (5.12)
is also bounded by C ′(t)/N2 for such a constant C ′(t). Integrating C(t) +C ′(t) times the relevant exponentials,
summed over j, k, in (5.11) now shows that the whole expression is ≤ C ′′(T )/N2 for some constant C ′′(T ) that
depends continuously on T . This concludes the proof.

Remark 5.3. In [16, Theorem 1.6], the author showed that there exists a linear functional ϕtr,s : C〈X,X∗〉 → C
so that (5.2) holds with ϕtr,s(X

ε1 · · ·Xεn) in place of τ(br,s(t)
ε1 · · · br,s(t)εn); the upshot of the present theorem

is to identify this linear functional as the noncommutative distribution of br,s(t). In particular, it lives in a faithful,
normal, tracial W ∗-probability space, which could not be easily proved using the techniques in [16].

5.2 Asymptotic Freeness and Convergence of the Process

In this final section, we use the freeness of the increments of br,s(t) and the asymptotic freeness of the increments
of BN

r,s(t), together with Theorem 5.1, to prove Theorem 1.1. We begin with some preliminary lemmas.

Lemma 5.4. Let ε1, . . . , εn ∈ {1, ∗}, and let f ∈ C〈X1, . . . , Xn〉 be a noncommutative polynomial. Given
any permutation σ ∈ Σn, there is a noncommutative polynomial g ∈ C〈X1, . . . , Xn, X

∗
1 , . . . , X

∗
n〉 with the

following property. If b1, . . . , bn are invertible random variables in a noncommutative probability space, and
a1 = b1, a2 = b−1

1 b2, . . . , an = b−1
n−1bn are the corresponding multiplicative increments, then

f(bε1σ(1), . . . , b
εn
σ(n)) = g(a1, . . . , an, a

∗
1, . . . , a

∗
n).
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Proof. For 1 ≤ j ≤ n, write
bj = b1(b−1

1 b2) · · · (b−1
j−1bj) = a1a2 · · · aj . (5.14)

Let fσ(X1, . . . , Xn) = f(Xσ(1), . . . , Xσ(n)); then

f(bε1σ(1), · · · , b
εn
σ(n)) = fσ(b

εσ−1(1)

1 , . . . , b
εσ−1(n)
n ).

In each variable, expand the term b
εσ−1(j)

j using (5.14) (to the εσ−1(j) power); this yields the polynomial g.

The next lemma uses the language of Section 3.2 to give a more precise formulation of how free independence
reduces the calculation of joint moments to separate moments.

Lemma 5.5. Given any n ∈ N and any noncommutative polynomial g ∈ C〈X1, . . . , Xn, X
∗
1 , . . . , X

∗
n〉, there is

an integer m ∈ N and a collection {P j,k : 1 ≤ j ≤ n, 1 ≤ k ≤ m} of elements of P with the property that, if
(A , τ) is a noncommutative probability space, and a1, . . . , an ∈ A are freely independent, then

τ(g(a1, . . . , an, a
∗
1, . . . , a

∗
n)) =

m∑
k=1

P 1,k
τ (a1) · · ·Pn,kτ (an). (5.15)

Here P denotes the polynomial space P(J) with the index set J a singleton. The proof of Lemma 5.5 is
contained in the proof of [21, Lemma 5.13]. The idea is to center the variables and proceed inductively. The
exact machinery of how P j,k are computed from g is the business of the rich theory of free cumulants, which is
the primary topic of [21].

Now, suppose AN1 , . . . , A
N
n are N ×N random matrices that are asymptotically free; cf. Definition 2.7. This

means precisely that (AN1 , . . . , A
N
n ) → (a1, . . . , an) in noncommutative distribution, for some freely indepen-

dent collection a1, . . . , an in a noncommutative probability space (A , τ). In other words, for any noncommuta-
tive polynomial g ∈ C〈X1, . . . , Xn, X

∗
1 , . . . , X

∗
n〉,

lim
N→∞

Etr
(
g(AN1 , . . . , A

N
n , (A

N
1 )∗, . . . , (ANn )∗)

)
= τ(g(a1, . . . , an, a

∗
1, . . . , a

∗
n))

=
m∑
k=1

P 1,k
τ (a1) · · ·Pn,kτ (an)

where the second equality is Lemma 5.5. Note that P j,kτ (a) is a polynomial in the trace moments of a, a∗, and by
assumption of convergence of the joint distribution, we also therefore have (P j,kEtr(A

N
j ))→ P j,kτ (aj) as N →∞.

Hence, we can alternatively state asymptotic freeness as

lim
N→∞

Etr
(
g(AN1 , . . . , A

N
n , (A

N
1 )∗, . . . , (ANn )∗)

)
= lim

N→∞

m∑
k=1

P 1,k
Etr (AN1 ) · · ·Pn,kEtr (ANn ). (5.16)

We now stand ready to prove Theorem 1.1.

Proof of Theorem 1.1. For convenience, denoteBN
r,s(t) = Bt and br,s(t) = bt. Fix t1, . . . , tn ≥ 0 and ε1, . . . , εn ∈

{1, ∗}. Fix a permutation σ ∈ Σn such that tσ(1) ≤ · · · ≤ tσ(n) and let t′j = tσ(j). Let

A1 = Bt′1 , A2 = B−1
t′1
Bt2 , . . . , An = B−1

t′n−1
Btn

be the increments for the partition t′1 ≤ · · · ≤ t′n. Using Lemma 5.4, we can write

Etr
(
Bε1
t1
· · ·Bεn

tn

)
= Etr(g(A1, . . . , An, A

∗
1, . . . , A

∗
n)) (5.17)
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where g ∈ C〈X1, . . . , Xn, X
∗
1 , . . . , X

∗
n〉 is determined by σ and ε1, . . . , εn.

By Proposition 4.14, the increments Aj are independent; moreover, their stationarity means that Aj has the
same distribution as B∆t′j

where ∆t′1 = t′1 and ∆t′j = t′j − t′j−1 for 1 < j ≤ n. Thus, by Corollary 3.19,
A1, . . . , An are asymptotically free. In addition, the equality of distributions means that all ∗-moments of Aj are
equal to the same ∗-moments of B∆t′j

. Thus, combining (5.16) and (5.17), we have

lim
N→∞

Etr(Bε1
t1
· · ·Bεn

tn ) = lim
N→∞

m∑
k=1

P 1,k
Etr (B∆t′1

) · · ·Pn,kEtr (B∆t′n).

From Theorem 5.1, we therefore have

lim
N→∞

Etr(Bε1
t1
· · ·Bεn

tn ) =
m∑
k=1

P 1,k
τ (b∆t′1) · · ·Pn,kτ (b∆t′n).

Now, by Proposition 4.18, the increments b∆t′j are freely independent and stationary; so letting

a1 = bt′1 , a2 = b−1
t′1
bt′2 , . . . , an = b−1

t′n−1
bt′n

we see that {b∆t′1 , . . . , b∆t′n} have the same joint distribution as {a1, . . . , an}. Thus

lim
N→∞

Etr(Bε1
t1
· · ·Bεn

tn ) =

m∑
k=1

P 1,k
τ (b∆t′1) · · ·Pn,kτ (b∆t′n) =

m∑
k=1

P 1,k
τ (a1) · · ·Pn,kτ (an),

and by the definition (5.15) of P j,k, this yields

lim
N→∞

Etr(Bε1
t1
· · ·Bεn

tn ) = τ(g(a1, . . . , an, a
∗
1, . . . , a

∗
n)).

Finally, by the definition (5.17) of g, we conclude that

lim
N→∞

Etr(Bε1
t1
· · ·Bεn

tn ) = τ(bε1t1 · · · b
εn
tn ),

concluding the proof.

We conclude by giving an extension of Theorem 1.1: it follows essentially immediately that any collection
of independent (r, s)-Brownian motions converges in finite-dimensional distributions to a collection of freely
independent free multiplicative (r, s)-Brownian motions. Moreover, not only do moments converge, but all trace
polynomials converge (at rate 1

N2 ).

Corollary 5.6. Fix a time index set J and an integer m. Let {(BN,k
r,s (t))t≥0}1≤k≤m be a finite family of indepen-

dent (r, s)-Brownian motions on GLN , and let {(bkr,s(t))t≥0}1≤k≤m be a finite family of freely independent free
multiplicative (r, s)-Brownian motions in noncommutative probability space (A , τ). Fix a collection of times
T = (tj)j∈K , and set BN,k

r,s (T) = {BN,k
s,t (tj)}j∈J and bkr,s(T) = {bkr,s(tj)}j∈J Then for any trace polynomial

P ∈P(Jm),

PN (BN,1
r,s (T), . . . , BN,m

r,s (T)) = Pτ (b1r,s(T), . . . , bmr,s(T)) +O

(
1

N2

)
.

The proof is a straightforward extension of the above techniques. A remark about the preciseO(1/N2) statement:
in Theorem 5.1, we prove the special case of Theorem 1.1 (and Corollary 5.6) when t1 = · · · = tn = t. In this
case, we have the quantitative bound that the difference between the moments in (1.1) isO( 1

N2 ). That this extends
to the general case can be seen easily by tracking through the proof of Theorem 1.1 (beginning on page 29) and
using the fact that all moments of the Brownian motion are bounded uniformly in N .
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