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Abstract

This paper studies the empirical laws of eigenvalues and singular values for random matrices drawn from
the heat kernel measures on the unitary groups UN and the general linear groups GLN , for N ∈ N. It
establishes the strongest known convergence results for the empirical eigenvalues in the UN case, and the first
known almost sure convergence results for the eigenvalues and singular values in the GLN case. The limit
noncommutative distribution associated to the heat kernel measure on GLN is identified as the projection of a
flow on an infinite dimensional polynomial space. These results are then strengthened from variance estimates
to Lp estimates for even integers p.
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1 Introduction

This paper is concerned with the empirical eigenvalue laws associated to heat kernels on the unitary groups and
the general linear groups. Let MN denote N × N complex matrices, let UN = {U ∈ MN : UU∗ = IN}
be the unitary group, and GLN ⊂ MN the general linear group of invertible N × N complex matrices. The
unitary group UN is a real Lie group, and GLN is its complexification. These Lie groups possess natural Laplace
operators ∆UN and ∆GLN ; cf. Definition 2.2 below. The heat kernel ρNt is the fundamental solution to the heat
equation ∂tρNt = 1

2∆UNρ
N
t on UN ; similarly the heat kernel µNt is the fundamental solution to the heat equation

∂tµ
N
t = 1

2∆GLNµ
N
t on GLN . They are strictly positive smooth probability densities with respect to the (right)

Haar measures, and so we identify each density with its measure when convenient. In fact, we will consider a
two-parameter heat kernel µNs,t on GLN , where s, t > 0 and s > t/2, which interpolates between ρNs when t = 0

and µNt/2 when s = t; cf. Definition 2.2.
To fix notation, for N ∈ N and s, t > 0 with s > t/2, we set

UNt is a random unitary matrix with joint law of entries ρNt , and

ZNs,t is a random invertible matrix with joint law of entries µNs,t.

Let (Ω,F ,P) be a probability space from which all the random matrices {UNt , ZNs,t;N ∈ N, s, t > 0, s > t/2}
are sampled. As usual, for F ∈ L1(Ω,F ,P), denote E(F ) =

∫
Ω F dP.

1.1 Main Theorems

We are interested in the empirical eigenvalue laws of these matrices. ForZ ∈MN denote by Λ(Z) the unordered
list of eigenvalues of Z, counted with multiplicities. The empirical eigenvalue laws are the following random
discrete measures on C:

ν̃Nt =
1

N

∑
λ∈Λ(UNt )

δλ and φ̃Ns,t =
1

N

∑
λ∈Λ(ZNs,t)

δλ. (1.1)

To describe the limit behavior of these random measures, we introduce the following one-parameter family of
probability measures.

Theorem / Definition 1.1. For each t ∈ R, there exists a unique probability measure νt on C∗ = C\{0} with the
following properties. For t > 0, νt is supported in the unit circle U; for t < 0, νt is supported in R+ = (0,∞);
and ν0 = δ1. In all cases, νt is determined by its moments: ν0(t) ≡ 1 and, for n ∈ Z \ {0},

νn(t) ≡
∫
C∗
un νt(du) = e−

|n|
2
t

|n|−1∑
k=0

(−t)k

k!
|n|k−1

(
|n|
k + 1

)
. (1.2)

For all t 6= 0, νt possesses a continuous density %t with connected, compact support; %t is strictly positive in a
neighborhood of 1 (in U for t > 0, in R+ for t < 0), and real analytic on the set where it is positive; cf. [10]
for the t > 0 case, and [40] for the t < 0 case. Section 2.5 has further discussion of the measures νt and their
relevance to free probability theory.
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For t > 0, νt was identified as limN→∞ E(ν̃Nt ) in [9], and independently in [32]. In the latter case, the
convergence was proved to be weakly almost sure for polynomial test functions. Our first main theorem weakens
the regularity conditions requires for the almost sure convergence.

Theorem 1.2. For t > 0 and N ∈ N, let ν̃Nt and νt be the measures in (1.1) and Definition 1.1. Then ν̃Nt
converges to νt weakly in probability:

P
(∣∣∣∣∫

U
f dν̃Nt −

∫
U
f dνt

∣∣∣∣ > ε

)
→ 0, ε > 0, f ∈ C(U). (1.3)

Moreover, if 1 < p < 3
2 and f is in the Sobolev space Hp(U) (cf. Definition 2.7), then the convergence is almost

sure, and

Var

(∫
U
f dν̃Nt

)
≤ C(t, p)

N2p−1
‖f‖2Hp(U) (1.4)

for some constant C(t, p) <∞ that depends continuously on t and p. Finally, if f ∈ Hp(U) with p > 3
2 , then f

is Lipschitz on U, and

Var

(∫
U
f dν̃Nt

)
≤ 2t

N2
‖f‖Lip(U). (1.5)

See (4.2) for the definition of the Lipschitz norm on U.

By taking f ∈ C(U) close to the indicator function of any given arc, (1.3) and (1.4) show that the density of
eigenvalues of UNt converges, in a fairly strong sense, to νt. We prove Theorem 1.2 (on page 29) incorporating
some estimates from [30] with a Fourier cut-off argument. Note: in [30], the (Gaussian) fluctuations of the
empirical integrals

∫
U f dν̃

N
t are computed: they are on the scale of the Sobolev space H1/2(U) as t → ∞. We

conjecture that the O(1/N2p−1) in (1.4) can be improved to O(1/N2), and that therefore the a.s. convergence
holds for f ∈ Hp(U) for any p > 1

2 . At the end of Section 4.2, we discuss how tighter bounds on the constants
from Section 3.3 would lead to this minimal-regularity conjecture.

As most matrices in GLN are not normal, there are limits to what we can say about the empirical law φ̃Ns,t.
The following is a natural analogue of Theorem 1.2 in this context.

Theorem 1.3. Let s, t > 0 with s > t/2 and N ∈ N, and let φ̃Ns,t be the empirical eigenvalue law of (1.1). Let
f(z) =

∑
n anz

n be in the ultra-analytic Gevrey class Gσ(C∗) (meaning ‖f‖2Gσ ≡
∑

n |an|2e2σn2
< ∞; cf.

Definition 2.8) for some σ > s. Then∣∣∣∣E(∫
C∗
f dφ̃Ns,t

)
−
∫
C∗
f dνs−t

∣∣∣∣ ≤ C1(s)

N2
‖f‖Gσ , and (1.6)

Var

(∫
C∗
f dφ̃Ns,t

)
≤ C2(s)

N2
‖f‖2Gσ , (1.7)

for some constants C1(s), C2(s) <∞ that depend continuously on s (and are independent of t).

To be clear, the class Gσ(C∗) of test functions is not rich enough to approximate indicator functions of disks,
and so Theorem 1.3 does not necessarily imply that the density of eigenvalues converges to νs−t. The proof of
Theorem 1.5 is on page 35.

We also consider the convergence of the density of singular values of ZNs,t; i.e. the square roots of the
eigenvalues of the positive-definite matrix ZNs,t(Z

N
s,t)
∗.

Definition 1.4. Let M>0
N denote the set of positive definite N × N matrices. The map Φ: GLN → M>0

N given
by Φ(Z) = ZZ∗ is a smooth surjection. Let η̃Ns,t be the empirical eigenvalue law of Φ(ZNs,t).
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Theorem 1.5. For s, t > 0 with s > t/2 and N ∈ N, the empirical eigenvalue law η̃Ns,t of Definition 1.4
converges ultra-analytically almost surely to ν−2t: if f is in the Gevrey class Gσ(C∗) for some σ > 4s, then∣∣∣∣E(∫ ∞

0
f dη̃Ns,t

)
−
∫ ∞

0
f dν−2t

∣∣∣∣ ≤ C1(4s)

N2
‖f‖Gσ , and (1.8)

Var

(∫ ∞
0

f dη̃Ns,t

)
≤ C2(4s)

N2
‖f‖2Gσ , (1.9)

where the constants C1(·) and C2(·) are the same ones given in Theorem 1.3.

The proof of Theorem 1.5 is on page 38. It is likely that (1.9) holds for much less regular test functions, as in
Theorem 1.2.

Remark 1.6. Equation (1.8), in the special case of polynomial test functions, was stated without proof at the end
of [9]. Note there is a scaling disagreement: Biane stated that the moments are those of ν−t. This is because
the free stochastic process he uses to define the limit Brownian motion on GLN is scaled differently from ours:
instead of (2.36), his process is defined by dΓt = 1

2dzt Γt. This amounts to using (a right-invariant version of)
−1

2 of the generator we use, thus accounting for the discrepancy.

In [9], it was alluded that the computation of (1.8) follows from combinatorial representation-theoretic tools
like used earlier in that paper. Our present approach is more geometric. In fact, we give a unified approach to
Theorems 1.2, 1.3 and 1.5, which applies to the much more general context of the noncommutative distribution
of ZNs,t; cf. Section 2.4.

Theorem 1.7. Let s, t > 0 with s > t/2, and let ϕ̃Ns,t denote the empirical noncommutative distribution of ZNs,t;
cf. Definition 2.14. There exists a noncommutative distribution ϕs,t (cf. Definition 2.12) such that ϕ̃Ns,t → ϕs,t
weakly almost surely: for each noncommutative Laurent polynomial f ∈ C〈A,A−1, A∗, A−∗〉,∣∣E[ϕ̃Ns,t(f)]− ϕs,t(f)

∣∣ ≤ C1(s, t, f)

N2
, and (1.10)

Var[ϕ̃Ns,t(f)] ≤ C2(s, t, f)

N2
, (1.11)

for some constants C1(s, t, f), C2(s, t, f) <∞ that depend continuously on s, t.

Let tr(Z) = 1
NTr(Z) denote the normalized trace on MN . Theorem 1.7 asserts that all of the random trace

moments tr((ZNs,t)
ε1 · · · (ZNs,t)εn) (for ε1, . . . , εn ∈ {±1,±∗}) converge almost surely to their means. In fact,

our techniques show the stronger claim that all products of such trace moments also have O(1/N2)-variance,
hence also describing the fluctuations of these random variables. The proof of Theorem 1.7 is on page 31.

Remark 1.8. Restricting all test functions to (Laurent) polynomials, Theorem 1.2 is the special case (s, t) 7→ (t, 0)
of Theorem 1.7; and Theorems 1.3 and 1.5 are achieved by taking f to depend only on Z in the first case, and
only on ZZ∗ in the second.

The essential idea behind the above concentration results can be described succinctly in the unitary case as
follows. Since the solution h(t, ·) to the heat equation ∂th = 1

2∆UNh with initial condition h(0, U) = f(U) is
given by convolution against the heat kernel (cf. [24]),

h(t, U) =

∫
UN

f(UV )ρNt (dV ), (1.12)

evaluating this convolution at the identity shows h(t, IN ) is the integral of f against the heat kernel ρNt . But
h(t, ·) may also be represented in terms of the heat semigroup, h(t, ·) = e

t
2

∆UN f ; thus we have∫
UN

f dρNt =
(
e
t
2

∆UN f
)

(IN ). (1.13)
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In fact, (1.13) determines the measure ρNt when taken over all f ∈ C(UN ); we take it as the definition of ρNt in
(2.7) below. Now, as explained below in Section 3 following [16, Theorem 1.18], on a sufficiently rich space of
functions, ∆UN has a decomposition

∆UN = DN +
1

N2
LN (1.14)

whereDN and LN are first- and second-order differential operators, both uniformly bounded inN ; they are given
explicitly as intertwining operators in Theorem 3.6. In fact, DN has a limit as N → ∞, which we can think of
as the generator of free unitary Brownian motion; cf. [9] and Section 2.5. Hence, in the limit as N → ∞, the
heat operator e

t
2

∆UN behaves as the flow of a vector field; i.e. it is an algebra homomorphism, which shows that
variances vanish in the limit. The same idea holds in the GLN -case as well, in the much larger context of the
“test-functions” (noncommutative polynomials) of noncommutative distributions; cf. Definition 2.15.

These same ideas allow us to prove a stronger form of convergence of these empirical distributions.

Theorem 1.9. Fix s, t > 0 with s > t/2. Let (A , τ) be a noncommutative probability space (Definition 2.10) that
contains the almost sure weak limits ut and zs,t of UNt and ZNs,t; cf. Theorem 1.7. Then, for any noncommutative
polynomial f ∈ C〈A,A∗〉, and any even integer p ≥ 2,

‖f(UNt , (U
N
t )∗)‖Lp(MN ,tr) → ‖f(ut, u

∗
t )‖Lp(A ,τ) a.s. as N →∞, and

‖f(ZNs,t, (Z
N
s,t)
∗)‖Lp(MN ,tr) → ‖f(zs,t, z

∗
s,t)‖Lp(A ,τ) a.s. as N →∞.

Section 5 is devoted to Theorem 1.9, where the noncommutative Lp-norms are defined and discussed.

1.2 Discussion

The problems discussed above are natural extensions of now well-known theorems in random matrix theory. Let
us be slightly more general for the moment. Let ρN be a probability measure on MN , and let AN be a random
matrix with ρN as its joint law of entries. Denote

ν̃N =
1

N

∑
λ∈Λ(AN )

δλ (1.15)

the empirical eigenvalue law ofAN . If the support of ρN is contained in the normal matrices Mnor
N , then empirical

integrals against measurable test functions f : C→ C can be computed by∫
C
f dν̃N = tr ◦ fN , (1.16)

where the function fN : Mnor
N → Mnor

N is given by measurable functional calculus; cf. Section 2.3 below. In
particular, (1.16) will often be used to compute expectations against continuous functions:

E
(∫

C
f dν̃N

)
=

∫
Mnor
N

(tr ◦ fN ) dρN , f ∈ Cc(C). (1.17)

The most well-known example of such a normal (in fact Hermitian) empirical eigenvalue law comes from
Wigner’s semicircle law; cf. [37, 38, 39]. In the original Gaussian case, ρN is supported on Hermitian matri-
ces, with

ρN (dX) = cNe
−NTr(X2) dX (1.18)

where dX denotes the Lebesgue measure on Hermitian matrices (coordinatized by the real and imaginary parts
of the upper-triangular entries), and cN is a normalization constant. This measure is known as the GUEN
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or Gaussian Unitary Ensemble; it is equivalently described by insisting that the upper-triangular entries of the
Hermitian random matrixX are i.i.d. normal random variables of variance 1/N . Wigner proved that, in this case,
the empirical eigenvalue law converges weakly in expectation to the semicircle law ς(dx) = 1

2π

√
(4− x2)+ dx.

That is to say: Wigner proved that the quantities in (1.17) converge to the relevant integrals against dς . It was
shown later [2, 3, 4] that this convergence is weakly almost sure, in the sense that the random variables

∫
f dνN

converge to their means almost surely.

Remark 1.10. Having realized all requisite random matrices (of all sizes N ∈ N) over a single probability space
(Ω,F ,P), proving almost sure convergence amounts to showing that the variances tend to 0 summably-fast (by
Chebyshev’s inequality and the Borel-Cantelli lemma).

Much of the modern theory of random matrices is concerned with generalizations of Wigner’s example in one
of two ways: either to other measures ρN on Hermitian matrices that make the upper-triangular entries i.i.d., or
or to measures with densities generalizing the form of (1.18), for example by replacing Tr(X2) with a different
(sufficiently convex) potential. A great deal is understood in both these arenas about the empirical laws and many
other statistics of the random eigenvalues; the interested reader should consult [1].

Another well-studied example is the Haar measure ρN = Haar(UN ) on the the unitary group UN . Unitary
matrices are normal, and so (1.16) characterizes the empirical eigenvalue laws; in this case, they are known (cf.
[14]) to converge weakly almost surely to the uniform probability measure on U. In both this case and the Wigner
ensembles described above, stronger convergence results are known, such as in Theorem 1.9 above.

Remark 1.11. If, instead of UN , we take the additive Lie group of Hermitian matrices, the heat kernel is precisely
the Gaussian measure (1.18), where N is replaced by N/t on the right-hand-side. The space of Hermitian
matrices can be identified as iuN , where uN = {X ∈ MN : X∗ = −X} is the Lie algebra of UN ; thus, the
GUEN is the Lie algebra version of the heat kernel on UN . As t → ∞, the heat kernel measure ρNt on UN
converges to the Haar measure. In this sense, the heat kernel measures considered in the present paper fit into a
larger scheme of well-studied random matrix ensembles.

The support of the heat kernel measures µNs,t on GLN consists largely of non-normal matrices, and so mea-
surable functional calculus is not available. It is for this reason that our analysis is restricted to holomorphic
test functions in this case. Nevertheless, the results presented in Theorems 1.3 – 1.7 are new; in particular, the
existence of the noncommutative distribution ϕs,t in Theorem 1.7 was part of a conjecture posed in [9]. The full
conjecture deals with the limit of the stochastic process t 7→ ZNt,t, the Brownian motion on GLN which, for each
fixed t, has distribution µNt/2. In the present paper, we deal only with a single t > 0, with all theorems proved
with bounds that are uniform for t in compact intervals. Identifying the limit distribution of the full stochastic
process will be addressed in the separate paper [26].

2 Background

In this section, we give concise discussions of the necessary constructs for this paper: heat kernel analysis on the
groups UN and GLN ; regularity of test functions (Sobolev spaces and Gevrey classes); measurable functional
calculus on UN and holomorphic functional calculus on GLN ; and noncommutative probability theory (in par-
ticular free probability and free multiplicative convolution). For general reference, readers are directed to the
monograph [33] for heat kernel analysis on Lie groups, and the lecture notes [31] for a thorough treatment of
noncommutative and free probability.

2.1 Heat Kernels on UN and GLN
Let G ⊂ MN be a matrix Lie group, with Lie algebra Lie(G); relevant to this paper are UN with Lie(UN ) =
uN = {X ∈MN : X∗ = −X}, and GLN with Lie(GLN ) = glN = MN . Note that glN = uN ⊕ iuN . Hence, if
βN is a basis for uN as a real vector space, then βN is also a basis for glN as a complex vector space.

6



We will use the following (scaled) Hilbert-Schmidt inner product on glN :

〈ξ, ζ〉N ≡ NTr(ξζ∗) = N2tr(ξζ∗), ξ, ζ ∈ glN . (2.1)

Restricted to uN , this inner product is AdUN -invariant, and real valued:

〈X,Y 〉N = −NTr(XY ), X, Y ∈ uN . (2.2)

The scaling chosen here is consistent with the scaling in (1.18); as we will see in the following, it is the unique
scaling that leads to limit distributions as N →∞.

Definition 2.1. Let G be a Lie group and ξ ∈ Lie(G). Then the exponential etξ is in G for t ∈ R. The
left-invariant vector field or derivative associated to ξ is the operator ∂ξ on C∞(G) defined by

(∂ξf)(g) =
d

dt

∣∣∣∣
t=0

f(getξ). (2.3)

Definition 2.2. Let βN be an orthonormal basis (with respect to (2.2)) for uN . The Laplace operator on
C∞(UN ) is

∆UN =
∑
X∈βN

∂2
X . (2.4)

The Laplace operator on C∞(GLN ) is

∆GLN =
∑
X∈βN

(
∂2
X + ∂2

iX

)
. (2.5)

More generally, for s, t ∈ R, define the operators ANs,t on C∞(GLN ) by

ANs,t =

(
s− t

2

) ∑
X∈βN

∂2
X +

t

2

∑
X∈βN

∂2
iX . (2.6)

A routine calculation shows that these definitions do not depend on the particular orthonormal basis used.

Remark 2.3. (1) The operator ∆UN is the Casimir element in the universal enveloping algebra U(uN ). Since
the inner product (2.2) is Ad-invariant, ∆UN commutes with the left- and right-actions of UN onC∞(UN );
i.e. it is bi-invariant. It is equal to the Laplace-Beltrami operator on UN associated to the bi-invariant
Riemannian metric induced by (2.2).

(2) The non-semisimple Lie group GLN possesses no Ad-invariant inner product. Eq. (2.5) matches the
Laplace-Beltrami operator on GLN associated to the left-invariant Riemannian metric induced by (2.1).

(3) The interpolating operator ANs,t is negative-definite when s, t > 0 and s > t/2; in this regime, it is
essentially self-adjoint on L2(GLN ) equipped with any right Haar measure; cf. [15, 23]. In the special
case s = t, ANt,t = t

2∆GLN . Note also that t∆UN = ANt,0
∣∣
C∞(UN )

.

Definition 2.4. For t > 0, the heat kernel measure ρNt on UN is the unique probability measure which satisfies

EρNt (f) ≡
∫
UN

f dρNt =
(
e
t
2

∆UN f
)

(IN ), f ∈ C(UN ). (2.7)

Additionally, for s > t/2, the heat kernel measure µNs,t on GLN is the unique probability measure which satisfies

EµNs,t(f) ≡
∫
GLN

f dµNs,t =
(
e

1
2
ANs,tf

)
(IN ), f ∈ Cc(GLN ). (2.8)

In particular, the standard heat kernel measure on GLN is µNt/2 = µNt,t; cf. Remark 2.3(3).
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Remark 2.5. (1) The operators e
t
2

∆UN and e
1
2
As,t can be made sense of with PDE methods (since ∆UN and

ANs,t are elliptic) or functional analytic methods (since they are essentially self-adjoint). In most of our ap-
plications, the test functions f will be polynomials in the entries of the matrix argument, and the operators
can be interpreted via the power series expansion of exp.

(2) Eq. (2.8) holds, a priori, only for compactly-supported continuous test functions. In fact, it holds much
more generally; in particular, it holds for any function f that is polynomial in the matrix entries. This
follows from Langland’s Theorem [33, Theorem 2.1 (p. 152)]; see also [16, Appendix A].

(3) More generally, for s, t > 0 and s > t/2, there is a strictly-positive smooth heat kernel function

hNs,t : GLN ×GLN → R+

such that, for f : GLN → C of sufficiently slow growth (as in (2) above),(
e

1
2
ANs,tf

)
(Z) =

∫
hNs,t(Z,W )f(W )dW

where dW denotes the right-Haar measure on GLN . Thus, the density of µNs,t is equal to hNs,t(IN , ·); cf.

[15, 23]. Since hNs,t is real-valued, for any f in the domain of e
1
2
ANs,t it follows that

e
1
2
ANs,tf = e

1
2
ANs,tf,

where f(Z) = f(Z) is the complex conjugate. Setting t = 0 shows that the same property holds for the
heat operator e

s
2

∆UN . This will be useful in the proof of Lemma 3.11 below.

Remark 2.6. Had we taken the usual (unscaled) Hilbert-Schmidt inner product (X,Y ) = −Tr(XY ) in (2.2), the
resulting heat kernel measure on UN would have been ρNNt. This is the approach taken in [29, 30], and instead
the heat kernel is evaluated at time t/N to compensate. In that sense, our limiting concentration results can be
interpreted as statements about the heat kernel in a neighborhood of t = 0.

2.2 The Heat Kernel on U, Sobolev Spaces, and Gevrey Classes

If f ∈ L2(U), its Fourier expansion is given by

f =
∑
n∈Z

f̂(n)χn, f̂(n) = 〈f, χn〉L2(U) =

∫
U
f(u)u−n du,

where χn(u) = un for u ∈ U and n ∈ Z, and du denotes the normalized Haar measure on U.

Definition 2.7. For p > 0, the Sobolev space Hp(U) is defined by

Hp(U) =

{
f ∈ L2(U) : ‖f‖2Hp ≡

∑
n∈Z

(1 + n2)p|f̂(n)|2 <∞

}
. (2.9)

Note that H0(U) = L2(U). The definition makes sense even for p < 0, where the elements are no longer L2-
functions but rather distributions. If k, ` ≥ 1 are integers, and ` ≥ p ≥ k + 1

2 , then C` ⊂ Hp(U) ⊂ Ck(U); it
follows that H∞(U) ≡

⋂
p≥0Hp(U) = C∞(U). For 1

2 < p ≤ 3
2 , functions in Hp(U) are Hölder continuous of

any modulus < p − 1
2 , but generically not smoother. For p ≤ 1

2 , Hp(U) functions are generally not continuous.
These are standard Sobolev imbedding theorems (that hold for smooth manifolds); for reference, see [18, Chapter
5.6] and [35, Chapter 3.2].
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It is elementary to describe the heat semigroup on U = U1 in terms of Fourier expansions. Indeed,

(∆U1f)(u) = − ∂2

∂u2
f(u) (2.10)

(Here u = eiθ; (2.10) is more commonly written as (∆U1f) (eiθ) = ∂2

∂θ2
f(eiθ) in PDE textbooks.) Hence, the

characters χn are eigenfunctions ∆U1χn = −n2χn, and so

∆U1χn = e−
t
2
n2
χn, n ∈ Z, t ∈ R. (2.11)

It follows that the heat semigroup is completely described on L2(U) as a Fourier multiplier

e
t
2

∆U1f =
∑
n∈Z

e−
t
2
n2
f̂(n)χn. (2.12)

Let f ∈ L2(U), and for t > 0 let ft = e
t
2

∆U1f . Then (2.12) shows that f̂t(n) = e−
t
2
n2
f̂(n). In particular,

this means that ∑
n∈Z

etn
2 |f̂t(n)|2 =

∑
n∈Z
|f̂(n)|2 = ‖f‖L2(U) <∞. (2.13)

It follows that ft ∈ H∞(U) = C∞(U). It is, in fact, ultra-analytic.

Definition 2.8. Let σ > 0. The Gevrey class Gσ(U) consists of those f ∈ L2(U) such that

‖f‖2Gσ ≡
∑
n∈Z

e2σn2 |f̂(n)|2 <∞. (2.14)

More generally, the Gevrey class Gs,pσ (U) consists of those f ∈ L2(U) for which

‖f‖2Gs,pσ ≡
∑
n∈Z

(1 + n2)pe2σ|n|1/s |f̂(n)|2 <∞,

so that Gσ(U) is the s = 1/2, p = 0 case of Gs,pσ (U).

These spaces arise naturally in the analysis of some non-linear parabolic PDEs, cf. [19, 20, 28]. The superexpo-
nent s is usually taken to be 1, in which case G1,p

σ is a Hilbert space of real analytic functions. For s > 1, Gevrey
functions in Gs,pσ are C∞ but generally not analytic, and when s = ∞ we recover the Sobolev spaces; thus the
two-parameter family Gs,pσ interpolates between C∞ functions and analytic functions for s ≥ 1.

In the regime 0 < s < 1 such functions are called ultra-analytic. Indeed, if if f ∈ Gσ(U) for some σ > 0,
then f has a unique analytic continuation to a holomorphic function on C∗ given by the convergent Laurent
series f(z) =

∑∞
n=−∞ f̂(n)zn. (The holomorphic n ≥ 0 sum converges uniformly on C and the principal part

n < 0 converges uniformly on C∗ due to the fast decay of the coefficients.) We therefore refer to the set of such
holomorphic functions as

Gσ(C∗) = {f ∈ Hol(C∗) : f |U ∈ Gσ(U)} =

{
f(z) =

∑
n∈Z

anz
n : ‖f‖2Gσ ≡

∑
n∈Z

e2σn2 |an|2 <∞

}
. (2.15)

Note, as shown in (2.13), the Gevrey class Gσ characterizes the domain of the backwards heat flow:

Gσ(U) =
{
f ∈ L2(U) : e−

t
2

∆U1f exists in L2(U) for small time 0 ≤ t ≤ 2σ
}
. (2.16)
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2.3 Functional Calculus and Empirical Laws

For a normal matrix X ∈ Mnor
N , the spectral theorem asserts that there are mutually orthogonal projection

operators {ΠX
λ : λ ∈ Λ(X)} ⊂ End(CN ) so that

X =
∑

λ∈Λ(X)

λΠX
λ .

For any measurable function f : C→ C, define fN : Mnor
N →Mnor

N by

fN (X) =
∑

λ∈Λ(X)

f(λ)ΠX
λ . (2.17)

That is: ifX = UΛU∗ is any unitary diagonalization ofX , then fN (X) = Uf(Λ)U∗ where [f(Λ)]jj = f([Λ]jj)
for 1 ≤ j ≤ N . The map f 7→ fN is called measurable functional calculus. We adhere to the notation we used
in [16]; in [10], fN was denoted θNf .

Let ρN be a probability measure supported in Mnor
N . The linear functional

Cc(C) 3 f 7→
∫
Mnor
N

tr(fN (X)) ρN (dX)

is easily verified to be positive; also, if Dr is the disk of radius r > 0, then∫
Mnor
N

tr
(
[1Dr ]N (X)

)
ρN (dX)→ 1 as n→∞.

Hence, by the Riesz Representation Theorem [34, Theorem 2.14], there is a unique Borel probability measure
νN on C such that ∫

C
f dνN =

∫
Mnor
N

(tr ◦ fN ) dρN , f ∈ Cc(C). (2.18)

Comparing to (1.17), this Riesz measure νN is the mean of the empirical law ν̃N (1.15). In particular, if ν is a
(deterministic) measure such that ν̃N ⇀ ν weakly in probability, then we must have νN ⇀ ν weakly.

Remark 2.9. In the special case that supp (ρN ) is compact, the Weierstrass approximation theorem shows that
(2.18) is equivalent to equating the moments of νN with the trace moments of ρN :∫

C
xnx̄m νN (dx) =

∫
Mnor
N

tr(Xn(X∗)m) ρN (dX). (2.19)

In our first case of interest where ρNt is the heat kernel on the compact group UN , this amounts to defining νNt
by its integrals against Laurent polynomials; cf. Section 2.4.

If supp (ρN ) is not contained in Mnor
N , measurable functional calculus is not available. Instead, we can con-

sider holomorphic test functions. In the case of interest (the heat kernel µNs,t on GLN ), all empirical eigenvalues
are in C∗, so we take f ∈ Hol(C∗); for simplicity, we assume the Laurent series f(z) =

∑∞
n=−∞ anz

n converges
on all of C∗. (This is not necessary, but it simplifies matters and suffices for our purposes.) Then the series

fN (Z) ≡
∞∑

n=−∞
anZ

n, (2.20)

where we interpret the n = 0 term as a0IN , converges for any Z ∈ GLN . The map f 7→ fN is called
holomorphic functional calculus. We use the same notation as for functional calculus, and this is consistent: if
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Z is normal and f is holomorphic as above, then the Laurent series (2.20) coincides with the functional calculus
map of (2.17).

Since there are no non-constant positive holomorphic functions, no integration formula like (2.18) can be used
to define an “expected empirical eigenvalue law” in this case. There may or may not exist such a measure νN

on C; if it does exist, it will not be uniquely determined by (2.18). In general, there is just too much information
in the trace (noncommutative) moments of a non-normally supported measure ρN to be captured by a single
measure on C. Instead, we need the notion of a noncommutative distribution.

2.4 Noncommutative Distributions

Definition 2.10. Let A be a unital complex ∗-algebra. A tracial state τ : A → C is a linear functional that
is unital (τ(1) = 1), tracial (τ(ab) = τ(ba) for a, b ∈ A ), and positive semidefinite (τ(aa∗) ≥ 0 for all
a ∈ A ). If, in addition, τ(aa∗) 6= 0 for a 6= 0, τ is called faithful. The pair (A , τ) is called a (faithful, tracial)
noncommutative probability space. If A is a C∗-algebra, we refer to (A , τ) as a C∗-probability space; if A ∗

is a W ∗-algebra (i.e. von Neumann algebra), we refer to (A , τ) as a W ∗-probability space.

If (Ω,F ) is a probability space and P is a probability measure on (Ω,F ), the expectation E =
∫
· dP is a

faithful tracial state on the algebra L∞(Ω,F ,P) of complex-valued random variables (where F ∗ = F ); thus the
probability space terminology. Truly noncommutative examples are afforded by MN equipped with tr, which is
a faithful tracial state. It is these examples that will be most relevant to us.

In the example L∞(Ω,F ,P), any random variable F ∈ L∞ has a probability distribution µF (on C if the
random variables are C-valued), which is the push-forward µF (B) =

(
F∗(P)

)
(B) = P(F−1(B)) for Borel sets

B ⊆ C. In terms of the expectation, this can be written as∫
f dµF = E(f(F )), f ∈ Cc(C). (2.21)

If (A , τ) is a W ∗-probability space, any measurable f : C → C induces (by the spectral theorem) a function
fA : A nor → A nor as in (2.17); here A nor refers to the normal operators in A . The map f 7→ fA is the mea-
surable functional calculus. We then define the distribution µa of a ∈ A nor to be the unique Borel probability
measure on C mimicking (2.21): ∫

C
f dµa = τ(fA (a)), f ∈ Cc(C). (2.22)

Indeed, (2.22) determines µa for f ∈ C(σ(a)), as the spectrum σ(a) is compact (since a ∈ A is a bounded
operator). Therefore, as in (2.19), in (2.22) we need only use test functions of the form f(x) = xnx̄m, n,m ∈ N,
so that fA (a) = an(a∗)m. Hence, in this case, µa is equivalently determined by all moments, through the
formula ∫

C
xnx̄m µa(dx) = τ(an(a∗)m), n,m ∈ N. (2.23)

Remark 2.11. In the special case (A , τ) = (MN , tr), the distribution of a normal matrix is precisely its empirical
eigenvalue law; cf. (1.16).

If a is a non-normal operator in (A , τ), it may or may not be the case that there is a measure µa on C satisfying
(2.23). Even if there is, these moments do not determine all other moments τ

(
an1(a∗)m1 · · · ank(a∗)mk

)
. We

therefore define this collection of moments to be the noncommutative distribution of a. In the spirit of the Riesz
theorem identifying measures as linear functionals, this can be formulated as follows.

Definition 2.12. Let C〈A,A−1, A∗, A−∗〉 denote the algebra of noncommutative Laurent polynomials in two
variables A and A∗; in other words, C〈A,A−1, A∗, A−∗〉 ∼= CF2 is the complex group algebra of the free group

11



on two generatorsA,A∗. Let C〈A,A∗〉 denote the subalgebra of noncommutative polynomials in two variables
A,A∗; in other words, C〈A,A∗〉 ∼= CF+

2 is the group algebra over the free semigroup F+
2 generated by A,A∗.

If (A , τ) is a noncommutative probability space and a ∈ A , the noncommutative distribution of a is the
linear functional ϕa : C〈A,A∗〉 → C defined by

ϕa(f) = τ [f(a, a∗)] , f ∈ C〈A,A∗〉 (2.24)

for any element f = f(A,A∗). If a is invertible in A , then ϕa extends uniquely to a linear functional on
C〈A,A−1, A∗, A−∗〉 by (2.24).

Notation 2.13. For n ∈ N, let En denote the set of all n-tuples ε ∈ {±1,±∗}n, and let E +
n be the subset {1, ∗}n.

(E0 = ∅ .) For ε ∈ En, denote |ε| = n. Set E =
⋃
n En, and E + =

⋃
n E +

n .
Given a ∗-algebra A , for a ∈ A and ε ∈ E +, denote aε = aε1aε2 · · · aεn where n = |ε|. Then C〈A,A∗〉

can be described explicitly as
C〈A,A∗〉 = spanC

{
Aε : ε ∈ E +

}
.

The vectors Aε form a basis for this C-space. The algebra structure is given by concatenation in E +: Aε ·Aδ =
Aεδ where, if ε ∈ E +

n and δ ∈ E +
m , then εδ = (ε1, . . . , εn, δ1, . . . , δm) ∈ E +

n+m.
The algebra C〈A,A−1, A∗, A−∗〉 is similarly equal to the C-span of Aε for ε ∈ E , with product defined by

concatenation; but in this case these words are no longer linearly independent (for example A∗AA−1 = A∗). A
basis for C〈A,A−1, A∗, A−∗〉 consists of reduced words Aε in the sense of free groups.

Thus, the noncommutative distribution of a ∈ (A , τ) can equivalently be described as the linear functional
ϕa : C〈A,A∗〉 → C defined by

ϕa(A
ε) = τ(aε), ε ∈ E +. (2.25)

If a is invertible in A , this extends by the same formula to a linear functional on C〈A,A−1, A∗, A−∗〉 (due to the
universal property of free groups).

If a is normal, then for any ε ∈ E +, aε = an(a∗)m where n is the number of 1s and m is the number of
∗s in ε. Hence, in this case, ϕa is completely determined by the measure µa of (2.23). Thus ϕa generalizes the
classical notion of distribution of a random variable.

We will work largely with the noncommutative probability spaces (MN , tr), often with randomness involved.

Definition 2.14. Let ρN be a probability measure on MN , such that all polynomial functions of the matrix entries
are in L1(ρN ); this condition holds for the heat kernel measures µNs,t on GLN by Remark 2.5(2). The associated
empirical noncommutative distribution ϕ̃N is defined to be the Hom(C〈A,A∗〉;C)-valued random variable
on the probability space (MN , ρ

N ) given by

ϕ̃N (Z) = ϕZ with respect to the noncommutative probability space (MN , tr). (2.26)

That is:
(
ϕ̃N (Z)

)
(Aε) = tr(Zε) for ε ∈ E +. If ρN is supported on GLN , then ϕ̃N extends to a random linear

functional on C〈A,A−1, A∗, A−∗〉. The expectation E(ϕ̃N ) is defined to be the linear functional on C〈A,A∗〉
given by

E
(
ϕ̃N
)

(f) =

∫
MN

ϕZ(f) ρN (dZ), f ∈ C〈A,A∗〉. (2.27)

Equations (2.26) and (2.27) are natural generalization of (1.16) and (1.17). The polynomial-integrability
condition we placed on ρN guarantees that (2.27) is a well-defined linear functional; moreover, E(ϕ̃N ) is the
noncommutative distribution of some random variable. Indeed, we can construct this random variable in the
algebra C〈A,A∗〉 itself. Define the linear functional τρN on C〈A,A∗〉 to verify (2.27):

τρN (f) =

∫
MN

ϕZ(f) ρN (dZ) =

∫
MN

tr[f(Z,Z∗)] ρN (dZ).
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The linear functional τρN is easily verified to be a tracial state, so (A , τρN ) is a noncommutative probability
space; cf. Definition 2.10. It is faithful provided supp (ρN ) is infinite. Let a ∈ C〈A,A∗〉 denote the coordinate
random variable a(A,A∗) = A; then its noncommutative distribution ϕa with respect to (C〈A,A∗〉, τρN ) is, by
(2.25) and (2.27),

ϕa(A
ε) = τρN (a(A)ε) = τρN (Aε) =

∫
MN

tr(Zε) ρN (dZ) = E
(
ϕ̃N
)

(Aε), ε ∈ E +.

Thus, E(ϕ̃N ) defines a (deterministic) noncommutative distribution which we call the mean of ϕ̃N .

Definition 2.15. Let ϕN be a sequence of noncommutative distributions; that is, there are noncommutative
probability spaces (AN , τN ) with some distinguished elements aN ∈ AN so that ϕN = ϕaN over AN . We say
that ϕN converges weakly (or converges in distribution) if there is a noncommutative distribution ϕ so that
ϕN (f) → ϕ(f) for all f ∈ C〈A,A∗〉. That is: there exists a noncommutative probability space (A , τ) with a
distinguished element a ∈ A so that ϕ = ϕa, such that ϕaN (f)→ ϕa(f) for all f ∈ C〈A,A∗〉.

Thus, Theorem 1.7 asserts that, in the case ρN = µNs,t, the mean empirical noncommutative distribution ϕNs,t =

E(ϕ̃Ns,t) converges weakly, and moreover the empirical distribution converges weakly almost surely to the limit.
As these distributions are supported on invertible operators, the weak convergence statements hold on the larger
class of “test functions” f ∈ C〈A,A−1, A∗, A−∗〉.

We now introduce extensions of C〈A,A∗〉 and C〈A,A−1, A∗, A−∗〉 that deserve to be called the universal
enveloping algebras of these spaces. The reader is also directed to [16, Section 3.4].

Notation 2.16. With E and E + as in Notation 2.13, define

P = C[{vε}ε∈E ] and P+ = C[{vε}ε∈E + ] ⊂P, (2.28)

the spaces of polynomials in the (commuting) indeterminates vε. Elements of these spaces are generally denoted
P,Q,R; when emphasizing their variables, we write P (v) = P ({vε}). For shorthand, we denote

vk = vε(k), k ∈ Z \ {0}, (2.29)

where ε(k) = (

k︷ ︸︸ ︷
1, . . . , 1) for k > 0 and ε(k) = (

|k|︷ ︸︸ ︷
−1, . . . ,−1) for k < 0. Set v0 ≡ 1. Define the subalgebra

HP ⊂P as follows:
HP = C[{vk}k∈Z\{0}]. (2.30)

Remark 2.17. In [16], P was referred to as W , while HP was simply denoted C[v].

We may naturally identify C〈A,A∗〉 as a linear subspace of P+, via the linear map

Υ: C〈A,A∗〉 →P+ defined by Υ(Aε) = vε, ε ∈ E +. (2.31)

This is a complex vector space isomorphism from C〈A,A∗〉 onto spanC{vε : ε ∈ E +}, the space of linear
polynomials in P+. A similar identification could be made for C〈A,A−1, A∗, A−∗〉 in P , although for the
inclusion to be well-defined and one-to-one we must restrict ε ∈ E to reduced words in the sense of F2; then
Υ(C〈A,A−1, A∗, A−∗〉) is a strict subset of the linear polynomials in P . Thus, if ϕ is a linear functional on
C〈A,A∗〉, it extends uniquely to a homomorphism P+ → C; in this sense, P+ is the universal enveloping
algebra of C〈A,A∗〉. This will be useful in Section 3.1, and so we record this new role for ϕa in the following
notation.
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Notation 2.18. Let (A , τ) be a noncommutative probability space. Let ε ∈ E +, and define Vε : A → C by
Vε = ϕ(·)(A

ε):
Vε(a) = τ(aε) = τ(aε1aε2 · · · aεn), (2.32)

where n = |ε|. Let A inv denote the group of invertible elements in A . Then Vε : A inv → C is well-defined for
any ε ∈ E by (2.32), setting a+∗ ≡ a∗ and a−∗ ≡ (a∗)−1 = (a−1)∗.

Remark 2.19. Strictly speaking, we should denote Vε = V
(A ,τ)
ε since this symbol represents different functions

on different noncommutative probability spaces. We will usually suppress this indexing, which will always be
clear from context.

2.5 Free Probability

Definition 2.20. Let (A , τ) be a noncommutative probability space. Unital ∗-subalgebras A1, . . . ,Am ⊂ A
are called free with respect to τ if, given any n ∈ N and k1, . . . , kn ∈ {1, . . . ,m} such that kj−1 6= kj for
1 < j ≤ n, and any elements aj ∈ Akj with τ(aj) = 0 for 1 ≤ j ≤ n, it follows that τ(a1 · · · an) = 0.
Random variables a1, . . . , am are said to be freely independent if the unital ∗-algebras Aj = 〈aj , a∗j 〉 ⊂ A
they generate are free.

Free independence is a ∗-moment factorization property. By centering aj − τ(aj)1A ∈ Aj , the freeness
rule allows (inductively) any moment τ(aε1k1 · · · a

εn
kn

) to be decomposed as a polynomial in moments τ(aεj) in the
variables separately. In terms of Definition 2.12 (which can be extended naturally to the multivariate case, see
[31, Lecture 4]), if a1, . . . , am are freely independent then their joint noncommutative distribution ϕa1,...,an is
determined (computationally effectively) by the individual noncommutative distributions ϕa1 , . . . , ϕam .

If A is a W ∗-algebra and a ∈ A is normal, then ϕa is completely described by a compactly-supported
measure µa on C; cf. (2.22). Thus, if u, v ∈ A are freely independent unitary operators, uv is also unitary, and
the distributions µu, µv, and µuv are supported on U. Since µuv is determined by ϕu,v which, by freeness, is
determined by µu and µv, there is a well-defined operation, free multiplicative convolution �, on probability
measures on U such that µuv = µu � µv. Similarly, if x, y ∈ A are positive definite, the distribution ϕxy of
their product is determined by the measures µx and µy supported in R+. Although xy is not necessarily normal,
it is easy to check that it has the same moments as the positive definite operators

√
xy
√
x and

√
yx
√
y. So if

we define x � y =
√
xy
√
x, then there is a well-defined operation � on probability measures on R+ such that

µx�y = µx � µy; this is also called free multiplicative convolution. In both frameworks, it can be described
succinctly in terms of the Σ-transform.

Definition 2.21. Let µ be a probability measure on C. Define the function

ψµ(z) =

∫
C

ζz

1− ζz
µ(dζ),

1

z
/∈ suppµ,

which is analytic on its domain. If µ is supported in U, it is customary to restrict ψµ to the unit disk D; if µ is
supported in R, it is customary to restrict ψµ to the upper half-plane C+. Define ηµ(z) = ψµ(z)/(1 + ψµ(z)).
This function is one-to-one on a neighborhood of 0 if suppµ ⊂ U (and the first moment of µ is non-zero); it is
one-to-one on the right-half plane iC+ if suppµ ⊂ R+; cf. [8]. The Σ-transform Σµ is the analytic function

Σµ(z) =
η−1
µ (z)

z
, (2.33)

for z in a neighborhood of 0 in the U-case and for z ∈ ηµ(iC+) in the R+-case.
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The Σ-transform is a �-homomorphism: as shown in [7, 36],

Σµ�ν(z) = Σµ(z)Σν(z) (2.34)

for any probability measures µ, ν both supported in U (resp. R+), and any z in a sufficiently small neighborhood
of 0 (resp. open set in ηµ(iC+)).

Theorem 2.22 (Biane, 1997). [9] The measures {νt}t∈R of Definition 1.1 have Σ-transforms

Σνt(z) = e
t
2

1+z
1−z (2.35)

defined and analytic everywhere on C\{1}. Hence, from (2.34), they form a �-group: for s, t ∈ R, νs+t = νs�νt.

Remark 2.23. In terms of the above discussion of free multiplicative convolution, νs � νt only makes sense if
st ≥ 0. If, instead, we take (2.34) as the definition of �, then (2.35) shows the �-group property holds for all
s, t ∈ R.

Equation 2.35 was the starting point for investigation of the measures νt (with t > 0). In [7, Lemmas 6.3 and
7.1], the authors showed that (2.35) defines a measure νt that is an analogue of the Gaussian on R: it is the free
multiplicative convolution power limit of a(n appropriately scaled) two-point measure. Later, in [9, Lemma 1],
Biane showed that these measures have the moments given in (1.2). Using complex analytic techniques, a great
deal of information can be gleaned about these measures. The state of the art is summarized in the following
proposition, where the t > 0 statements were proved in [9], while the t < 0 case follows from results in [5, 6, 7]
and the recent preprint [40].

Proposition 2.24. For t > 0, νt has a continuous density %t with respect to the normalized Haar measure on U.
For 0 < t < 4, its support is the connected arc

supp νt =

{
eiθ : − 1

2

√
t(4− t)− arccos

(
1− t

2

)
≤ θ ≤ 1

2

√
t(4− t) + arccos

(
1− t

2

)}
,

while supp νt = U for t ≥ 4. The density %t is real analytic on the interior of the arc. It is symmetric about 1,
and is determined by %t(eiθ) = <κt(eiθ) where z = κt(e

iθ) is the unique solution (with positive real part) to

z − 1

z + 1
e
t
2
z = eiθ.

For t < 0, νt has a continuous density %t with respect to Lebesgue measure on R+. The support is the
connected interval supp νt = [r−(t), r+(t)] where

r±(t) =
2− t±

√
t(t− 4)

2
e−

1
2

√
t(t−4).

The density %t is real analytic on the interval (r−(t), r+(t)), unimodal with peak at its mean 1; it is determined
by %t(x) = 1

πx=ζt(x) where z = ζt(x) is the unique solution to

z

z − 1
e−t(z−

1
2) = x.

When t > 0, the measure νt is the distribution of the free unitary Brownian motion introduced in [9]. The
(left) free unitary Brownian motion is a stochastic process (ut)t≥0 satisfying ϕut = νt for t ≥ 0 such that the
multiplicative increments ut1 , u

−1
t1
ut2 , . . . , u

−1
tn−1

utn are freely independent and stationary for 0 < t1 < t2 <
· · · < tn < ∞. The process (ut)t≥0 is constructed as the solution of a free stochastic differential equation. Let
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(A , τ) be a noncommutative probability space that contains a free semicircular Brownian motion xt (see [12, 27]
for an introduction to free stochastic calculus). Then ut is defined to be the unique solution to the free SDE

dut = iut dxt −
1

2
ut dt (2.36)

with u0 = 1. This precisely mirrors the matrix SDE satisfied by the Brownian motion on UN (although the proof
that ut is the noncommutative limit of this process does not follow easily from this observation).

For Section 4.2, it will also be useful to consider the free multiplicative Brownian motion, which is nom-
inally the large-N limit of the Brownian motion on GLN . Let (A , τ) be a noncommutative probability space
that contains two freely independent semicircular Brownian motions xt, yt. Then zt = 1√

2
(xt + iyt) is called a

circular Brownian motion. The free multiplicative Brownian motion gt is defined to be the unique solution to
the free SDE

dgt = gt dzt (2.37)

with z0 = 1. Again, this precisely mirrors the matrix SDE satisfied by the Brownian motion on GLN . It was left
as an open problem in [9] whether gt is the limit in noncommutative distribution of the GLN Brownian motion.
Theorem 1.7 is a partial answer to (the (s, t)-generalization of) this question. The recent paper [11] also partially
solves this conjecture in the s = t case. In fact, the full conjecture is solved by the author in the complementary
paper [26].

3 Intertwining Operators and Concentration of Measure

In this section, we summarize the relevant results from the author’s recent joint paper [16], in addition to giving
some estimates of the involved constants.

3.1 The Action of ∆UN and AN
s,t on Trace Polynomials

If Z ∈ GLN , the noncommutative distribution ϕZ (viewed as a homomorphism on P , as in Section 2.4) induces
a family of functions of Z: linear combinations of products of traces tr(Zε

(1)
) · · · tr(Zε(m)

). We call such
functions trace polynomials; cf. Notation 3.2 below. In this section, we will describe the action of the generalized
Laplacian ANs,t (and its special case ∆UN = AN1,0

∣∣
UN

) on trace polynomials. We will rely heavily upon Notation
2.16, as well as the following.

Notation 3.1. Given ε(1), . . . , ε(m) ∈ E , we say that the monomial vε(1) · · · vε(m) has trace degree equal to
|ε(1)| + · · · + |ε(m)|. More generally, given any polynomial P ∈ P , the trace degree of P , denoted deg(P ), is
the highest trace degree among its monomial terms; if all terms have trace degree n, we say the polynomial has
homogeneous trace degree n.

For n ∈ N, let Pn = {P ∈P : deg(P ) ≤ n}. Note that Pn is finite dimensional, Pn ⊂ C[{vε}|ε|≤n], and
P =

⋃
n≥1 Pn. The sets HPn are defined similarly. In particular, HPn ⊂ C[v±1, . . . , v±n], and, in terms of

(2.29), this means
deg(vk11 v

k−1

−1 · · · v
kn
n v

k−n
−n ) =

∑
1≤|j|≤n

|j|kj .

Notation 3.2. Let (MN )E denote the set of functions E →MN . Denote by VN the map GLN → (MN )E given
by

[VN (Z)](ε) = Vε(Z) = tr(Zε), Z ∈ GLN , ε ∈ E .

For P ∈ P , we write P ◦VN for the evaluation of P as a function on GLN . That is: if ε(1), . . . , ε(n) ∈ E are
such that P = P (vε(1) , . . . , vε(n)) is in C[vε(1) , . . . , vε(n) ], then

(P ◦VN )(Z) = P (Vε(1)(Z), . . . , Vε(n)(Z)).
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We refer to any such function as a trace polynomial.

Note: in [16], the trace polynomial P ◦VN was often denoted simply as PN .

Example 3.3. If P (v) = v(1,∗)v(∗) + 2v(∗,−1,1) then deg(P ) = 3, and

(P ◦VN )(Z) = tr(ZZ∗)tr(Z∗) + 2tr(Z∗Z−1Z) = tr(ZZ∗)tr(Z∗) + 2tr(Z∗).

Thus, if we setQ(v) = v(1,∗)v(∗) +2v(∗), then P ◦VN = Q◦VN for allN . That is, the map P 7→ P ◦VN from
P to the space of trace polynomials is not one-to-one for any N . If we restrict this map to HP , cancellations
like this do not occur; nevertheless, the map is still not one-to-one, due to the Cayley-Hamilton theorem, as
explained in [16, Section 2.4]. Nevertheless, restricted to HPn for some n ∈ N, the map is one-to-one for all
sufficiently large N (depending on n).

Remark 3.4. Note that, if P ∈ HP , then the function P ◦VN is holomorphic on GLN . This is the reason we
use the notation HP .

We now introduce two families of polynomials {Q±ε : ε ∈ E } and {R±ε,δ : ε, δ ∈ E } in P that were intro-
duced in [16, Theorem 3.12]. Since we do not need to know all the details about these polynomials, the following
is only as precise as will be needed below (in particular in Proposition 3.18).

Definition 3.5. Let ε ∈ E , and let 1 ≤ j < k ≤ |ε|. Define n±(ε) be the integer from [16, Eq. (3.36)]; in
particular, |n±(ε)| ≤ |ε|, and let {ε`j,k : ` = 0, 1, 2} be the substrings of ε given in [16, Eq. (3.37)]; in particular,
ε = ε0

j,kε
1
j,kε

2
j,k and so |ε0

j,k|+ |ε1
j,k|+ |ε2

j,k| = |ε|. Define

Q±ε (v) = n±(ε)vε + 2
∑

1≤j<k≤n
±vε0j,kε2j,kvε1j,k , (3.1)

where the ± signs inside the sum depend on ε, j, k. For s, t ∈ R, define

Qs,tε =

(
s− t

2

)
Q+
ε +

t

2
Q−ε . (3.2)

Thus, except when (s, t) = (0, 0), Qs,tε is a homogeneous trace degree |ε| polynomial.
Additionally, let δ ∈ E . For 1 ≤ j ≤ |ε| and 1 ≤ k ≤ |δ|, let ε(j) and δ(k) be the cyclic permutations of ε

and δ in [16, Eq. (3.40)]. Define

R±ε,δ(v) =

|ε|∑
j=1

|δ|∑
k=1

±vε(j)δ(k) , (3.3)

where the ± signs inside the sum depend on ε, δ, j, k. For s, t ∈ R, define

Rs,tε,δ =

(
s− t

2

)
R+
ε,δ +

t

2
R−ε,δ. (3.4)

Thus, except when (s, t) = (0, 0), Rs,tε,δ is a homogeneous trace degree |ε|+ |δ| polynomial.

The following intertwining formulas were the core computational tools in [16].

Theorem 3.6 (Intertwining Formulas). [16, Theorems 1.20 & 3.13] Let s, t ∈ R. Define the following differential
operators on P:

Ds,t =
1

2

∑
ε∈E

Qs,tε (v)
∂

∂vε
and Ls,t =

1

2

∑
ε,δ∈E

Rs,tε,δ(v)
∂2

∂vε∂vδ
, (3.5)
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where Qs,tε and Rs,tε,δ are as in Definition 3.5. Then for any P ∈P , we have

1

2
ANs,t(P ◦VN ) = −

[
Ds,tP +

1

N2
Ls,tP

]
◦VN . (3.6)

In the special case (s, t) = (1, 0),

D1,0|HP =
1

2

∑
|k|≥1

|k|vk
∂

∂vk
+

1

2

∞∑
k=2

k

k−1∑
j=1

vjvk−j

 ∂

∂vk
+

k−1∑
j=1

v−jv−(k−j)

 ∂

∂v−k

 , (3.7)

L1,0|HP =
1

2

∑
|j|,|k|≥1

jkvj+k
∂2

∂vj∂vk
. (3.8)

Notation 3.7. For N ≥ 1, we set

DN
s,t = Ds,t +

1

N2
Ls,t. (3.9)

Thus (3.6) asserts that 1
2A

N
s,t(P ◦VN ) = −[DN

s,tP ] ◦VN .

Remark 3.8. (1) In the notation of [16, Definition 1.16], D1,0|HP = N0 +2Z (rewritten here using the trick of
Remark 5.13 in that paper). Note, also, that the terms with j = −k in (3.8) involve v0, which we interpret
as 1.

(2) Since ∆UN = AN1,0
∣∣
UN

, (3.6) shows that

1

2
∆UN (P ◦VN ) = −

[
D1,0P +

1

N2
L1,0P

]
◦VN = −[DN

1,0P ] ◦VN . (3.10)

This is the formal sense in which (1.14) is true. For a trace polynomial (P ◦VN )|UN with P ∈ HP , the
Laplacian can be calculated explicitly using (3.7) and (3.8).

Example 3.9. Consider the trace polynomials f(U) = tr(Un)tr(Um) for U ∈ UN ; for convenience we assume
n,m ≥ 2. Then f = P ◦VN where P (v) = vnvm ∈ HP+. Then (3.7) and (3.8) give

2D1,0(vnvm) = (n+m)vnvm + n
n−1∑
j=1

vjvn−jvm +m
m−1∑
j=1

vjvm−jvn, (3.11)

2L1,0(vnvm) = 2nmvn+m. (3.12)

Note that all terms have homogeneous trace degree n + m, the same as vnvm; this follows from Theorem 3.6.
Thus, (3.10) yields

∆UN (tr(Un)tr(Um)) = −(n+m)tr(Un)tr(Um)− 2nm

N2
tr(Un+m)

− n
n−1∑
j=1

tr(U j)tr(Un−j)tr(Um)−m
m−1∑
j=1

tr(U j)tr(Um−j)tr(Un).

In the special case N = 1, tr(U j) = U j , and so the calculation shows that

∆U1(Un+m) = −(n+m)Un+m − 2nmUn+m − n
n−1∑
j=1

Un+m −m
m∑
j=1

Un+m = −(n+m)2Un+m,

which is consistent with (2.10).
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We record here another intertwining formula (that did not appear in [16]) regarding the complex conjugation
map.

Definition 3.10. Given ε ∈ E , define ε∗ ∈ E by (ε1, . . . , εn)∗ = (ε∗n, . . . , ε
∗
1), where (±1)∗ = ±∗ and (±∗)∗ =

±1. Let C : P → P be the conjugate linear homomorphism defined by C(vε) = vε∗ for all ε ∈ E . Note that,
for any P ∈P and Z ∈ ZN ,

P ◦VN (Z) = (CP ◦VN )(Z). (3.13)

That is: C intertwines complex conjugation. This follows from the fact that tr(Zε) = tr(Zε
∗
). We will often write

C(P ) = P ∗.

Lemma 3.11. The complex conjugation intertwiner C commutes with the operators Ds,t, Ls,t, and hence DN
s,t.

Proof. Fix N ∈ N and let P ∈P and Z ∈ MN . From Remark 2.5(3) and (3.13), together with (3.6) and (3.9),
we have(

e−D
N
s,tCP

)
◦VN (Z) =

(
e

1
2
ANs,t(CP ◦VN )

)
(Z) =

(
e

1
2
ANs,t(P ◦VN )

)
(Z) = C

(
e−D

N
s,tP ) ◦VN (Z).

This shows that (
[C, e−D

N
s,t ]P

)
(Z) = 0, N ∈ N, Z ∈ GLN .

It follows from [16, Theorem 2.10] (asymptotic uniqueness of trace polynomial representations) that the poly-
nomial [C, e−D

N
s,t ]P = 0. Scaling (s, t) 7→ (αs, αt) and differentiating with respect to α at α = 0 shows that

[C,DN
s,t]P = 0. As this holds for each N , sending N → ∞ (using continuity of all involved maps on the finite

dimensional DN
s,t-invariant subspace of polynomials with trace degree ≤ deg(P )) shows that [C,Ds,t]P = 0,

and it then follows that [C,Ls,t]P = 0. Since these hold for all P ∈P , the lemma is proved.

Remark 3.12. It is possible to prove Lemma 3.11 with direct computation from the definitions (3.5) of the
intertwining operators Ds,t and Ls,t; the proof we’ve given is much shorter.

As noted in Example 3.9, the operators Ds,t and Ls,t in Theorem 3.6 preserve trace degree (so long as
(s, t) 6= (0, 0)). Hence, so do the operators DN

s,t which intertwine −1
2A

N
s,t. In particular, this means that,

for each n ∈ N, Pn is an invariant subspace for DN
s,t; equivalently, by (3.6), the finite dimensional subspace

Pn ◦VN of trace polynomials “of trace degree ≤ n” is an invariant subspace for ANs,t. (Note: from the second
term in P in Example 3.3, we see that trace degree is not well-defined for trace polynomial functions, only for
their intertwining polynomials. However, the subspace Pn ◦VN is a well-defined, finite dimensional invariant
subspace for ANs,t.)

Let n ∈ N. The restriction DN
s,t

∣∣
Pn

is a finite dimensional operator, and so can be exponentiated in the usual
manner. Similar considerations applied to ANs,t

∣∣
Pn◦VN

, together with (3.6), show that

e
1
2
ANs,t(P ◦VN ) =

(
e−D

N
s,tP

)
◦VN , P ∈P, (3.14)

where the restrictions are done with n = deg(P ). Combining this with (2.8) shows that, for s, t > 0 with
s > t/2,

EµNs,t(P ◦VN ) =
(
e−D

N
s,tP

)
(1), (3.15)

where by P (1) we mean the complex number given by setting all vε = 1 in P (v). Analogous considerations
from (2.7) and (3.10) show that, for t > 0,

EρNt (P ◦VN ) =
(
e−D

N
t,0P

)
(1). (3.16)
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3.2 Concentration of Heat Kernel Measure

The expectation-intertwining formulas (3.16) and (3.15) show there is O(1/N2)-concentration of the UN or
GLN heat kernel measure’s mass. The following lemma makes this precise. It is a version of [16, Lemma 4.1];
we expand on the statement and proof here to give some quantitative estimates (cf. Proposition 3.18).

Lemma 3.13. Let V be a finite dimensional normed C-space. For parameters s, t ∈ R, let Ds,t and Ls,t be
two operators on V that depend continuously on s and t. Then there exists a constant C(s, t) < ∞, depending
continuously on (s, t) ∈ R2, such that, for any linear functional ψ : V → C,∣∣ψ(eDs,t+εLs,tx)− ψ(eDs,tx)

∣∣ ≤ C(s, t)‖x‖V ‖ψ‖V ∗ |ε|, x ∈ V, |ε| ≤ 1. (3.17)

Note that the constant C(s, t) also depends on the norm ‖ · ‖V .

Proof. We follow our proof in [16, Lemma 4.1]. For the moment, write D = Ds,t and L = Ls,t. Using the well
known differential of the exponential map (see for example [17, Theorem 1.5.3, p. 23] or [25, Theorem 3.5, p.
70]),

d

du
eD+uL = eD+uL

∫ 1

0
e−v(D+uL)Lev(D+uL)dv

=

∫ 1

0
e(1−v)(D+uL)Lev(D+uL)dv,

we may write

eD+εL − eD =

∫ ε

0

d

du
eD+uLdu =

∫ ε

0

[∫ 1

0
e(1−v)(D+uL)Lev(D+uL)dv

]
du.

Crude bounds now show∥∥eD+εL − eD
∥∥

End(V )
≤
∫ |ε|

0

[∫ 1

0

∥∥∥e(1−v)(D+uL)Lev(D+uL)
∥∥∥

End(V )
dv

]
du, (3.18)

where ‖ · ‖End(V ) is the operator norm induced by ‖ · ‖V . Now, set

C(s, t) = sup
0≤u≤|ε|
0≤v≤1

∥∥∥e(1−v)(Ds,t+uLs,t)Ls,te
v(Ds,t+uLs,t)

∥∥∥
End(V )

. (3.19)

(This constant nominally depends on ε, but we can take ε = 1 here to provide a uniform bound.) The func-
tion (u, v, s, t) 7→ e(1−v)(Ds,t+uLs,t)Ls,te

v(Ds,t+uLs,t) is continuous, and hence C(s, t) is a continuous in (s, t).
Equations (3.18) and (3.19) show that ∥∥eD+εL − eD

∥∥
End(V )

≤ C(s, t)|ε|; (3.20)

and (3.17) follows immediately from (3.20).

Since ψ(P ) = P (1) defines a linear functional on Pn for each n, (3.16), (3.15), and Lemma 3.13 immedi-
ately yield the following.

Corollary 3.14. For s, t ∈ R and P ∈P , there is a constant C(s, t, P ) <∞, continuous in (s, t) ∈ R2, so that∣∣∣(e−DNs,tP )(1)−
(
e−Ds,tP

)
(1)
∣∣∣ ≤ 1

N2
· C(s, t, P ). (3.21)
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Proof. Let n = degP , and choose any norm ‖ · ‖Pn on the finite dimensional space Pn; then C(s, t, P ) can
be taken to equal C(s, t)‖ψ‖∗Pn

‖P‖Pn where ψ(P ) = P (1) and the constant C(s, t) is from (3.19) with the
operators Ds,t = − Ds,t|Pn

and Ls,t = − Ls,t|Pn
.

Corollary 3.14 (in the special case (s, t) 7→ (t, 0)) shows that the large-N limit of the heat kernel expectation
EρNt of any trace polynomial is given by the flow operator e−Dt,0 ; in this sense, D1,0 is the generator of the limit
heat kernel (and hence of the free unitary Brownian motion). In particular, taking P = vn so that (P ◦VN )(U) =
tr(Un), (3.16) and (3.21) show that(

e−Dt,0vk
)
(1) = lim

N→∞

∫
UN

tr(Un) ρNt (dU) = νk(t) (3.22)

are the moments of νt; cf. Definition 1.1. Since Dt,0 is a first-order differential operator, the operator e−Dt,0 is an
algebra homomorphism, and since the evaluation-at-1-map is also a homomorphism, the complete description of
the semigroup acting on HP is given by(

e−Dt,0(vk11 v
k−1

−1 · · · v
kn
n v

k−n
−n )

)
(1) = ν1(t)k1ν−1(t)k−1 · · · νn(t)knν−n(t)k−n . (3.23)

This simplifies further, since ν−m(t) = νm(t) for all m.

3.3 Estimates on the Constants C(s, t, P )

Corollary 3.14 suffices to prove weak a.s. convergence of distributions when using (Laurent) polynomial test
functions; in particular, this will suffice to prove Theorem 1.7. To extend this convergence to a larger class of test
functions, as in Theorems 1.2–1.5, we will need some quantitative information about the constants C(s, t, P ) in
(3.21). To prove such estimates, we begin by introducing a norm on P that will be used throughout the remainder
of this section.

Definition 3.15. Let ‖ · ‖1 denote the `1-norm on P . Precisely: let NE
0 denote the set of functions k : E → N

that are finitely-supported. For k ∈ NE
0 , define vk to be the monomial

vk =
∏

ε∈suppk

vk(ε)
ε .

Any P ∈P has a unique representation of the form

P (v) =
∑
k∈NE

0

akv
k (3.24)

for some coefficients ak ∈ C that are 0 for all but finitely-many k. Then we define

‖P‖1 =
∑
k∈Nk

0

|ak|. (3.25)

The uniqueness of the representation (3.24) of P shows that ‖ · ‖1 is well-defined on P , and it is easily verified
to be a norm.

We will use the norm ‖ · ‖1 of (3.25) to provide concrete bounds on C(s, t, P ) for P ∈Pn; this will suffice
to prove Theorems 1.3 and 1.5 (as well as a weaker version of Theorem 1.2, with ultra-analytic test functions).
We remind the reader of the following lemma: the operator norm on matrices induced by the `1-norm on vectors
is bounded by the maximal column sum of the matrix.
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Lemma 3.16. Let V be a finite dimensional vector space, and let e1, . . . , ed ∈ V be a basis. Let ‖ · ‖1 de-
note the norm ‖a1e1 + · · · + aded‖1 = |a1| + · · · + |ad| on V . Then for A ∈ End(V ), the operator norm
‖A‖1→1 = sup

‖w‖1=1
‖Aw‖1 is bounded by

‖A‖1→1 ≤ max
1≤j≤d

‖A(ej)‖1. (3.26)

Proof. Letting w = a1e1 + · · ·+ aded, compute

‖Aw‖1 = ‖a1A(e1) + · · ·+ adA(ed)‖1 ≤
d∑

k=1

|ak|‖A(ek)‖1 ≤ max
1≤j≤d

‖A(ej)‖1
d∑

k=1

|ak|,

and since
∑d

k=1 |ak| = ‖w‖1, this proves the result.

Remark 3.17. If we represent a vector in V in a non-unique way, for example v = a1e1 + a2e2 + b1e1 =
(a1 + b1)e1 + a2e2, note that ‖v‖1 = |a1 + b1| + |a2| ≤ |a1| + |b1| + |a2|; thus, if we use such a redundant
representation for a vector when “computing” the ‖ · ‖1-norm, we will always get an upper bound. This will be
relevant in the proof of Proposition 3.18 below, where it will be challenging to detect repeated occurrences of
basis vectors.

We now prove a quantitative bound for the constants C(s, t, P ) for any P ∈P .

Proposition 3.18. Let s, t ∈ R, let n ∈ N, and let P ∈Pn. Define r = |s− t
2 |+

1
2 |t|. Then for all N ≥ 1,∣∣∣(e−DNs,tP )(1)−

(
e−Ds,tP

)
(1)
∣∣∣ ≤ 1

N2
· r

2
n2e

r
2
n2

(
1+ 1

N2

)
‖P‖1. (3.27)

Proof. Let V = Pn equipped with the norm ‖ · ‖1 of (3.25), let ψ(P ) = P (1), and set D = −Ds,t and
L = −Ls,t. Then Lemma 3.13 shows that∣∣∣(e−DNs,tP )(1)−

(
e−Ds,tP

)
(1)
∣∣∣ =

∣∣∣ψ(eD+ 1
N2LP )− ψ(eDP )

∣∣∣ ≤ 1

N2
C‖ψ‖∗1‖P‖1, (3.28)

where
C = sup

0≤u≤1/N2

0≤v≤1

∥∥∥e(1−v)(D+uL)Lev(D+uL)
∥∥∥

1→1
. (3.29)

Note that, for P (v) =
∑

k akv
k as in (3.24),

|ψ(P )| = |P (1)| =
∣∣∣∑

k

ak

∣∣∣ ≤ ‖P‖1, and therefore ‖ψ‖∗1 ≤ 1. (3.30)

Hence, to prove the proposition, it suffices to show that (3.29) is bounded by s
2n

2e
s
2
n2(1+1/N2).

Since the operator norm ‖ · ‖1→1 is submultiplicative, for 0 ≤ u, v ≤ 1 we can estimate∥∥∥e(1−v)(D+uL)Lev(D+uL)
∥∥∥

1→1
≤
∥∥∥e(1−v)(D+uL)

∥∥∥
1→1
·
∥∥∥ev(D+uL)

∥∥∥
1→1
· ‖L‖1→1

≤ e(1−v)(‖D‖1→1+u‖L‖1→1) · ev(‖D‖1→1+u‖L‖1→1) · ‖L‖1→1

= e‖D‖1→1 · eu‖L‖1→1 · ‖L‖1→1

where the second line follows from expanding the power series of the exponentials and repeatedly using the
triangle inequality and submultiplicativity of the norm ‖·‖1→1. Hence, taking the supremum over 0 ≤ u ≤ 1/N2,
we have

C ≤ e‖D‖1→1 · e
1
N2 ‖L‖1→1 · ‖L‖1→1. (3.31)
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It behooves us to estimate ‖L‖1→1 and ‖D‖1→1; we do this using Lemma 3.16.
The basis of Pn defining the norm ‖ · ‖1 is the set of monomials in Pn; that is, using the notation of

Definition 3.15, the basis is

Bn = {vk : deg(vk) ≤ n} = {vk :
∑
ε∈E

|k(ε)||ε| ≤ n}.

We must therefore estimate the ‖ · ‖1-norm of the images of D = −Ds,t and L = −Ls,t on these basis vectors.
So, fix a finitely-supported function k : E → N. Then for any ε ∈ E , we have

∂

∂vε
vk = k(ε)

vk

vε
, where

vk

vε
∈ Bn.

(I.e. we write ∂
∂vv

k = kvk−1 = kvk/v to simplify notation.) Thus, from (3.1), we have

∑
ε∈E

Q±ε (v)
∂

∂vε
vk =

∑
ε∈E

k(ε)

n±(ε)vk + 2
∑

1≤j<k≤|ε|

±
vε0j,kε

2
j,k
vε1j,k

vε
vk

 .
(This is a finite sum: k(ε) = 0 for all but finitely-many ε ∈ E .) Thus, from (3.2) and (3.5), we have

Ds,t(v
k) =

1

2

∑
ε∈E

k(ε)

[(
s− t

2

)
n+(ε) +

t

2
n−(ε)

]
· vk

+
∑
ε∈E

k(ε)
∑

1≤j<k≤|ε|

[(
s− t

2

)
(±1) +

t

2
(±)

] vε0j,kε2j,kvε1j,k
vε

vk.

All of the vectors vk and vε0j,kε2j,kvε1j,kv
k/vε in the above sum are basis vectors in Bn. They may not be distinct,

but by Remark 3.17 we can compute an upper bound for the norm by simply summing the absolute values of the
coefficients:

‖Ds,t(v
k)‖1 ≤

1

2

∑
ε∈E

k(ε)

∣∣∣∣(s− t

2

)
n+(ε) +

t

2
n−(ε)

∣∣∣∣
+
∑
ε∈E

k(ε)
∑

1≤j<k≤|ε|

∣∣∣∣(s− t

2

)
(±1) +

t

2
(±)

∣∣∣∣ .
We can estimate the internal terms as follows: since |n±(ε)| ≤ |ε| (cf. Definition 3.5),∣∣∣∣(s− t

2

)
n+(ε) +

t

2
n−(ε)

∣∣∣∣ ≤ ∣∣∣∣s− t

2

∣∣∣∣ |n+(ε)|+ 1

2
|t||n−(ε)| ≤ r|ε|

and similarly the term inside the double sum is ≤ r. Hence, we have

‖Ds,t(v
k)‖1 ≤

r

2

∑
ε∈E

|ε|k(ε) + r
∑
ε∈E

k(ε)
|ε|(|ε| − 1)

2
. (3.32)

Since vk ∈ Bn, we have
∑

ε∈E |ε|k(ε) ≤ n, and so too |ε| ≤ n for any nonzero term in the sum. Thus, (3.32)
yields

‖D‖1→1 ≤ max
vk∈Bn

‖ −Ds,t(v
k)‖1 ≤

r

2
n+

r

2
(n− 1)n =

r

2
n2. (3.33)
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Turning now to L = −Ls,t, we have

∂2

∂vε∂vδ
vk =

{
k(ε)k(δ)vk/vεvδ, ε 6= δ,

k(ε)(k(ε)− 1)vk/v2
ε , ε = δ.

Thus, from (3.3) we have

∑
ε,δ∈E

R±ε,δ(v)
∂2

∂vε∂vδ
vk =

∑
ε∈E

k(ε)(k(ε)− 1)

|ε|∑
j,k=1

±vε(j)ε(k)
vk

v2
ε

+
∑
ε 6=δ∈E

k(ε)k(δ)

|ε|∑
j=1

|δ|∑
k=1

±vε(j)δ(k)
vk

vεvδ

and so, from (3.4) and (3.5),

Ls,t(v
k) =

1

2

∑
ε∈E

k(ε)(k(ε)− 1)

|ε|∑
j,k=1

[(
s− t

2

)
(±) +

t

2
(±)

]
vε(j)ε(k)

vk

v2
ε

+
1

2

∑
ε6=δ∈E

k(ε)k(δ)

|ε|∑
j=1

|δ|∑
k=1

[(
s− t

2

)
(±) +

t

2
(±)

]
vε(j)δ(k)

vk

vεvδ
.

As above, it follows that

‖Ls,t(vk)‖1 ≤
r

2

∑
ε∈E

k(ε)(k(ε)− 1) · |ε|2 +
r

2

∑
ε 6=δ∈E

k(ε)k(δ)|ε||δ|

≤ r

2

∑
ε∈E

k(ε)2|ε|2 +
r

2

∑
ε6=δ∈E

k(ε)k(δ)|ε||δ|

=
r

2

∑
ε,δ∈E

k(ε)k(δ)|ε||δ| = r

2

(∑
ε∈E

k(ε)|ε|

)2

≤ r

2
n2. (3.34)

As this holds for all v ∈ Bn, we therefore have

‖L‖1→1 = max
vk∈Bn

‖ − Ls,t(v
k)‖1 ≤

r

2
n2. (3.35)

Combining (3.31) with (3.33) and (3.35) proves the result.

When s, t > 0 and s > t/2, r = (s− t
2) + t

2 = s. Proposition 3.18 then shows that the constant C(s, t, P )
in Corollary 3.14 can be bounded by

C(s, t, P ) ≤ s

2
(deg(P ))2es(deg(P ))2‖P‖1, P ∈P (3.36)

by using 1/N2 ≤ 1. We can do better than this if we take N sufficiently large.

Corollary 3.19. Let s, t ∈ R, and set r = |s − t
2 | +

1
2 |t|. Let δ > 0, n,N ∈ N, and P ∈ Pn. If N >

√
2/δ,

then ∣∣∣(e−DNs,tP )(1)−
(
e−Ds,tP

)
(1)
∣∣∣ ≤ 1

N2
· 1

δ
e
r
2

(1+δ)n2‖P‖1. (3.37)

Proof. When N >
√

2/δ, we have 1 + 1/N2 < 1 + δ/2, and so

r

2
n2e

r
2
n2

(
1+ 1

N2

)
≤ r

2
n2e−

r
4
δn2
e
r
2

(1+δ)n2
. (3.38)

Elementary calculus shows that the function x 7→ xe−δx/2 is maximized at x = 2/δ, and takes value 2/eδ < 1/δ
there. Substituting x = r

2n
2 in (3.38), the result now follows from (3.27).
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That being said, the author does not believe the estimate (3.37) on the constant C(s, t, P ) in (3.21) is any-
where close to optimal: the above proofs involved fairly blunt estimates that ignored many potential cancellations.
Indeed, if we work explicitly in the case N = 1, for any linear polynomial HP 3 P =

∑n
k=−n akvk, (2.12)

shows that (
e−D

1
t,0P

)
(1) =

(
e
t
2

∆U1

(
n∑

k=−n
akU

k

))∣∣∣∣∣
U=I1

=
n∑

k=−n
ake
− t

2
k2

while (3.22) shows that (
e−Dt,0P

)
(1) =

n∑
k=−n

akνk(t).

Thus, we have ∣∣∣(e−D1
t,0P

)
(1)−

(
e−Dt,0P

)
(1)
∣∣∣ ≤ n∑

k=−n
|e−

t
2
k2 − νk(t)||ak| ≤ 2‖P‖1 (3.39)

since 0 < e−
t
2
k2 ≤ 1 and |νk(t)| ≤ 1 (as it is a moment of a probability measure on U). On U1, every trace

polynomial reduces to a polynomial in U which intertwines with a linear polynomial (since tr(Uk) = Uk for
U ∈ U1). This reduction process can only increase the ‖ · ‖1-norm; cf. Remark 3.17. Thus, (3.39) shows that,
in the special case N = 1, there is a uniform bound (uniform in n and t) for the concentration of expectations
of polynomials in Pn. It does not follow easily, unfortunately, that C(t, 0, P ) is uniformly bounded in the UN
case; but the author strongly suspects this is so. We leave the investigation of the precise behavior of the constants
C(s, t, P ) to a future publication.

4 Convergence of Empirical Distributions

This section is devoted to the proofs of Theorems 1.2-1.7. Theorem 1.2 is treated first, separately, with special-
ized techniques adapted from [30]. We then proceed with Theorem 1.7, and then derive Theorems 1.3 and 1.5
essentially as special cases.

4.1 Empirical Eigenvalues on UN

Let f : U→ C be a measurable function. Since the group UN consists of normal matrices, measurable functional
calculus is available to us. From (1.16), the empirical integral

∫
U f dν̃

N
t is the random variable∫

U
f dν̃Nt = tr ◦ fN on (UN , ρNt ). (4.1)

We will initially bound the empirical integral in terms of the Lipschitz norm on test functions. A function
F : UN → C is Lipschitz if

‖F‖Lip(UN ) ≡ sup
U 6=V ∈UN

|F (U)− F (V )|
dUN (U, V )

<∞,

where dUN is the Riemannian distance on UN given by the left-invariant metric induced by the inner product
(2.2) on uN . In the special case N = 1, this is just arclength distance:

‖f‖Lip(U) =
1

2π
sup

α 6=β∈[0,2π)

|f(eiα − eiβ)|
|α− β|

. (4.2)

The following general lemma was given in [30, Proposition 4.1]; it is adapted from the now well-known tech-
niques in [21], and attributable to earlier work of Talagrand.
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Lemma 4.1 (Lévy, Maı̈da, 2010). Let N ∈ N. If f : U → C is Lipschitz, then tr ◦ fN : UN → C is Lipschitz,
and

‖tr ◦ fN‖Lip(UN ) =
1

N
‖f‖Lip(U). (4.3)

Remark 4.2. Lemma 4.1 is proved in [30] only for real-valued f ; but the proof works without modification for
complex valued test functions.

Lemma 4.1 is then used in conjunction with the following, proved as [30, Proposition 6.1].

Lemma 4.3 (Lévy, Maı̈da, 2010). Let F : UN → R be Lipschitz, and let N ∈ N. Then for t ≥ 0,

VarρNt (F ) ≤ t‖F‖2Lip(UN ). (4.4)

Lemma 4.3 is proved using a fairly well-known martingale method. If UNt is a Brownian motion on UN (i.e.
the Markov process with generator 1

2∆UN ), and T > 0, then for any L2-function F : UN → R, the real-valued
stochastic process

t 7→
(
e

1
2

(T−t)∆UN F
)
(UNt )

is a martingale, which is well-behaved when F is Lipschitz (in particular since ‖e
t
2

∆UN F‖Lip(UN ) ≤ ‖F‖Lip(UN )

for any t ≥ 0). Our first task is to generalize Lemma 4.3 in two ways: from variances to covariances, and from
real-valued to complex-valued random variables.

Corollary 4.4. Let N ∈ N and t ≥ 0. If F,G : UN → C are Lipschitz functions, then∣∣∣CovρNt (F,G)
∣∣∣ ≤ 2t‖F‖Lip(UN )‖G‖Lip(UN ). (4.5)

Remark 4.5. To be clear: for two complex-valued L2 random variables F and G, Cov(F,G) = E(FG) −
E(F )E(G) = E[(F − E(F ))(G− E(G))].

Proof. From the Cauchy-Schwarz inequality, we have

|Cov(F,G)| =
∣∣E[(F − E(F ))(G− E(G))

]∣∣ ≤ ‖F − E(F )‖L2‖G− E(G)‖L2 =
√

Var(F )Var(G). (4.6)

Note that, for a complex-valued random variable F = F1 + iF2, Var(F1 + iF2) = Var(F1) + Var(F2). A
complex-valued function is Lipschitz iff its real and imaginary parts are both Lipschitz, and so Lemma 4.3 shows
that

VarρNt (F1 + iF2) = VarρNt (F1) + VarρNt (F2) ≤ t
(
‖F1‖2Lip(UN ) + ‖F2‖2Lip(UN )

)
. (4.7)

We now estimate

‖F1‖2Lip(UN ) + ‖F2‖2Lip(UN ) ≤ 2 max
{
‖F1‖2Lip(UN ), ‖F2‖2Lip(UN )

}
≤ 2 max

{
sup
U 6=V

(F1(U)− F1(V ))2

dUN (U, V )2
, sup
U 6=V

(F2(U)− F2(V ))2

dUN (U, V )2

}

≤ 2 sup
U 6=V

[
(F1(U)− F1(V ))2

dUN (U, V )2
+

(F2(U)− F2(V ))2

dUN (U, V )2

]
= 2‖F1 + iF2‖2Lip(UN ),

where the penultimate inequality is just the statement that if f1, f2 ≥ 0 then sup(f1+f2) ≥ max{sup f1, sup f2}.
Combining this with (4.6) and (4.7) proves the (4.5).
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Remark 4.6. It is likely that the variance estimate (4.4) holds as stated for complex-valued F , but this is not
immediately clear from the proof as given. Since we do not care too much about exact constants, we are content
to have a possibly-extraneous factor of 2 in (4.5).

Combining Lemma 4.1 and Corollary 4.4 (in the special case F = G) with (4.1) immediately proves (1.5)
in Theorem 1.2. We will now show that, at the expense of decreasing the speed of convergence below O(1/N2)
(but still summably fast), convergence holds for the much less regular functions in the Sobolev spaces Hp(U) for
p > 1. (If p < 3

2 , Hp(U) consists primarily of non-Lipschitz functions; cf. Section 2.2.) We begin by considering
trigonometric polynomial test functions.

Proposition 4.7. Let n ∈ N, and let f(u) =
∑n

k=−n f̂(k)uk be a trigonometric polynomial on U. If 1 < p < 3
2 ,

then

Var

(∫
U
f dν̃Nt

)
≤ n3−2p

π2N2
· 4t

3− 2p
‖f‖2Hp(U). (4.8)

Proof. From (1.16), the empirical integral is the random variable∫
U
f dν̃Nt =

n∑
k=−n

f̂(k)tr[(·)k],

and so we can expand the variance as

Var

(∫
U
f dν̃Nt

)
=

∑
|j|,|k|≤n

f̂(j)f̂(k)CovρNt

(
tr[(·)j ], tr[(·)k]

)
. (4.9)

Using Corollary 4.4 and then Lemma 4.1, we have∣∣∣CovρNt

(
tr[(·)j ], tr[(·)k]

)∣∣∣ ≤ 2t‖tr[(·)j ]‖Lip(UN )‖tr[(·)k]‖Lip(UN ) =
2t

N2
‖χj‖Lip(U)‖χk‖Lip(U), (4.10)

where χk(u) = uk; cf. Section 2.2. Since the functions χk are in C1(U), we can compute their Lipschitz norms
as

‖χk‖Lip(U) =
1

2π
sup
U
|χ′k| =

1

2π
|k|.

Combining this with (4.9) and (4.10) yields

Var

(∫
U
f dν̃Nt

)
≤ t

2π2N2

∑
|j|,|k|≤n

|f̂(j)||f̂(k)||j||k| = t

2π2N2

(
n∑

k=−n
|k||f̂(k)|

)2

. (4.11)

Note that the k = 0 term in the squared-sum is 0, so we omit it from here on. We estimate this squared-sum with
the Cauchy-Schwarz inequality, applied with |k| = |k|1−p|k|p: ∑

1≤|k|≤n

|k||f̂(k)|

2

≤

 ∑
1≤|k|≤n

|k|2(1−p)

 ·
 ∑

1≤|k|≤n

|k|2p|f̂(k)|2


≤

 ∑
1≤|k|≤n

|k|2(1−p)

 · ‖f‖2Hp(U), (4.12)

where the Sobolev Hp-norm is defined in (2.9). Let r = 2(p − 1); then 0 < r ≤ 1. We utilize the calculus
estimate

∞∑
k=1

1

kr
≤ 2r

∫ n+1

1

dx

xr
=

2r

1− r
[(n+ 1)1−r − 1] ≤ 2

1− r
n1−r,

27



which yields ∑
1≤|k|≤n

|k|2(1−p) = 2

∞∑
k=1

k2(1−p) ≤ 4

3− 2p
n3−2p. (4.13)

Equations (4.12) and (4.13) prove the proposition.

Remark 4.8. In the regime p > 3
2 , where 2(1 − p) < −1, the sum in (4.12) is uniformly bounded in n, and the

resulting estimate on the variance is

Var

(∫
U
f dν̃Nt

)
≤ 1

π2N2
· 4pt

2p− 3
‖f‖2Hp(U), p >

3

2
.

In the case p = 3
2 , Hp(U) corresponds roughly with Lipschitz functions, and so (1.5) is the optimal result.

We will use Proposition 4.7 to prove (1.4) by doing a band-limit cut-off of the test function f at a frequency
n that grows with N (in fact, the optimal result is achieved at n = N ). To proceed, we first need the following
lemma.

Lemma 4.9. Let N ∈ N and t ≥ 0. For f ∈ L∞(U),

Var

(∫
U
f dν̃Nt

)
≤ 4‖f‖2L∞(U). (4.14)

Proof. For any L2 random variable F , we utilize the crude estimate

Var(F ) = ‖F − E(F )‖2L2 ≤ (‖F‖L2 + |E(F )|)2 ≤ 4‖F‖2L2 .

With F =
∫
U f dν̃

N
t , (1.15) shows that, for U ∈ UN ,

|F (U)| = 1

N

∣∣∣ ∑
λ∈Λ(U)

f(λ)
∣∣∣ ≤ ‖f‖L∞(U)

since Λ(U) is a set of size N . Since ρNt is a probability measure, it follows that ‖F‖L2(ρNt ) ≤ ‖f‖L∞(U), and the
result follow.

We now proceed to prove (1.4) in Theorem 1.2.

Proposition 4.10. Let t ≥ 0, N ∈ N and 1 < p < 3
2 . For f ∈ Hp(U),

Var

(∫
U
f dν̃Nt

)
≤ 1

N2p−1
· 4

π2
‖f‖Hp(U)

( √
t√

3− 2p
+

1√
2p− 1

)2

. (4.15)

Proof. Fix f ∈ Hp(U), with Fourier expansion f =
∑

k∈Z f̂(k)χk. Let

fN =

N∑
k=−N

f̂(k)χk

be the band-limited frequency cut-off at level N , and define

FN =

∫
U
fN dν̃

N
t , and FN =

∫
U

(f − fN ) dν̃Nt ,
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so that FN + FN =
∫
U f dν̃

N
t . From the triangle inequality for L2,(

Var

(∫
U
f dν̃Nt

))1/2

=
√

Var(FN + FN ) ≤
√

Var(FN ) +
√

Var(FN ). (4.16)

From Proposition 4.7, the square of the first term in (4.16) is bounded by

Var(FN ) ≤ N3−2p

π2N2
· 4t

3− 2p
‖fN‖2Hp(U) ≤ N

1−2p · 4t

π2(3− 2p)
‖f‖2Hp(U). (4.17)

From Lemma 4.9, the square of the second term in (4.16) is bounded by

Var(FN ) ≤ 4‖f − fN‖2L∞(U), (4.18)

which we can bound as follows:

sup
u∈U
|f(u)− fN (u)|2 = sup

u∈U

∣∣∣∣∣∣
∑
|k|>N

f̂(k)uk

∣∣∣∣∣∣
2

≤

 ∑
|k|>N

|f̂(k)|

2

≤

 ∑
|k|>N

|k|−2p

 ·
 ∑
|k|>N

|k|2p|f̂(k)|2


≤

 ∑
|k|>N

|k|−2p

 ‖f‖2Hp(U). (4.19)

We can bound the above sum as in (4.13), using the calculus estimate
∞∑

k=N+1

1

k2p
≤
∫ ∞
N

dx

x2p
=

1

2p− 1
N1−2p.

Combining this with (4.18) and (4.19) yields

Var(FN ) ≤ N1−2p · 8

2p− 1
‖f‖2Hp(U). (4.20)

Combining (4.16), (4.17), (4.20) proves (4.15).

This brings us to the proof of Theorem 1.2.

Proof of Theorem 1.2. Proposition 4.10 proves (1.4), while, as remarked above, Lemma 4.1 and Corollary 4.4
prove (1.5). Thus, we are left to prove only (1.3). Fix f ∈ C(U), and let ε > 0. By the Weierstrass approximation
theorem, there is a trigonometric polynomial gε on U such that ‖f − gε‖L∞(U) <

√
ε/4. Let

F =

∫
U
f dν̃Nt , and G =

∫
U
gε dν̃

N
t .

Then, as in (4.16),we estimate√
Var(F ) ≤

√
Var(G) +

√
Var(F −G) ≤

√
Var(G) + 2‖f − gε‖∞ <

√
Var(G) +

√
ε/2 (4.21)

by Lemma 4.9. Now, gε is Lipschitz, and so (1.5) gives√
Var(G) ≤ 2t

N2
‖gε‖Lip(U). (4.22)

Thus, for any N > 2
√
t‖gε‖Lip(U)/ε

1/4,
√

Var(G) <
√
ε/2, and so (4.21) and (4.22) show that Var(F ) =

Var(
∫
U f dν̃

N
t ) < ε for all sufficiently large N . Convergence in probability (1.3) now follows immediately from

Chebyshev’s inequality.

For a discussion of the (lack of) sharpness of (1.4), see the end of Section 4.2.
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4.2 Empirical Noncommutative Distribution on GLN
Definition 4.11. Let s, t ∈ R, and let Ds,t be the intertwining operator on P given in Theorem 3.6. For each n,
the finite dimensional subspace Pn is invariant under Ds,t, and so e−Ds,t : P →P is well-defined. Define the
noncommutative distribution ϕs,t : C〈A,A∗〉 → C to be the following linear functional:

ϕs,t(f) =
(
e−Ds,tΥ(f)

)
(1), f ∈ C〈A,A∗〉 (4.23)

where Υ: C〈A,A∗〉 ↪→P+ is the inclusion of (2.31).

To be clear: Ds,t does not preserve the space Υ(C〈A,A∗〉) of linear polynomials, and so e−Ds,tf contains terms
of higher (ordinary) degree, although it preserves the trace degree of Υ(f). The functional ϕs,t is defined by
evaluating the resultant polynomial function v 7→

(
e−Ds,tΥ(f)

)
(v) ∈P+ at v = 1.

Remark 4.12. It is tempting to think that ϕs,t is therefore a homomorphism on C〈A,A∗〉, since e−Ds,t is a
homomorphism on P+. However, Υ is not a homomorphism. The product on C〈A,A∗〉 is incompatible with
the product on the larger space P+; it is the difference between convolution product and pointwise product of
functions.

To properly call the linear functional (4.23) a non-commutative distribution, we must realize it as the dis-
tribution of a random variable in a noncommutative probability space (As,t, τs,t). This is done in precisely the
same way that we constructed the mean E(ϕ̃N ) of an empirical distribution (2.27) as a genuine noncommuta-
tive distribution. We take As,t = C〈A,A∗〉, and define τs,t(f) = ϕs,t(f) for f ∈ A ; then ϕs,t = ϕa where
a ∈ C〈A,A∗〉 is the coordinate random variable a(A,A∗) = A. Note that ϕs,t(1) = 1 since Ds,t annihilates
constants. That τs,t is tracial and positive semi-definite actually follows from Theorem 1.7: (1.10) identifies
ϕs,t as the limit of the mean distributions E(ϕ̃Ns,t) which are tracial and positive definite (since µNs,t has infinite
support); see the discussion on page 12. It is straightforward to verify that a limit of tracial states is tracial, and
hence τs,t is a tracial state. What is not so clear from this definition is whether τs,t is faithful, as this property
does not generally survive under limits. In the special case s = t, the concurrent paper [11] proves that ϕt,t is
the noncommutative distribution of the free multiplicative Brownian motion gt of (2.37), and so in this case, τt,t
is known to be faithful. In fact, using free stochastic calculus techniques, it is possible to construct ϕs,t as the
distribution of a stochastic process in a faithful W ∗-probability space; we address this in a separate publication
[26].

The key to proving Theorem 1.7 is the following extension of Corollary 3.14. We will use it here only in the
diagonal case (P = Q), but the general covariance estimate will be useful in Sections 4.3 and 4.4.

Proposition 4.13. For P,Q ∈ P , there is a constant C2(s, t, P,Q) depending continuously on s, t so that, for
each N ∈ N, ∣∣∣CovµNs,t

(
P ◦VN , Q ◦VN

)∣∣∣ ≤ 1

N2
· C2(s, t, P,Q). (4.24)

Proof. From (3.13), we may write

P ◦VN ·Q ◦VN =
(
PQ∗

)
◦VN

where Q∗ = CQ. Thus, (3.15) shows that

EµNs,t
(
P ◦VN ·Q ◦VN

)
=
(
e−D

N
s,t(PQ∗)

)
(1). (4.25)

Similarly,
EµNs,t(P ◦VN ) · EµNs,t(Q ◦VN ) =

(
e−D

N
s,tP

)
(1) ·

(
e−D

N
s,tQ∗

)
(1). (4.26)
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To simplify notation, we suppress s, t and denote

ΨN
1 ≡

(
e−D

N
s,tP

)
(1), ΨN

∗ ≡
(
e−D

N
s,tQ∗

)
(1), ΨN

1,∗ ≡
(
e−D

N
s,t(PQ∗)

)
(1), (4.27)

Ψ1 ≡
(
e−Ds,tP

)
(1), Ψ∗ ≡

(
e−Ds,tQ∗

)
(1), Ψ1,∗ ≡

(
e−Ds,t(PQ∗)

)
(1). (4.28)

Thus, (4.25) and (4.26) show that

CovµNs,t(P ◦VN , Q ◦VN ) = ΨN
1,∗ −ΨN

1 ΨN
∗ . (4.29)

We estimate this as follows. First

|ΨN
1,∗ −ΨN

1 ΨN
∗ | ≤ |ΨN

1,∗ −Ψ1,∗|+ |Ψ1,∗ −Ψ1Ψ∗|+ |Ψ1Ψ∗ −ΨN
1 ΨN
∗ |. (4.30)

Referring to (4.28), since e−Ds,t is a homomorphism, the second term in (4.30) is 0. The first term is bounded
by 1

N2 · C(s, t, PQ∗) by Corollary 3.14. For the third term, we add and subtract ΨN
1 Ψ∗ to make the additional

estimate

|Ψ1Ψ∗ −ΨN
1 ΨN
∗ | ≤ |Ψ∗||Ψ1 −ΨN

1 |+ |ΨN
1 ||Ψ∗ −ΨN

∗ |
≤ |Ψ∗||Ψ1 −ΨN

1 |+
(
|Ψ1|+ |ΨN

1 −Ψ1|)|Ψ∗ −ΨN
∗ |

≤ 1

N2
· |Ψ∗|C(s, t, P ) +

(
|Ψ1|+

1

N2
· C(s, t, P )

)
· 1

N2
· C(s, t,Q∗)

=
1

N2
· (|Ψ∗|C(s, t, P ) + |Ψ1|C(s, t,Q∗)) +

1

N4
· C(s, t, P )C(s, t,Q∗). (4.31)

Combining (4.31) with (4.29) – (4.30) and the following discussion shows that the constant

C2(s, t, P,Q) = C(s, t, PQ∗) + C(s, t, P )C(s, t,Q∗) + |Ψ∗|C(s, t, P ) + |Ψ1|C(s, t,Q∗) (4.32)

verifies (4.13), proving the proposition.

Proposition 4.13 shows that any trace polynomial in ZNs,t has variance of order 1/N2, as discussed following
the statement of Theorem 1.7. The theorem follows as a very special case, due to the following.

Lemma 4.14. Let Z ∈ GLN , and let f ∈ C〈A,A∗〉. Let ϕZ denote the noncommutative distribution of Z with
respect to (MN , tr) (Definition 2.12), let Υ: C〈A,A∗〉 ↪→ P+ be the map of (2.31), and let VN be the map in
Notation 3.2. Then

ϕZ(f) = (Υ(f) ◦VN )(Z).

Proof. As both sides are linear functions of f , it suffices to prove the claim on basis elements f(A,A∗) = Aε

for some ε ∈ E +. Then Υ(f) = vε, and (vε) ◦VN (Z) = tr(Zε) = ϕZ(Aε) as claimed.

This brings us to the proof of Theorem 1.7.

Proof of Theorem 1.7. We begin by establishing that (1.10) holds with the linear functional ϕs,t of Definition
4.11. From (2.27), we have

E(ϕ̃Ns,t)(f) =

∫
GLN

ϕZ(f)µNs,t(dZ)

where ϕZ is the noncommutative distribution of Z in (MN , tr). Applying Lemma 4.14 and (3.15) yields

E(ϕ̃Ns,t)(f) = EµNs,t(Υ(f) ◦VN ) =
(
e−D

N
s,tΥ(f)

)
(1). (4.33)
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From the definition (4.23) of the limit distribution ϕs,t, (4.33) shows that∣∣E(ϕ̃Ns,t)(f)− ϕs,t(f)
∣∣ =

∣∣∣(e−DNs,tΥ(f)
)
(1)−

(
e−Ds,tΥ(f)

)
(1)
∣∣∣ ≤ 1

N2
· C(s, t,Υ(f))

by Corollary 3.14; this proves (1.10).
The random variable ϕ̃Ns,t on the probability space (GLN , µNs,t) has value ϕZ at Z ∈ GLN . Thus, using

Lemma 4.14, we have
Var[ϕ̃Ns,t(f)] = VarµNs,t(Υ(f) ◦VN ), (4.34)

and (1.11) follows immediately from Proposition 4.13.

We now give some quantitative estimate for the constant C2(s, t, P,Q) of (4.32). First we need to bound the
terms |Ψ∗| and |Ψ1| in that equation.

Lemma 4.15. Let s, t ∈ R, with r = |s− t
2 |+

1
2 |t|. Let n,N ∈ N, and let P ∈Pn. Then∣∣∣(e−DNs,tP )(1)

∣∣∣ ≤ e r2 (1+1/N2)n2‖P‖1, and
∣∣∣(e−Ds,tP )(1)

∣∣∣ ≤ e r2n2‖P‖1. (4.35)

Proof. Following (3.30), (3.33), and (3.35), we estimate∣∣∣(e−DNs,tP )(1)
∣∣∣ ≤ ‖e−DNs,tP‖1 ≤ ‖e−DNs,t|Pn‖1→1‖P‖1 ≤ e

‖DNs,t|Pn
‖1→1‖P‖1 ≤ e

r
2

(1+1/N2)n2‖P‖1,

proving the first inequality in (4.35). The second follows by taking N →∞.

Corollary 4.16. Let s, t ∈ R with r = |s − t
2 | +

1
2 |t|, n,m,N ∈ N, and 0 < δ < 1. For P ∈ Pn, Q ∈ Pm,

and N >
√

2/δ,

CovµNs,t

(
P ◦VN , Q ◦VN

)
≤ 1

N2
· 4

δ2
er(1+δ)(n2+m2)‖P‖1‖Q‖1. (4.36)

Proof. The polynomial Q∗ has trace degree m, and so PQ∗ has trace degree n + m. It therefore follows from
(4.32), together with Corollary 3.19 and Lemma 4.15, that

CovµNs,t

(
P ◦VN , Q ◦VN

)
≤ 1

N2
·
[1

δ
e
r
2

(1+δ)(n+m)2‖PQ∗‖1

+
1

δ2
e
r
2

(1+δ)(n2+m2)‖P‖1‖Q∗‖1 +
1

δ

(
e
r
2
m2
e
r
2

(1+δ)n2
+ e

r
2
n2
e
r
2

(1+δ)m2)‖P‖1‖Q∗‖1].
The reader can readily verify that ‖PQ∗‖1 ≤ ‖P‖1‖Q‖1. Together with the estimate (n+m)2 ≤ 2(n2 +m2),
the argument of Corollary 3.19 then proves (4.36).

We conclude this section with a brief discussion of what bounds we expect are sharp, and the consequences
this would have for the proof of Theorem 1.2. As mentioned in the remarks following the suggestive calculation
(3.39), it is possible that the constants C(t, 0, P ) of Corollary 3.21 are uniformly bounded over P ∈ HP . To be
precise, we conjecture that there is a constant C(t) (depending continuously on t > 0) so that∣∣∣(e−DNt,0P )(1)−

(
e−Dt,0P

)
(1)
∣∣∣ ≤ C(t)

N2
, P ∈ HP. (4.37)

If this holds true, then as in the proof of Proposition 4.13, it would follow that there is a constant C2(t) such that,
for j, k ∈ Z, ∣∣∣CovρNs,t

(
vj ◦VN , vk ◦VN

)∣∣∣ ≤ C2(t)

N2
. (4.38)
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Indeed: the terms |Ψ| and |Ψ∗| in (4.27) and (4.32) are ≤ 1, since Ψ1 = limN→∞ΨN
1 = limN→∞ EρNt tr[(·)j ]

and |tr(U j)| ≤ 1 for U ∈ UN (see the proof of Lemma 4.9), and similarly |Ψ∗| = limN→∞ |tr[(·)−k]| ≤ 1.
Consider, then, f ∈ Hp(U) with p > 1

2 ; the covariance expansion (4.9) together with the conjectured (4.38)
yields

Var

(∫
U
f dν̃Nt

)
≤
∑
j,k∈Z

|f̂(j)||f̂(k)|
∣∣∣CovρNt

(
tr[(·)j ], tr[(·)k]

)∣∣∣ ≤ C(t)2

N2

(∑
k∈Z
|f̂(k)|

)2

.

We can then estimate this squared-sum as in (4.19): writing |f̂(k)| = (1 + k2)−p/2(1 + k2)p/2|f̂(k)|,(∑
k∈Z
|f̂(k)|

)2

≤

(∑
k∈Z

(1 + k2)−p

)
· ‖f‖2Hp(U),

and this sum is finite provided p > 1
2 . To summarize, if the conjectured bound (4.37) holds true, then we have

Var

(∫
U
f dν̃Nt

)
= O

(
1

N2

)
, if f ∈ Hp(U) for some p > 1

2 . (4.39)

In [30, Theorem 2.6 & Proposition 9.9], the authors showed that, if f ∈ H1/2(U) is real-valued, then the fluctu-
ations of the empirical integral are O(1/N2)-Gaussian with variance close to ‖f‖2H1/2(U) for large t:

N

[∫
U
f dν̃Nt − E

(∫
U
f dν̃Nt

)]
(d)−→

N→∞
N(0, σt(f)), lim

t→∞
σt(f) = ‖f‖2H1/2(U).

We see from here that, at least as t→∞, we haveN2Var
(∫

U f dν̃
N
t

)
∼ ‖f‖2H1/2(U). Thus, we cannot expect the

conjectural O(1/N2)-behavior of (4.39) to hold for f /∈ H1/2(U), and so this is the minimal regularity needed
for this rate of convergence.

4.3 Empirical Eigenvalues on GLN
We begin with the following observation: for holomorphic trace polynomials, P ◦ VN with P ∈ HP , Ds,t

reduces to Ds−t,0.

Lemma 4.17. For s, t > 0 with s > t/2, and for P ∈ HP ,(
e−D

N
s,tP

)
(1) =

(
e−D

N
s−t,0P

)
(1),(

e−Ds,tP
)
(1) =

(
e−Ds−t,0P

)
(1).

(4.40)

Proof. For P ∈ HP , the function Z 7→ P ◦VN (Z), Z ∈ GLN , is a trace polynomial in Z and not Z∗; hence,
it is holomorphic on GLN . For any holomorphic function f and any X ∈ uN ,

(∂iXf)(Z) =
d

dt

∣∣∣∣
t=0

f(ZeitX) = i(∂Xf)(Z).

Hence ∂2
iXf = −∂2

Xf , and so (2.6) yields

ANs,tf =

(
s− t

2

) ∑
X∈βN

∂2
Xf +

t

2

∑
X∈βN

∂2
iXf = (s− t)

∑
X∈βN

∂2
Xf = (s− t)∆UN f.
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Applying the intertwining formulas (3.6) and (3.10) now shows that(
e−D

N
s,tP

)
◦VN =

(
e−D

N
s−t,0P

)
◦VN .

holds for allN . Evaluating both sides at IN gives
(
e−D

N
s,tP

)
(1) =

(
e−D

N
s−t,0P

)
(1). Taking the limit asN →∞

(using Corollary 3.14) now proves (4.40).

This brings us to the proof of Theorem 1.3, which we break into two propositions.

Proposition 4.18. Let s, t > 0 with s > t/2. Fix δ > 0 and f ∈ G s
2

(1+2δ)(C∗). Then

∣∣∣∣E(∫
C∗
f dφ̃Ns,t

)
−
∫
f dνs−t

∣∣∣∣ ≤ 1

N2
· 1

δ

(
1 +

1

2

√
π

sδ

)1/2

‖f‖G s
2 (1+2δ)

. (4.41)

Proof. The random variable
∫
C∗ f dφ̃

N
s,t is given by(∫

C∗
f dφ̃Ns,t

)
(Z) =

∑
k∈Z

f̂(k)tr(Zk), Z ∈ GLN , (4.42)

which converges since, for any fixed Z, |tr(Zk)| grows only exponentially in k, while by assumption f̂(k) decays
super-exponentially fast. Note that∫

f dνs−t =
∑
k∈Z

f̂(k)νk(s− t) =
∑
k∈Z

f̂(k)
(
e−Ds−t,0vk

)
(1), (4.43)

which converges as above since the νk(s− t) has only exponential growth. Formally, we also have

E
(∫

C∗
f dφ̃Ns,t

)
=
∑
k∈Z

f̂(k)

∫
GLN

tr(Zk)µNs,t(dZ)

=
∑
k∈Z

f̂(k)
(
e−D

N
s,tvk

)
(1) =

∑
k∈Z

f̂(k)
(
e−D

N
s−t,0vk

)
(1), (4.44)

by Lemma 4.17. The convergence of this series will follow from (4.41), which we now proceed to prove. Com-
paring (4.43) and (4.44),∣∣∣∣E(∫

C∗
f dφ̃Ns,t

)
−
∫
f dνs−t

∣∣∣∣ ≤∑
k∈Z
|f̂(k)|

∣∣∣(e−DNs−t,0vk)(1)−
(
e−Ds−t,0vk

)
(1)
∣∣∣ . (4.45)

We bound these terms using Corollary 3.19:∣∣∣(e−DNs−t,0vk)(1)−
(
e−Ds−t,0vk

)
(1)
∣∣∣ ≤ 1

N2
· 1

δ
e
s
2

(1+δ)k2‖vk‖1,

which holds true whenever N >
√

2/δ; note also that ‖vk‖1 = 1. Thus (4.45) implies that∣∣∣∣E(∫
C∗
f dφ̃Ns,t

)
−
∫
f dνs−t

∣∣∣∣ ≤ 1

N2
· 1

δ

∑
k∈Z
|f̂(k)|e

s
2

(1+δ)k2 ,
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and this sum is bounded by

∑
k∈Z

e−
s
2
δk2 |f̂(k)|e

s
2

(1+δ)k2 ≤

(∑
k∈Z

e−sδk
2

) 1
2

‖f‖G s
2 (1+2δ)

≤
(

1 +
1

2

√
π

sδ

) 1
2

‖f‖G s
2 (1+2δ)

(4.46)

where we have made the estimate

n∑
j=−n

e−sδj
2 ≤ 1 + 2

∫ ∞
0

e−sδx
2
dx = 1 +

1

2

√
π

sδ
.

This proves (4.41).

Remark 4.19. In (4.45), we have used Lemma 4.17 to convert DN
s−t,0 and Ds−t,0 back to DN

s,t and Ds,t to apply
Corollary 3.19. We could instead have used that corollary with r = |s − t| (or r = ε for some ε > 0 in the case
s = t) to show the same result with the milder assumption that f ∈ G r

2
(1+2δ). This is not possible in Proposition

4.20 below where covariances are used, thus destroying the holomorphic structure; we have kept the regularity
conditions consistent between the two.

Proposition 4.20. Let s, t > 0 with s > t/2. Fix δ > 0 and f ∈ Gs(1+2δ)(C∗). Then, for N >
√

2/δ,

Var

(∫
C∗
f dφ̃Ns,t

)
≤ 1

N2
· 4

δ2

(
1 +

1

2

√
π

2sδ

)
‖f‖2Gs(1+2δ)

. (4.47)

Proof. Starting from (4.42), we expand

Var

(∫
C∗
f dφ̃Ns,t

)
=
∑
j,k∈Z

f̂(j)f̂(k)CovµNs,t

(
tr[(·)j ], tr[(·)k]

)
. (4.48)

Note that tr(Zk) = vk ◦VN (Z). Since vk ∈P|k| and ‖vk‖1 = 1, Corollary 4.16 shows that∣∣∣CovµNs,t(vj ◦VN , vk ◦VN )
∣∣∣ ≤ 1

N2
· 4

δ2
es(1+δ)(j2+k2). (4.49)

Combining this with (4.48) yields

Var

(∫
C∗
f dφ̃Ns,t

)
≤ 1

N2
· 4

δ2

∑
j,k∈Z

|f̂(j)||f̂(k)|es(1+δ)(j2+k2)

=
1

N2
· 4

δ2

(∑
k∈Z
|f̂(k)|es(1+δ)k2

)2

, (4.50)

and the result follows from (4.46) with r replaced by 2s.

Thus, we have the ingredients to prove Theorem 1.3.

Proof of Theorem 1.3. Since σ > s, δ = 1
2(σs − 1) > 0 and s(1 + 2δ) = σ. Thus Proposition 4.18 proves (1.6)

with a constant that depends continuously on s (note here that G s
2

(1+2δ) = Gσ/2 ⊂ Gσ), and Proposition 4.20
similarly proves (1.7).
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4.4 Empirical Singular Values on GLN
As in Section 4.3, we begin by noting a reduction in the action of the generator Ds,t of the noncommutative
distribution ϕs,t when restricted, in this case, to holomorphic trace polynomials in ZZ∗. For this we need some
new notation.

Notation 4.21. For k ∈ Z \ {0}, let ε1∗(k) = (

2k︷ ︸︸ ︷
1, ∗, . . . , 1, ∗) if k > 0 and ε1∗(k) = (

2|k|︷ ︸︸ ︷
−1,−∗, . . . ,−1,−∗) if

k < 0; note that |ε1∗(k)| = 2|k|. Denote E 1∗ = {ε1∗(k) : k ∈ Z \ {0}} ⊂ E . Let P1∗ ⊂P be the subalgebra
of polynomials

P1∗ = C [{vε}ε∈E 1∗ ] .

For convenience denote v1∗
k = vε1∗(k).

The homomorphism Φ1∗ : HP →P1∗ determined by Φ1∗(vk) = v1∗
k is an algebra isomorphism. Note that,

for any N ∈ N,
Φ1∗(P ) ◦VN = (P ◦VN ) ◦ Φ, (4.51)

where Φ(Z) = ZZ∗ is the map from Definition 1.4.

Lemma 4.22. Let s, t > 0 with s > t/2. For P ∈ HP and N ∈ N,(
e−D

N
s,tΦ1∗(P )

)
(1) =

(
eD

N
2t,0P

)
(1),(

e−Ds,tΦ1∗(P )
)
(1) =

(
eD2t,0P

)
(1).

(4.52)

Proof. For Z ∈ GLN and X ∈ uN , note that

ZetX(ZetX)∗ = ZetXe−tXZ∗ = ZZ∗, ZeitX(ZeitX)∗ = Ze2itXZ∗. (4.53)

Let f : GLN → C be holomorphic. The first equation in (4.53) shows that ∂X(f ◦ Φ) = 0, and so in particular
the first terms

∑
X∈βN ∂

2
X(f ◦ Φ) = 0 in (2.6). For the second terms,

∂iX
(
f ◦ Φ

)
(Z) =

d

dt

∣∣∣∣
t=0

f
(
ZeitX(ZeitX)∗

)
=

d

dt

∣∣∣∣
t=0

f(Ze2itXZ∗),

and so

∂2
iX

(
f ◦ Φ

)
(Z) =

∂2

∂s∂t

∣∣∣∣
s,t=0

f
(
ZeisXe2itXeisXZ∗

)
=

∂2

∂s∂t

∣∣∣∣
s,t=0

f
(
Ze2i(s+t)XZ∗

)
.

If we additionally assume that f is tracial, f(ZW ) = f(WZ) for all Z,W ∈ GLN (for example if f is a
holomorphic trace polynomial f = P ◦VN for some P ∈ HP), then

∂2
iX

(
f ◦ Φ

)
(Z) =

∂2

∂s∂t

∣∣∣∣
s,t=0

f(Z∗Ze2i(s+t)X) = 4
∂2

∂s∂t

∣∣∣∣
s,t=0

f(Z∗Zei(s+t)X). (4.54)

By comparison,

−∂2
Xf(Z) = ∂2

iXf(Z) =
∂2

∂s∂t

∣∣∣∣
s,t=0

f(Zei(s+t)X)

and so we have
∂2
iX(f ◦ Φ) = −4

(
∂2
Xf
)
◦ Φ⊥ (4.55)

where Φ⊥(Z) = Z∗Z. Hence, from (2.6), we have

1

2
ANs,t(f ◦ Φ) =

t

4

∑
X∈βN

−4
(
∂2
Xf
)
◦ Φ⊥ = −t

(
∆UN f

)
◦ Φ⊥ = −t

(
∆UN f

)
◦ Φ, (4.56)
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where the last equality comes from the fact that ∆UN preserves the class of smooth tracial functions. (This
follows from its bi-invariance, so it commutes with the left- and right-actions of the group; in our case, where
f will be a trace polynomial, it follows from the fact that ∆UN preserves trace polynomials.) Hence, taking
f = P ◦VN for some P ∈ HP and using (3.6), (3.10), and (4.51), we have(

DN
s,tΦ1∗(P )

)
◦VN = −2tΦ1∗(D

N
1,0P ) ◦VN = Φ1∗(−DN

2t,0P ) ◦VN .

Since Φ1∗ is an algebra isomorphism, it follows that(
e−D

N
s,tΦ1∗(P )

)
◦VN = Φ1∗

(
eD

N
2t,0P

)
◦VN . (4.57)

Evaluating both sides at IN gives(
e−D

N
s,tΦ1∗(P )

)
(1) = Φ1∗

(
eD

N
2t,0P

)
(1) =

(
eD

N
2t,0P

)
(1),

the last equality following from the general fact that
(
Φ1∗(Q)

)
(1) = Q(1). Now letting N → ∞ proves the

lemma.

We now approach the proof of Theorem 1.5 as we did for Theorem 1.3. We begin by verifying (1.8).

Proposition 4.23. Let s, t > 0 with s > t/2. Fix δ > 0, and let f ∈ G s
2

(1+2δ)(C∗). Then

∣∣∣∣E(∫
C∗
f dη̃Ns,t

)
−
∫
f dν−2t

∣∣∣∣ ≤ 1

N2
· 1

δ

(
1 +

1

2

√
π

sδ

) 1
2

‖f‖G s
2 (1+2δ)

. (4.58)

Proof. The random variable
∫
C∗ fdη̃

N
s,t is given by(∫

C∗
fdη̃Ns,t

)
=
∑
k∈Z

f̂(k)tr(Y k), Y ∈M>0
N , (4.59)

which converges since, for any fixed Y , |tr(Y k)| grows only exponentially in k, while by assumption f̂(k) decays
super-exponentially fast. We also have∫

f dν−2t =
∑
k∈Z

f̂(k)νk(−2t) =
∑
k∈Z

f̂(k)
(
eD2t,0vk

)
(1), (4.60)

which converges as above since νk(−2t) have only exponential growth (being the moments of a compactly-
supported probability measure). By definition, subject to convergence,

E
(∫

C∗
f dη̃Ns,t

)
=
∑
k∈Z

f̂(k)

∫
GLN

tr(Φ(Z)k)µNs,t(dZ)

=
∑
k∈Z

f̂(k)
(
e−D

N
s,tΦ1∗(vk)

)
(1) =

∑
k∈Z

f̂(k)
(
eD

N
2t,0vk

)
(1), (4.61)

by (4.51) and Lemma 4.22. The convergence of this series will follow from (4.58), which we now proceed to
prove. Comparing (4.60) and (4.61),∣∣∣∣E(∫

C∗
f dη̃Ns,t

)
−
∫
f dν−2t

∣∣∣∣ ≤∑
k∈Z
|f̂(k)|

∣∣∣(eDN2t,0vk)(1)−
(
eD2t,0vk

)
(1)
∣∣∣ . (4.62)

The remainder of the proof proceeds exactly as in the proof of Proposition 4.41, following (4.45).
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Proposition 4.24. Let s, t > 0 with s > t/2. Fix δ > 0 and f ∈ G4s(1+2δ)(C∗). Then, for N >
√

2/δ,

Var

(∫
C∗
f dη̃Ns,t

)
≤ 1

N2
· 4

δ2

(
1 +

1

2

√
π

8sδ

)
‖f‖2G4s(1+2δ)

. (4.63)

Proof. As in (4.48), we begin by expanding the variance from (4.59) as follows:

Var

(∫
C∗
f dη̃Ns,t

)
=
∑
j,k∈Z

f̂(k)f̂(k)CovΦ∗(µNs,t)

(
tr[(·)j ], tr[(·)k]

)
. (4.64)

By definition, for any random variables F,G on M>0
N ,

CovΦ∗(µNs,t)

(
F,G) = CovµNs,t(F ◦ Φ, G ◦ Φ).

With F (Y ) = tr(Y k), we have F ◦ Φ = (vk ◦VN ) ◦ Φ = Φ1∗(vk) ◦VN by (4.51), and so the covariances in
(4.64) are ∣∣∣CovµNs,t

(
v1∗
j ◦VN , v

1∗
k ◦VN

)∣∣∣ ≤ 1

N2
· 4

δ2
es(1+δ)((2j)2+(2k)2)

by Corollary 4.16, since deg(v1∗
k ) = 2|k|. The remainder of the proof follows exactly as in the proof of Proposi-

tion 4.20, following (4.49).

This brings us to the proof of Theorem 1.5

Proof of Theorem 1.5. Since σ > 4s, δ = 1
2( σ4s−1) > 0 and 4s(1+2δ) = σ. Thus Proposition 4.23 proves (1.8)

with a constant that depends continuously on s (note here that G s
2

(1+2δ) = Gσ/8 ⊂ Gσ). Similarly, Proposition
4.24 proves (1.9).

5 Lp Convergence

In this final section, we observe that the techniques developed in Section 3.2 in fact yield, with little extra effort,
convergence in a sense significantly stronger than those given in Theorems 1.2–1.7. We begin with a brief
discussion of strong convergence.

5.1 Strong Convergence and Noncommutative Lp-norms

Let ρN be a probability measure on MN . Suppose that the noncommutative empirical distribution ϕ̃N of ρN has
an almost-sure limit distribution ϕ, in the sense of Definition 2.15. In other words, if AN is a random matrix
with distribution ρN , we have ϕAN (f) → ϕ(f) a.s. for all noncommutative polynomials f ∈ C〈A,A∗〉. The
following stronger form of convergence has significant applications in operator algebras.

Definition 5.1 (Strong Convergence). For each N , let ρN be a probability measure on MN , and let AN be
a random matrix with distribution ρN . Say that AN converges strongly if it converges in distribution and in
operator norm almost surely. That is: there exists a C∗-probability space (A , τ), and an element a ∈ A , such
that, for any noncommutative polynomial f ∈ C〈A,A∗〉,

tr[f(AN , A
∗
N )]→ τ [f(a, a∗)] a.s. and ‖f(AN , A

∗
N )‖MN

→ ‖f(a, a∗)‖A a.s. (5.1)
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Definition 5.1 naturally generalizes to multivariate noncommutative distributions. In their seminal paper
[22], Haagerup and Thorbjørnsen showed that if ρN is (a finite product of) the GUEN measure (1.18), then the
independent GUEN random matrices with this distribution converge strongly. More recently, in [13], the authors
showed that strong convergence also holds for (finite products of) the Haar measure on UN . Given our mantra
that the heat kernel measure ρNt on UN interpolates between these two ensembles, it is natural to ask whether
the matrices UNt also exhibit strong convergence. By extension, we may also ask whether random matrices ZNs,t
also exhibit strong convergence (now that we have proved, in Theorem 1.7, that they have an almost-sure limit
distribution).

Note that, for any matrix A ∈ MN , ‖A‖ = limq→∞
(
tr [(AA∗)q]

)1/2q; since AA∗ ∈ M>0
N this makes sense

for all real q > 0, but for convenience we may restrict q to be an integer. In fact, the same holds true in any
faithful noncommutative C∗-probability space (A , τ):

‖a‖A = lim
q→∞

(
τ
[
(aa∗)q

])1/2q
.

These are (limits of) the noncommutative Lp-norms over (A , τ):

‖a‖Lp(A ,τ) ≡
(
τ
[
(aa∗)p/2

])1/p
. (5.2)

‖ · ‖Lp(A ,τ) is a norm on A for p ≥ 1. In the case that A is a W ∗-algebra, its completion Lp(A , τ) can be
realized as a space of unbounded operators affiliated to A when p <∞, while L∞(A , τ) = A .

The second statement in (5.1) can thus be rephrased as an almost sure interchange of limits: since (MN , tr)
is a faithful C∗-probability space, then AN ∈ MN converges to a ∈ A strongly if and only if ϕAN → ϕa a.s.
and

P
(

lim
N→∞

lim
p→∞

‖f(AN , A
∗
N )‖Lp(MN ,tr) = lim

p→∞
‖f(a, a∗)‖Lp(A ,τ)

)
= 1, (5.3)

provided that (A , τ) is a faithful C∗-probability space.

5.2 Almost Sure Lp Convergence

Theorem 1.7 establishes that the random matrices UNt and ZNs,t converge weakly almost surely to limit noncom-
mutative distributions. Indeed, the UNt case (of convergence in expectation) is the main theorem in [9], where it
is shown that, if UNt is chosen to be a Brownian motion on UN , then the weak limit exists as a noncommutative
stochastic process, the free unitary Brownian motion discussed at the end of Section 2.5. In this case, the limit
noncommutative probability space can be taken as a free group factor, and so is indeed a faithful C∗-probability
space. As for ZNs,t, Definition 4.11 and the subsequent discussion show how to realize the almost sure limit
noncommutative distribution ϕs,t as the distribution of an operator ϕs,t = ϕzs,t on a noncommutative probabil-
ity space (As,t, τs,t); the main theorem of the author’s complementary paper [26] demonstrates that As,t may
be taken to be a free group factor, with τs,t the usual faithful tracial state. As such, we can construct a larger
C∗-probability space that contains both of the limit operators ut and zs,t. (By taking the reduced free productC∗-
algebra of the two spaces, we can even make ut and zs,t freely independent if we wish.) Thus, in the statement
of Theorem 1.9, there is no loss of generality in realizing the limits in a single C∗-probability space (A , τ).

While we are, as yet, unable to prove strong convergence of UNt and ZNs,t to ut and zs,t, we can prove almost
sure Lp-convergence for all even integers p, i.e. Theorem 1.9. From (5.3), this result could be viewed as only
infinitesimally weaker; but, in fairness, it does not suffice for the same powerful operator algebra techniques that
strong convergence supports.

Once again, they key is a variance estimate, which follows easily from Proposition 4.13.
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Lemma 5.2. Let s, t > 0 with s > t/2, and let f ∈ C〈A,A∗〉 be a noncommutative polynomial. Let p ≥ 2 be
an even integer. Then, for N ∈ N,

Var
(
‖f
(
UNt , (U

N
t )∗

)
‖pLp(MN ,tr)

)
= O

(
1

N2

)
and Var

(
‖f
(
ZNs,t, (Z

N
s,t)
∗)‖pLp(MN ,tr)

)
= O

(
1

N2

)
.

Proof. We begin with the case of ZNs,t. The variance in question is

Var
(
‖f
(
ZNs,t, (Z

N
s,t)
∗)‖pLp(MN ,tr)

)
= VarµNs,t(F

p), (5.4)

where F p : GLN → C is the random variable

F p(Z) = ‖f(Z,Z∗)‖pLp(MN ,tr)
= tr

((
f(Z,Z∗)f(Z,Z∗)∗

)p/2)
.

Note that gp(A,A∗) =
(
f(A,A∗)f(A,A∗)∗

)p/2 is an element of C〈A,A∗〉. Thus using the inclusion Υ of
C〈A,A∗〉 ↪→P+ (2.31), we have

F p(Z) = Υ(gp) ◦VN (Z). (5.5)

By Proposition 4.13,

VarµNs,t(Υ(gp) ◦VN ) ≤ 1

N2
· C2(s, t,Υ(gp),Υ(gp)), (5.6)

and this, together with (5.4) and (5.5), proves the lemma for ZNs,t. The statement for UNt actually follows as a
special case. Indeed, for any P ∈P , (3.13) and (3.16) show that

VarρNt (P ◦VN ) =
(
e−D

N
t,0(PP ∗)

)
(1)−

(
e−D

N
t,0P

)
(1)
(
e−D

N
t,0P ∗

)
(1). (5.7)

Proposition 4.13 is proved by showing that this quantity, with DN
s,t in place of DN

t,0, is ≤ C2(s, t, P, P )/N2.

Although we must have s, t > 0 and s > t/2 for µNs,t to be a well-defined measure, the operators e−D
N
s,t , and ergo

the quantities in (5.7) and the constant C2(s, t, P, P ), are all well-defined for s, t ∈ R. Thus, we may restrict
(5.6) to find

VarρNt (F p) = VarρNt (Υ(gp) ◦VN ) ≤ 1

N2
· C2(t, 0,Υ(gp),Υ(gp)), (5.8)

and this proves the UNt -case of the lemma.

Remark 5.3. The size of the constant C2(t, 0, P, P ) has only been shown (Corollary 4.16) to be bounded (almost)
by e2t·deg(P )2‖P‖21. We conjecture (as in (4.38)) that the growth with deg(P ) is erroneous; but the dependence
on ‖P‖1 is surely not. It is relatively straightforward to calculate that, with gp defined from f as in the proof of
Lemma 5.2,

‖Υ(gp)‖1 = ‖Υ(f)‖p1.

This is not unexpected, since the Lp-norm itself is the pth root of the quantities considered here.

This brings us, finally, to the proof of Theorem 1.9.

Proof of Theorem 1.9. The almost sure weak convergence of ZNs,t to zs,t was established in Theorem 1.7; UNt
follows as the special case ZNt,0 (and was established already in [32]). It follows that, for any f ∈ C〈A,A∗〉,

E
(
‖f(UNt , (U

N
t )∗)‖pLp(MN ,tr)

)
→ ‖f(ut, u

∗
t )‖

p
Lp(A ,τ), and

E
(
‖f(ZNs,t, (Z

N
s,t)
∗)‖pLp(MN ,tr)

)
→ ‖f(zs,t, z

∗
s,t)‖

p
Lp(A ,τ),
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since these quantities (rased to the pth power as they are) are trace polynomials in UNt (resp. ZNs,t) and ut (resp.
zs,t). Lemma 5.2, together with Chebyshev’s inequality and the Borel-Cantelli Lemma, now shows that

‖f(UNt , (U
N
t )∗)‖pLp(MN ,tr)

→ ‖f(ut, u
∗
t )‖

p
Lp(A ,τ) a.s. and

‖f(ZNs,t, (Z
N
s,t)
∗)‖pLp(MN ,tr)

→ ‖f(zs,t, z
∗
s,t)‖

p
Lp(A ,τ) a.s.

The theorem now follows by taking pth roots.

Remark 5.4. The above proof, coupled with Remark 5.3, shows that it is plausible that the rate of a.s. convergence
in Theorem 1.9 is uniformly bounded in p (contingent on the conjectured trace degree-independence of the
constants C2(t, 0, P, P )) in the UNt -case. If this is true, then strong convergence UNt → ut follows readily from
(5.3). This is left as a promising avenue for future study.
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