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ABSTRACT. This paper addresses extensions of the complex Ornstein-Uhlenbeck semigroup to op-
erator algebras in free probability theory. If a1, . . . , ak are ∗-free R-diagonal operators in a II1 factor,
then Dt(ai1 · · · ain

) = e−ntai1 · · · ain
defines a dilation semigroup on the non-self-adjoint operator

algebra generated by a1, . . . , ak. We show that Dt extends (in two different ways) to a semigroup of
completely positive maps on the von Neumann algebra generated by a1, . . . , ak. Moreover, we show
that Dt satisfies an optimal ultracontractive property: ‖Dt : L2 → L∞‖ ∼ t−1 for small t > 0.

1. INTRODUCTION AND BACKGROUND

This paper is a sequel to [18], in which the authors discussed an important norm inequal-
ity (the Haagerup inequality) in the context of certain non-normal operators (R-diagonal op-
erators) in free probability. The motivation for these papers comes from the classical Ornstein-
Uhlenbeck semigroup in Gaussian spaces, which we will briefly recall now. Let γd denote Gauss
measure on R

d (the standard n-dimensional normal law). The Ornstein-Uhlenbeck semigroup
Ut is the C0 Markov semigroup on L2(Rd, γd) associated to the Dirichlet form of the measure:
(f, f) 7→

∫
|∇f |2 dγ. Its infinitesimal generator N , called the Ornstein-Uhlenbeck operator or

number operator, is given by Nf(x) = −∆f(x)+x ·∇f(x). The O–U semigroup can be expressed
as a multiplier semigroup (with integer eigenvalues) in terms of tensor products of Hermite poly-
nomials.

The space L2(R2d, γ2d) contains many holomorphic functions; for example, all monomials zn =
zn1
1 · · · z

nd

d with n = (n1, . . . , nd). The space of holomorphic L2-functions, L2
hol(C

d, γ2d), is a Hilbert

space that reduces the O–U semigroup. Since ∆h = 0 for h ∈ L2
hol(C

d, γ2d), the restriction of
the number operator is Nh(z) = z · ∇h(z) which is sometimes called the Euler operator, the
infinitesimal generator of dilations. As a result, for holomorphic h it follows thatUth(z) = h(e−t

z).

In terms of monomials, Ut(z
n) = e−|n|tzn, where |n| = n1 + · · ·+nd. This simpler action has many

important consequences for norm estimates (in particular hypercontractivity) in such spaces; see
[13, 9, 8].

There is a natural analogue of the complex variable z in free probability. Let s, s′ be free semicir-
cular operators in a II1 factor; these are analogues of independent normal random variables. (For

basics on free probability, see the book [23].) Then c = (s+is′)/
√

2 is Voiculescu’s circular operator.
Aside from the obvious similarity in its appearance to a complex standard normal random vari-
able in L2

hol(C, γ2), it can also be thought of as a limit as N →∞ of theN ×N Ginibre ensemble of
matrices with all independent complex normal entries (of variance 1/2N ). To mimic the random
vector z = (z1, . . . , zd) one can take ∗-free circular operators c1, . . . , cd, and d can even be infinite.
The analogue of the O–U semigroup is then simply Dt(ci1 · · · cin) = e−ntci1 · · · cin . In this context,
the same kinds of strong norm estimates referred to above are discussed in the author’s paper
[16]. This dilation semigroup is actually a restriction of a semigroup of completely positive maps,
the free O–U semigroup, on the full von Neumann algebra W ∗(c1, . . . , cd), as considered in [3, 4].

Circular operators are the prime examples of R-diagonal operators. Introduced in [21], R-diagonal
operators form a large class of non-self-adjoint operators that all have rotationally-invariant distri-
butions in a strong sense. They have played important roles in a number of different problems in
free probability; see [10, 20, 26]). In [18], the authors proved a strong form of a norm inequality (the
Haagerup inequality) for an L2

hol-space in the context of R-diagonal operators. A corollary to the
estimates therein is a norm inequality (ultracontractivity) for a dilation semigroup akin to the one
above: if a1, . . . , ad are R-diagonal and ∗-free, thenDt is defined byDt(ai1 · · · ain) = e−ntai1 · · · ain .

This work was partially supported by NSF Grant DMS-0701162.
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Phillippe Biane asked the author if this dilation semigroup generally has a completely positive ex-
tension to the von Neumann algebra W ∗(a1, . . . , ad), as it does in the special case that each opera-
tor aj is circular. The first main theorem (proved in Section 2) of this paper answers that question
in the affirmative.

Theorem 1.1. Let d ∈ {1, 2, . . . ,∞}, and let a1, . . . , ad be ∗-free R-diagonal operators. Then the dilation
semigroup Dt, defined on the algebra generated by a1, . . . , ad (and not a∗1, . . . , a

∗
d) by Dt(ai1 · · · ain) =

e−ntai1 · · · ain , has a completely positive extension to W ∗(a1, . . . , ad), given by

Dt(a
ǫ1
i1
· · · aǫn

in
) = e−|ǫ1+···+ǫn|taǫ1

i1
· · · aǫn

in

where ǫj ∈ {1,−1} and a−1
j is interpreted as a∗j .

This extension is precisely the kind of semigroup considered in the case of Haar unitary genera-
tors in [15] and [14]. (For example, if d = 1 and the single generator is unitary u, then Dt is simply
the homomorphism generated by u 7→ e−tu.) However, in the circular case, this extension is not
the natural one (it is much simpler than Biane’s free O–U semigroup which is diagonalized by free
products of Techebyshev polynomials). In fact, the above completely positive extension is gener-
ally non-unique: in the circular case, the dilation semigroup also has the free O–U semigroup as a
CP extension. In Section 2, we will provide a framework for more natural CP extensions (includ-
ing the O–U semigroup), depending on a Markovian character of the distribution of the absolute
value of the R-diagonal generators.

The second half of this paper concerns Lp-bounds of the non-selfadjoint semigroup Dt of The-
orem 1.1. In the classical context of the O–U semigroup Ut acting in L2(γ) or restricted to L2

hol(γ),
for any finite p > 2 the map Ut is bounded into Lp for sufficiently large t. However, it is never
bounded into L∞. This is not the case in the free analogue. Let us fix some notation.

Notation 1.2. Let A = {a1, . . . , ad} be ∗-free R-diagonal operators in a II1-factor with trace ϕ. Denote by
L2

hol(a1, . . . , ad) the Hilbert subspace of L2(W ∗(A), ϕ) generated by the (non-∗) algebra generated by A.

Remark 1.3. It is natural to call this Hilbert space a “holomorphic space” for the following reason.
Corollary 2.5 below expresses the fact that R-diagonal operators have rotationally-invariant dis-
tributions. It follows that two distinct monomials in a1, . . . , ad (and not a∗1, . . . , a

∗
d) are orthogonal

– this is the content of Corollary 2.7. Indeed, the commutative analogue is the fact that, if µ is
a U(n)-invariant measure on C

n (with finite moments of all orders), then the monomials zn are
orthogonal in L2(µ). Whence, the usual Taylor expansion (at 0) of a holomorphic function is ac-
tually an L2-decomposition. Similarly, in our ∗-free setting, any non-commutative power series in
a1, . . . , ad (i.e. a holomorphic function) is also an L2-sum, and the L2-space L2

hol in Notation 1.2 of
such convergent series is truly a non-commutative holomorphic Hilbert space.

In [18] we proved the following.

Theorem (Theorem 5.4 in [18]). Suppose that a1, . . . , ad are ∗-free R-diagonal operators satisfying C =
sup1≤j≤d‖aj‖/‖aj‖2 <∞ (e.g. if d is finite). Then for t > 0,

‖Dt : L
2
hol(a1, . . . , ad)→W ∗(a1, . . . , ad)‖ ≤ 515

√
eC2 t−1.

(In [18] this Theorem is stated only in the case that a1, . . . , ad are identically–distributed, but a
glance at the proof of Theorem 1.3 in [18] shows that the the theorem was actually proved in the
generality stated above.) The following theorem shows that this ultracontractive bound is, in fact,
sharp.

Theorem 1.4. Let a1, . . . , ad be ∗-free R-diagonal operators, at least one of which is not a scalar multiple
of a Haar unitary. Then there are constants α, β > 0 such that, for 0 < t < 1,

α t−1 ≤ ‖Dt : L
2
hol(a1, . . . , ad)→W ∗(a1, . . . , ad)‖ ≤ β t−1.

Moreover, this bound is achieved on the algebra generated by a single non-Haar-unitary aj .
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In fact, in Section 3 we will give sharp bounds for the action of Dt from L2
hol to Lp for any even

integer p ≥ 2, at least in the case that the generator aj has non-negative cumulants. This is not
quite enough to yield the bound of Theorem 1.4, but only the infinitesimally smaller lower-bound
t−1+ǫ for any ǫ > 0. The full theorem is proved instead using a clever L4 estimate suggested by
Haagerup.

In what follows, we will provide a minimum of technical background on the free probabilistic
tools used when needed. We suggest that readers consult the “Free Probability Primer” (Section
2) in [18], and the excellent book [23] for further details.

Remark 1.5. A note on constants. The ‖Dt : L
2 → Lp‖–estimates considered in this paper are of

interest for the order of magnitude blow-up as t → 0. Multiplicative constants will be largely ig-
nored. As such, the symbols α, β will sometimes be used to represent arbitrary positive constants,
and so some equations may seemingly imply false relations like 2α = α2 = α/α =

√
α = α. The

author hopes this will not cause the reader any undue stress.

2. COMPLETELY POSITIVE EXTENSIONS

2.1. Preliminaries. We begin with a few basic facts about R-diagonal operators. Fix a II1-factor
A with trace ϕ. NC(n) denotes the lattice of non-crossing partitions of the set {1, . . . , n}. The free
cumulants {κπ ; π ∈ ⊔

nNC(n)} relative to ϕ are multilinear functionals A n → C, given by the
Möbius inversion formula

κπ[a1, . . . , an] =
∑

σ≤π

ϕσ [a1, . . . , an]Moeb(σ, ϕ), (2.1)

where Moeb is the Möbius function of the lattice NC(n), and ϕσ [a1, . . . , an] is the product of mo-
ments of the arguments corresponding to the partition π: if the blocks of σ are {V1, . . . , Vr}, then
ϕσ = ϕV1 · · ·ϕVr , where, if V = {i1 < · · · < ik},

ϕV [a1, . . . , an] = ϕ(ai1 · · · aik).

For example, if π = {{1, 4}, {2, 5}, {3}} then ϕπ[a1, . . . , a5] = ϕ(a1a4)ϕ(a2a5)ϕ(a3). Let κn stand
for κ1n where 1n is the one block partition {1, . . . , n}. Then, for example, κ1[a] = ϕ(a) is the mean,
while κ2[a, b] = ϕ(ab) − ϕ(a)ϕ(b) is the covariance. It is important to note that the functionals κπ

also share the same factorization property as the functionals ϕπ : if π = {V1, . . . , Vr} then κπ =
κV1 · · · κVr , where, if V = {i1 < · · · < ik}, κV [a1, . . . , an] = κk[ai1 , . . . , aik ]. In this way, any free
cumulant can be factored as a product of block cumulants κk.

Equation 2.1 is designed so that the following moment–cumulant formula holds true:

ϕ(a1 · · · an) =
∑

π∈NC(n)

κπ[a1, . . . , an]. (2.2)

Equations 2.1 and 2.2 show that there is a bijection between the mixed–moments and free cumu-
lants of a collection of random variables a1, . . . , an ∈ A . The benefit of using the free cumu-
lants in this context is their relation to freeness. The following can be taken as the definition:
a1, . . . , ad ∈ A are free if and only if their mixed cumulants vanish. That is, for any n ∈ N and collection
i1, . . . , in ∈ {1, . . . , d} not all equal, κn[ai1 , . . . , ain ] = 0.

Two important examples of operators with particularly nice free cumulants are circular op-
erators and Haar unitaries. If c is circular, then among all free cumulants in c and c∗, only
κ2[c, c

∗] = κ2[c
∗, c] = 1 are non-zero. On the other hand, for Haar unitary u, there are non-zero

free cumulants of all even orders; the non-zero ones are

κ2n[u, u∗, . . . , u, u∗] = κ2n[u∗, u, . . . , u∗, u] = (−1)nCn−1,

whereCn is the Catalan number 1
n+1

(
2n
n

)
. In both cases (c and u), the non-vanishing free cumulants

must alternate between the operator and its adjoint. This is the definition of R-diagonality.
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Definition 2.1. An operator a in a II1-factor is called R-diagonal if the only non-zero free cumulants of
{a, a∗} are of the form κ2n[a, a∗, . . . , a, a∗] or κ2n[a∗, a, . . . , a∗, a].

The terminology “R-diagonal” relates to the multi-dimensional R-transform in [23]; the joint
R-transform of a, a∗, for R-diagonal a, has the form (z,w) 7→

∑
n≥0 αn(zw)n + βn(wz)n, and so

is supported “on the diagonal”. In Section 3, we will use Definition 2.1 directly. Here, it is more
convenient to have the following alternate characterization of R-diagonality.

Theorem (Theorem 15.10 in [23]). An operator a is R-diagonal if and only if, for any Haar unitary u
∗-free from a, ua has the same distribution as a.

Remark 2.2. To be clear, the above equi-distribution statement means that if P is a non-commutative
polynomial in two variables thenϕ(P (a, a∗)) = ϕ(P (ua, a∗u∗)). Corollary 15.14 in [23] re-interprets
this equi-distribution property in terms of the polar decomposition of a: at least in the case that
ker a = {0}, a is R-diagonal iff its polar decomposition is of the form a = ur where r ≥ 0, u is Haar
unitary, and r, u are ∗-free. In the case that a is R-diagonal but ker a 6= {0}, it is still possible to
write a = ur with u Haar unitary and r ≥ 0, but this is not the polar decomposition of a and here
u, r are not ∗-free; cf. Proposition 15.13 in [23].

Let a be R-diagonal. For exponents ǫ1, . . . , ǫn ∈ {1, ∗}, our immediate aim is to appropriately
bound general moments of the form ϕ(aǫ1 · · · aǫn). Denote the string (ǫ1, . . . , ǫn) as S, and denote
aǫ1 · · · aǫn by aS. The following specialization of Equation 2.2 is vital to the combinatorial under-
standing of R-diagonal moments.

Proposition 2.3. Let S = (ǫ1, . . . , ǫn) be a string of 1s and ∗s. Let NC(S) denote the set of all partitions
π ∈ NC(n) such that each block of π is of even size and alternates between 1 and ∗ in S. Let a be R-
diagonal. Then

ϕ(aS) =
∑

π∈NC(S)

κπ[aǫ1, . . . , aǫn ]. (2.3)

For example, consider the word a3a∗2aa∗2 with exponent string S = (1, 1, 1, ∗, ∗, 1, ∗, ∗). The set
NC(S) consists of the three partitions in Figure 1.

1 1 1 ∗ ∗ 1 ∗ ∗ 1 1 1 ∗ ∗ 1 ∗ ∗

1 1 1 ∗ ∗ 1 ∗ ∗

FIGURE 1. The three partitions in NC(1, 1, 1, ∗, ∗, 1, ∗, ∗).

Proof. In Equation 2.2, consider the general term κπ[aǫ1 , . . . , aǫn ] in the summation. This factors
into terms κV [aǫ1 , . . . , aǫn ] over the blocks V of π. Since a is R-diagonal, the only such non-zero
terms are of the form κ2m[a, a∗, . . . , a, a∗] or κ2m[a∗, a, . . . , a∗, a]. Thus, each V must be even in size,
and must alternate between a and a∗ for the term to contribute. It follows that the non-zero terms
in the sum 2.2 are all indexed by π ∈ NC(S). �

Corollary 2.4. Let a be R-diagonal, and let S be a string. Then ϕ(aS) is 0 unless S is balanced: it must
have equal numbers of 1s and ∗s. In particular, S must have even length.

Proof. In each term κπ in 2.3, each block of the partition π ∈ NC(S) is of even length and alternates
between 1 and ∗. Hence, each block has equal numbers of 1s and ∗s, and thus only balanced S

contribute to the sum. �
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Corollary 2.5. R-diagonal operators are rotationally-invariant: let a be R-diagonal, and let θ ∈ R. Then
eiθa has the same distribution as a.

Remark 2.6. If a were a normal operator, then the above equi-distribution statement is precisely
the same as requiring the spectral measure of a to be a rotationally-invariant measure on C.

Proof. Let P be a non-commutative monomial in two variables, P (x, y) = xn1ym1 · · · xnrymr . Set

n1 + · · · + nr = n and m1 + · · · +mr = m. Then P (eiθa, e−iθa∗) = ei(n−m)θP (a, a∗). By Corollary

2.4, if n 6= m then ϕ(P (a, a∗)) = ϕ(ei(n−m)θP (a, a∗)) = 0. Otherwise, the two elements are equal
and so have the same trace. �

The following orthogonality relation will be important in the sequel, and is an immediate con-
sequence of Corollary 2.4.

Corollary 2.7. Let a1, a2, . . . , ad be ∗-free R-diagonal operators in (A , ϕ). Then (aj)
n and (ak)

m are
orthogonal in L2(A , ϕ) whenever j 6= k or n 6= m.

Proof. The inner product is ϕ(an
j (am

k )∗). Applying Equation 2.2, this is a sum of terms of the form

κπ[aj , . . . , aj , a
∗
k, . . . , a

∗
k]. If j 6= k, this is a mixed cumulant of ∗-free random variables, and so

vanishes. If j = k and m 6= n, the inner product is ϕ(aS) for an imbalanced string, and so it also
vanishes by Corollary 2.4. �

2.2. Completely positive extensions for rotationally-invariant generators. Here we prove The-
orem 1.1, which actually holds in the wider context of ∗-free rotationally-invariant generators.

Proof of Theorem 1.1. Let a1, . . . , ad be ∗-free rotationally-invariant operators. Since the law of the
generators determines the von Neumann algebra they generate, for any θ ∈ R and any index
j ∈ {1, . . . , d} there is a ∗-automorphism

α
(j)
θ : W ∗(aj)→W ∗(aj)

determined by α
(j)
θ (aj) = eiθaj . Since the generators are ∗-free,W ∗(a1, . . . , ad) is naturally isomor-

phic to W ∗(a1) ∗ · · · ∗W ∗(ad), and so we have a ∗-automorphism

αθ = α
(1)
θ ∗ · · · ∗ α

(d)
θ : W ∗(a1, . . . , ad)→W ∗(a1, . . . , ad). (2.4)

Note, any ∗-automorphism is automatically completely-positive.

Let P (r, θ) denote the Poisson kernel for the unit disc in C; that is, for r ∈ [0, 1] and θ ∈ [0, 2π),

P (r, θ) = Re
1 + reiθ

1− reiθ =
1− r2

1− 2r cos θ + r2
=

∞∑

k=−∞

r|k|eikθ. (2.5)

For any fixed r < 1, this kernel is strictly positive and bounded on the circle θ ∈ [0, 2π). For any
operator x ∈W ∗(a1, . . . , ad), define

Drx =
1

2π

∫ 2π

0
P (r, θ)αθ(x) dθ.

Because the Poisson kernel is continuous and bounded on a compact set, this integral converges in
operator norm. Each uniformly convergent Riemann sum is therefore of the form

∑
pjαθj

, where
the pj (samples of the Poisson kernel) are positive numbers. Each such sum is thus completely
positive, and so the uniform limit Dr is a completely positive operator as well.

Now we need only check the action of Dr on monomials aǫ1
i1
· · · aǫn

in
, where ǫj ∈ {1, ∗}. Note that

α
(ik)
θ (aǫ1

i1
· · · aǫk

ik
· · · aǫn

in
) = eǫkiθ (aǫ1

i1
· · · aǫk

ik
· · · aǫn

in
),

where ǫ = ∗ is interpreted as ǫ = −1 on the right-hand-side. Hence,

αθ(a
ǫ1
i1
· · · aǫn

in
) = ei(ǫ1+···+ǫn)θ(aǫ1

i1
· · · aǫn

in
).

5



Hence, from the third equality in Equation 2.5,

P (r, θ)αθ(a
ǫ1
i1
· · · aǫn

in
) =

∞∑

k=−∞

r|k|ei(k+ǫ1+···+ǫn)θ(aǫ1
i1
· · · aǫn

in
).

Integrating term-by-term around the circle, the only term that survives is k = −(ǫ1 + · · ·+ ǫn), and
the integral there is just 1. Hence,

Dr(aǫ1
i1
· · · aǫn

in
) = r|ǫ1+···+ǫn| aǫ1

i1
· · · aǫn

in
.

Setting Dt = De−t

yields the formula in Theorem 1.1. Note that this restricts to the dilation semi-
group when all ǫj = 1. Hence, Dt has a completely-positive extension. �

Indeed, every dilation semigroup associated to ∗-free rotationally-invariant generators (for ex-
ample ∗-free R-diagonal generators) has a completely positive extension. In the case of a single

unitary generator u, the action of Dt on Laurent polynomial in u is simply Dt(u
n) = e−|n|t un,

which “counts unitaries”. However, this action is not particularly natural in the general setting:
it has no connection with the distribution of the generators. In the circular setting, this is not the
free O–U semigroup, which is also completely positive (as proved in [4]). Therefore, this extension
may not be unique.

2.3. Completely positive extensions for Markov kernels. A different CP extension is possible for
some generating distributions. Let µ be a (compactly-supported) probability measure on R. Then
the monomials {1, x, x2, . . .} are dense in L2(R, µ), and Gram-Schmidt orthogonalization produces
the orthogonal polynomials {p0, p1, p2, . . .} associated to µ. (If µ has infinite support, all monomials
are linearly independent; if µ has support of size n then pk = 0 for k > n.) The polynomial pn has
degree n, and p0(x) = 1. (In the case that µ is symmetric, p1(x) = x.) If µ is the semicircle law, the
associated polynomials are the Tchebyshev polynomials of type II, usually denoted un.

Given µ with associated orthogonal polynomials {pn}, let p̂n denote the normalized polynomi-
als (in L2(µ), so that {p̂n} forms an o.n. basis). Consider the following integral kernel (which may
take infinite values):

mµ(r;x, y) =
∑

n≥0

rn p̂n(x)p̂n(y). (2.6)

Here r ∈ [0, 1) and x, y range over suppµ. The formula converges at least when r|xy| < 1. We refer
to the kernel in Equation 2.6 as a Mehler kernel. If the measure is chosen as the standard normal
law (which is not compactly-supported but has sufficient tail decay to ensure the L2-density of
polynomials), then the polynomials pn are the Hermite polynomials and the kernel is the Mehler
kernel. On the other hand, if µ is the semicircle law, setting r = e−t yields the kernel of the
(one-dimensional) free O–U semigroup in [4].

Let Mµ(r) denote the integral operator associated to the kernel mµ(r, ·, ·); that is, for f ∈ L∞(µ)
at least, let

(Mµ(r)f)(x) =

∫

R

mµ(r;x, y) f(y)µ(dy).

Since µ is a probability measure, L∞(µ) ⊂ L2(µ) and so any such f has an L2-expansion f =∑
n≥0 fn p̂n for an ℓ2(N)–sequence (fn)∞n=0. From the orthonormality of the polynomials p̂n in

L2(µ) it is then easy to see that the action of Mµ(r) is

Mµ(r)f =
∑

n≥0

rn fn p̂n. (2.7)

That is, Mµ(r) is a polynomial multiplier semigroup (in multiplicative form): Mµ(r) pn = rn pn.
Contingent on convergence in L∞(µ), we may then ask the question of whether Mµ(r) is com-
pletely positive. In this case, as a bounded operator on the commutative von Neumann algebra
L∞(µ), complete positivity is equivalent to positivity of the kernel: Mµ(r) is CP if and only if
mµ(r;x, y) ≥ 0 for x, y ∈ suppµ. In other words, Mµ is CP if and only if mµ is a Markov kernel.
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Example 2.8. For the point mass δ0, p0 = 1 and all other pn are 0, so the kernel mδ0 is trivially
Markovian. Let λ > 0 and set µ = 1

2(δλ + δ−λ). Then we may easily calculate that p̂0(x) = 1 and

p̂1(x) = x/λ, while all higher polynomials are 0. Thence mµ(r;x, y) = 1 + rxy/λ2, and on the
support of µ x, y ∈ {±λ}we have mµ = 1± r ≥ 0 as 0 ≤ r < 1. Hence mµ is Markovian.

Example 2.9. On the other hand, consider an arbitrary symmetric measure with 3-point support,
ν = a(δλ + δ−λ) + (1 − 2a)δ0 where 0 ≤ a ≤ 1

2 and λ > 0. A simple calculation shows that in this
case

mν(r;λx, λy) = 1 + r
xy

2a
+ r2

(x2 − 2a)(y2 − 2a)

2a(1− 2a)
.

The arguments λx, λy are in suppν if and only if x, y ∈ {0,±1}; note that

mν(r; 1,−1) = 1− r 1

2a
+ r2

1− 2a

2a
= (1− r)

[
1 + r − r

2a

]
.

If a < 1
4 , this is < 0 for some r ∈ [0, 1), and so mν is not Markovian for some choices of a.

It is a historically challenging problem to determine, for a given measure µ, whether the asso-
ciated Mehler kernel mµ is a Markov kernel. (See, for example, [1, 19, 24, 27].) The motivating
example (the Mehler kernel) is Markovian: with µ = γ1 (Gauss measure on R),

mγ1(r;x, y) = (1− r2)−1/2 exp
(
y2/2 + (1− r2)−1/2(rx− y)

)
,

which is strictly positive on R = supp γ1 for 0 ≤ r < 1. Writing a formula for a general Mehler
kernel is a hopeless task. Nevertheless, the following positivity condition affords many examples
of Markovian Mehler kernels.

Proposition 2.10. The following conditions are equivalent.

(1) mµ(r;x, y) ≥ 0 a.s. on suppµ.
(2) For f ≥ 0 a.s. on suppµ, and in L1(µ), Mµ(r)f ≥ 0 a.s. on suppµ.
(3) For f ∈ L1(µ), ‖Mµ(r)f‖L1(µ) ≤ ‖f‖L1(µ).
(4) For f ∈ L∞(µ), ‖Mµ(r)f‖L∞(µ) ≤ ‖f‖L∞(µ).
(5) For all p ∈ [1,∞], ‖Mµ(r)f‖Lp(µ) ≤ ‖f‖Lp(µ).

Remark 2.11. The statement is that mµ is Markovian if and only if Mµ is a contraction on L1, or on
L∞, or on Lp for all p between 1 and∞. This proposition and the following proof are borrowed
from [13], but the results really go back to Beurling and Deny [2].

Proof. The equivalence of (1) and (2) is elementary. Condition (4) follows from (3) by duality,
since Mµ(r) is self-adjoint on L2(µ). Condition (5) follows from (3) and (4) by the Riesz-Thorin
interpolation theorem, and evidently (5) implies (3).

Suppose condition (1) holds. Then

|Mµ(r)f(x)| =
∣∣
∫
mµ(r;x, y)f(y) dµ(y)

∣∣ ≤
∫
|mµ(r;x, y)| |f(y)| dµ(y)

=

∫
mµ(r;x, y) |f(y)| dµ(y) = Mµ(r)|f |(x).

The reader can easily check thatMµ(r) is trace-preserving:
∫
Mµ(r)g dµ =

∫
g dµ. Hence

∫
Mµ(r)|f | dµ =∫

|f | dµ = ‖f‖L1(µ), and so

‖Mµ(r)f‖L1(µ) =

∫
|Mµ(r)f | dµ ≤

∫
Mµ(r)|f | dµ = ‖f‖L1(µ),

verifying property (3).

On the other hand, suppose condition (3) holds. Take f ∈ L1(µ) with f ≥ 0. Then by assump-
tion (3), ∫

|Mµ(r)f(x)| dµ(x) = ‖Mµ(r)f‖L1(µ) ≤ ‖f‖L1(µ) =

∫
f dµ,
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and as above we have
∫
f dµ =

∫
Mµ(r)f dµ. Hence,

∫
|Mµ(r)f | dµ ≤

∫
Mµ(r)f dµ. Since µ is a

positive measure, this means that Mµ(r)f(x) ≥ 0 for x ∈ suppµ, verifying property (2). �

Example 2.12. In [6] the authors introduced the q-Gaussian factors, with their associated q-Gaussian
measures σq. When q = 1, σq = γ1 is the standard normal law; when q = 0, σ0 is the semicircle
law, and q = −1 yields a two-point Bernoulli measure as in Example 2.8. All the measures σq with
−1 ≤ q < 1 are compactly supported and symmetric. The associated orthogonal polynomials are

the q-Hermite polynomials H
(q)
n given by the following tri-diagonal recursion:

H
(q)
0 (x) = 1, H

(q)
1 (x) = x, H

(q)
n+1(x) = xH(q)

n (x)− [n]q H
(q)
n−1(x),

where [n]q = 1 + q + · · · + qn−1. When q = 1 these are the Hermite polynomials, associated to
Gauss measure; for q = 0 the recurrence produces the Tchebyshev II polynomials, orthogonal for
the semicircle law. The L2(σq) normalization factor is 1/[n]q! where [n]q! = [n]q · [n−1]q · · · [2]q · [1]q .

The Mehler kernelmσq is the kernel of the q-O–U semigroup considered in [4]. There, Biane proved
Nelson’s hypercontractivity inequalities for the associated semigroup, which include as a special
case condition 5 in Proposition 2.10. Hence, there is a continuous family of Mehler kernels that are
both symmetric and Markovian.

We now come to the question of completely positive extensions for R-diagonal dilation semi-
groups. Let a1, . . . , ad be ∗-free R-diagonal operators in a II1-factor (traciality is necessary here).
From [22], there are self-adjoint even elements xj (that is, the distribution µxj

is symmetric on R)
with the same free cumulants as those of aj . Hence,

κ2n[xj , xj, . . . , xj , xj ] = κ2n[aj , a
∗
j , . . . , aj , a

∗
j ] = κ2n[a∗j , aj , . . . , a

∗
j , aj ]. (2.8)

(The odd cumulants of aj, a
∗
j are 0 by definition, and so are those of xj since it is even; all odd

moments are 0, and so too are all odd cumulants.) This means that |aj | is equal in distribution to
|xj |. In [12] (Corollary 3.2), the authors show that if s is self-adjoint, even, free from xj and s2 = 1,
then sxj is R-diagonal and indeed has the same distribution as aj . What’s more, the construction
of xj from aj takes place within theW ∗-algebra generated by aj , and so x1, . . . , xd are free. In other
words, we may represent the generators aj in the form a1 = sx1, . . . , ad = sxd where x1, . . . , xd, s
are all free, self-adjoint, even, and s2 = 1. Note, then, that

W ∗(a1, . . . , ad) ∼= W ∗(x1, . . . , xd, s).

Let µj denote the distribution of xj on R. Since the xj are free, we have

W ∗(a1, . . . , ad) ∼= L∞(µ1) ∗ · · · ∗ L∞(µd) ∗W ∗(s).

We may then define, for 0 ≤ r < 1, the operator T r on L∞(µ1) ∗ · · · ∗ L∞(µd) ∗W ∗(s) by

T r = Mµ1(r) ∗ · · · ∗Mµd
(r) ∗ Id. (2.9)

Now, suppose that the kernels mµ1 , . . . ,mµd
are in fact Markovian (for example, satisfying the

conditions of Proposition 2.10). Then the operatorsMµ1(r), . . . ,Mµd
(r) are all completely positive

(they are positive operators on commutative von Neumann algebras). Moreover, as was stated
in the proof of Proposition 2.10, they are trace-preserving (

∫
Mµf dµ =

∫
f dµ). Of course the Id

map on W ∗(s) is also CP and trace preserving. Then by Theorem 3.8 in [5], the operator T r is
completely positive and trace preserving on L∞(µ1) ∗ · · · ∗ L∞(µd) ∗W ∗(s) ∼= W ∗(a1, . . . , ad).

Now, by definition the orthogonal polynomial pµ
1 (x) for any symmetric measure µ is a scalar

multiple of x, and hence Mµj
(r)xj = r xj . Then the action of T r on words in the generators and

not their adjoints is:

T r(ai1ai2 · · · ain) = T r(sxi1sxi2 · · · sxin)

= s(r xi1)s(r xi2) · · · s(r xin) = rnai1ai2 · · · ain .

Setting Tt = De−t

, this means that Tt, restricted to the (non–∗) algebra generated by a1, . . . , ad, is
the associated R-diagonal dilation semigroup Dt. We have therefore proved the following.
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Theorem 2.13. Let a1, . . . , ad be ∗-free R-diagonal operators, and suppose that the Mehler kernels as-
sociated to the symmetrizations µj of the distributions of |aj | are Markovian. Then Equation 2.9 with

Tt = De−t

defines a CP trace preserving extension of the R-diagonal dilation semigroup Dt of {a1, . . . , ad}
which is different from the extension of Theorem 1.1. In particular, in the case that each aj is circular, Tt

corresponds to the free O–U semigroup.

Remark 2.14. The notion of correspondence in the final statement of Theorem 2.13 is as follows.

The free O–U semigroup Ut acts on W ∗(σ1, . . . , σd) where σj = (cj + c∗j )/
√

2 are free semicircular
operators – the cj are ∗-free circular operators. In this circular case, the symmetrization of the
distribution of |cj | is also the semicircle law σ: this is easy to check from Equation 2.8 and the fact
that κ2[c, c

∗] = κ2[c
∗, c] = κ2[σ, σ] = 1 and all other free cumulants are 0. Hence, the construction

above W ∗(c1, . . . , cd) ∼= W ∗(x1, . . . , xd, s) yields free semicircular xj , and so we can view Ut acting
in W ∗(x1, . . . , xd). Its action is

Ut (un1(xi1) · · · unk
(xik)) = e−(n1+···+nk)tun1(xi1) · · · unk

(xik),

where un are the Tchebyshev II polynomials, the orthogonal polynomials for the semicircle law,
and the indices iℓ are consecutively distinct. From Equation 2.7, this is precisely the action of
Mσ(e−t) ∗ · · · ∗Mσ(e−t) on W ∗(x1, . . . , xd) ∼= L∞(σ) ∗ · · · ∗L∞(σ), and so Ut is the restriction from
W ∗(x1, . . . , xd, s) to W ∗(x1, . . . , xd) of the Markov extension Tt of the circular R-diagonal dilation
semigroup. Note that Tt acts on the full von Neumann algebra W ∗(x1, . . . , xd, s) through a very
similar formula:

Tt

(
sǫ0un1(xi1)s

ǫ1un2(xi2) · · ·sǫn−1unk
(xik)sǫn

)

= e−(n1+···+nk)t sǫ0un1(xi1)s
ǫ1un2(xi2) · · · sǫk−1unk

(xik)sǫk ,

where ǫj is either 0 or 1 (i.e. either the s is included or not). In this case, if an s separates un(xi)
from um(xj), it is not required that i 6= j; the s stands in for free product.

Remark 2.15. The orthogonal polynomials {p0, p1, p2, . . .} for µ are constructed from {1, x, x2, . . .}
by Gram-Schmidt orthogonalization, which means that the span (inL∞) of {p0, . . . , pn} is the same
as the span of {1, x, . . . , xn}. As a result, and monomial xn can be expanded xn =

∑n
k=0 αn,k pk(x)

as a finite sum. Since µ is symmetric, pn is even if n is even and odd if n is odd, and so it follows that
only every second αn,k is non-zero. What’s more, the leading term of pn is xn, and so αn,n = 1. So,
for example, x3 = p3(x) + α3,1x. (The other coefficients are certain combinations of the moments
of the measure µ; for example, α3,1 =

∫
x4 dµ/

∫
x2 dµ.) This allows for the easy determination of

the action of Tt on arbitrary words in the generators a1, . . . , ad and their adjoints.

Example 2.16. Consider the word a∗1a1a
∗
1a

2
2a

∗
1. We rewrite this as

a∗1a1a
∗
1a

2
2a

∗
1 = (x1s)(sx1)(x1s)(sx2)

2(x1s)

= x3
1 x2 s x2 x1s.

(2.10)

Let pn denote the orthogonal polynomials of the distribution of x1, and let αn,k be the relevant
coefficients, as explained in Remark 2.15. Then x3

1 = p3(x1) + α3,1x1, and so

Tt(a
∗
1a1a

∗
1a

2
2a

∗
1) =

(
e−3t p3(x1) + e−tα3,1x1

)
(e−tx2)s(e

−tx2)(e
−tx1)s

= e−6t p3(x1)x2 s x2 x1s+ e−4tα3,1 x1 x2 s x2 x1s.

Rewriting p3 as p3(x1) = x3
1 − α3,1x1 yields

Tt(a
∗
1a1a

∗
1a

2
2a

∗
1) = e−6tx3

1 x2 s x2 x1s+ (e−4t − e−6t)α3,1 x1 x2 s x2 x1s.

From Equation 2.10 we have x3
1 x2 s x2 x1s = a∗1a1a

∗
1a

2
2a

∗
1 ; for the second term, we introduce 1 = s2

between x1 x2 yielding,

x1 x2 s x2 x1s = (x1s)(sx2)(sx2)(x1s) = a∗1a
2
2a

∗
1.
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In this way, any monomial in x1, . . . , xd, smay be converted into a unique monomial in a1, , . . . , ad

and their adjoints. Hence, for this example, we have

Tt(a
∗
1a1a

∗
1a

2
2a

∗
1) = e−6ta∗1a1a

∗
1a

2
2a

∗
1 + (e−4t − e−6t)α3,1 a

∗
1a

2
2a

∗
1. (2.11)

Remark 2.17. Equation 2.11 is typical of the action of the Markov extension Tt ofDt (when it exists).
The leading term is multiplication by e−nt on any word of length n, mimicking the action of Dt

on words in the generators and not their inverses; this is to be contrasted with the alternating
degree count in the generic extension of Theorem 1.1. There are then correction terms involving
lower-degree words, with coefficients that are polynomial in e−t that vanish at t = 0. All such
correction terms vanish in the case of words in the generators without inverses, thus resulting in
the R-diagonal dilation semigroup as per Theorem 2.13.

3. OPTIMAL ULTRACONTRACTIVITY

We now wish to consider the action of an R-diagonal dilation semigroupDt, relative to genera-
tors a1, . . . , ad, on L2

hol(a1, . . . , ad) taking values in Lp(W ∗(a1, . . . , ad), ϕ) for p = 2, 4, . . . ,∞ (where
the L∞ is just W ∗(a1, . . . , ad) equipped with its operator norm). The initial idea is to approximate
the operator norm through the Lp–norms as p → ∞ to prove Theorem 1.4. In fact, the follow-
ing approximations are slightly too weak to make this approach work; the resultant lower-bound
involves a constant which tends to 0 as p → ∞, missing the target at p = ∞ by an infinitesimal
exponent. A separate argument based on similar combinatorics is given to prove Theorem 1.4.
The Lp-estimates are included below for independent interest; in particular, they are in line with
the conjecture that the spaces Lp

hol(a1, . . . , ad) are complex interpolation scale.

3.1. Bounding |NC(S)|. A generic string may be written in the form S = (1n1 , ∗m1 , . . . , 1nr , ∗mr )
where r ≥ 1 and n1,m1, . . . , nr,mr ≥ 1. (There are implied commas: 13 = (1, 1, 1).) The number r
of alternations between 1 and ∗ is an important statistic; refer to it as the number of runs in S. We
will shortly provide a lower-bound on the size of NC(S), which depends fundamentally on this
number r. First, we specialize NC(S) to pairings.

Definition 3.1. Given a string S, let NC2(S) denote the set of all pairings in NC(S).

For example, for the string in Figure 1, the first two partitions are in NC2(S) (the last is not).
Of course NC2(S) is a subset of NC(S), so we may estimate its size to find a lower-bound on
|NC(S)|. It follows from Equation 2.3 and the form of the cumulants of a circular operator c that
ϕ(cS) = |NC2(S)| for any S, and so it is no surprise that this set plays an important role in the
following estimates. For the regular strings S = (1n, ∗n)r, |NC2(S)| was calculated exactly in our
paper [18]. Our proof was very topological, but a simpler recursive proof is given in [7]. The result
is as follows:

|NC2 ((1n, ∗n)r) | = ϕ ((cnc∗n)r) = C(n)
r =

1

nr + 1

(
(n+ 1)r

r

)
. (3.1)

The numbers C
(n)
r are called Fuss-Catalan numbers. As a function of n, C

(n)
r is on the order of

(n+ 1)r−1. This structure is reflected in the following estimate.

Proposition 3.2. Let S = (1n1 , ∗m1 , . . . , 1nr , ∗mr ) be a balanced string, and let i be the minimum block
size, i = min{n1,m1, . . . , nr,mr} ≥ 1. Then

|NC2(S)| ≥ (1 + i)r−1.

Proof. The case r = 1 is simple: this means that S has the form (1n1 , ∗m1), and since S is balanced,
this means n1 = m1 = i. It is therefore a regular string of the form mentioned above, and so

|NC2(S)| = C
(i)
1 = 1

n1+1

((i+1)1
1

)
= 1 = (1 + i)1−1, proving this base case correct.

Proceeding by induction on r ≥ 2, suppose that for any string S̃ with precisely r−1 runs, it holds

that |NC2(S̃)| ≥ (1 + ĩ)r−2, where ĩ is the minimal block size in S̃. Let S = (1n1 , ∗m1 , . . . , 1nr , ∗mr )
be any balanced string with r runs, and minimum block size i. We may cyclically permute the
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entire string without affecting the size of |NC2(S)|, and so without loss of generality we may
assume that n1 = i. (Note: if the minimum occurs on a ∗ block, we can rotate and then reverse
the roles of 1 and ∗.) Now, since n1 = i is the minimum, mr ≥ i, and so one possible way to

pair each of the initial 1s in S is with the last i ∗s in the final block; the resulting leftover string S̃

is (∗m1 , 1n2 , . . . , ∗mr−1 , 1nr , 0mr−i), which can be rotated to the string (1n2 , ∗m2 , . . . , 1nr , ∗m1+mr−i)
which is, by construction, still balanced, and has r−1 runs. Therefore, by the induction hypothesis,

there are at least (1 + ĩ)r−2 pairings of this internal string, and since it is a substring of S, ĩ ≥ i;
hence, with the initial block of 1s all paired at the end, there are at least (1 + i)r−2 pairings in
NC2(S).

More generally, let 1 ≤ ℓ ≤ i = n1. Since m1 ≥ i ≥ ℓ, the last ℓ 1s in this first block can be paired
to the first ℓ ∗s, with the remaining i − ℓ 1s pairing to the final i − ℓ ≤ mr ∗s in the final block,

as above. The remaining internal string is then 1m1−ℓ, 1n2 , . . . , ∗mr−1 , 1nr , ∗mr−(i−ℓ) which can be
rotated to 1n2 , ∗m2 , . . . , 1nr , ∗m1+mr−i once again. Thus, as above, for each choice of ℓ between 1

1 1 1 ∗ ∗ ∗ ∗ 1 1 1 1 1 ∗ ∗ ∗ 1 1 1 1 ∗ ∗ ∗ ∗ ∗S =

S̃

FIGURE 2. One of the i + 1 configurations for the first block of 1s, yielding all the

pairings of S̃; in this example, i = 3, and ℓ = 2.

and i, we have at least (1+ i)r−2 distinct pairings of S, and the different pairings for different ℓ are
distinct. Adding these i(1 + i)r−2 pairings to the (1 + i)r−2 in the case above, we see that NC2(S)
indeed contains at least (1 + i)r−1 pairings. �

Remark 3.3. This proof actually yields a somewhat larger lower-bound, given as a product of it-
erated minima (1 + i1)(1 + i2) · · · (1 + ir−1) where i1 = i is the global minimum and each ik+1 is

the minimum of the leftover string after the inductive step has been applied at stage k (i.e. i2 = ĩ
from the proof). It is possible to construct examples where this iterated minimum product is much
larger than the stated lower bound; it is also easy to construct strings with arbitrary length that
achieve the bound. Regardless, the result of Proposition 3.2 is sufficient for our purposes.

We will also require an upper-bound for the size of |NC2(S)|. To achieve it, we need a con-
venient way to understand the restrictions a string S enforces over pairings. Consider the string
(1, 1, 1, 1, ∗, ∗, 1, 1, ∗, ∗, ∗, ∗, ∗, 1, 1, ∗) for example; if the second 1 were paired to the second ∗, the
substring so-contained would be (1, 1, ∗), which is not balanced and so has no internal pairings.
Therefore, in order for the whole string to be paired off, it is not possible for the second 1 to pair
to the second ∗. To understand which pairings may be made, associate to any string S a lattice
path P(S): start at the origin in R

2, and for each 1 in the string, draw a line segment of direction
vector (1, 1); for each ∗ draw a line segment of direction vector (1,−1). If the balanced string S has
length 2n (n 1s and n ∗s), then the associated lattice path P(S) is a±1-slope piecewise-linear curve
joining (0, 0) to (2n, 0) (and each such curve, with slope-breaks at integer points, corresponds to
a balanced 1-∗ string). Figure 3 shows the lattice path corresponding to the string S considered
above. The lattice path P(S) gives an easy geometric condition on allowed non-crossing pairings
of S. Any 1 must be paired with a ∗ in such a way that the substring between them is balanced;
since the line-segments in P(S) slope up for 1 and down for ∗, this means that any pairing must
be from an up slope to a down slope at the same vertical level. In Figure 3, these levels are marked
with dotted lines, and labeled along the vertical axis.

The statistic of a string which is important for the upper bound is the lattice path height h(S),
which is simply the total height (total number of vertical increments) in P(S); that is, h(S) is the
number of distinct labels needed on the vertical axis of the lattice path. In Figure 3, h = 5.
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1 1 1 1 1∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 ∗1
1

2

3

4

5

FIGURE 3. The lattice path P(1, 1, 1, 1, ∗, ∗, 1, 1, ∗, ∗, ∗, ∗, ∗, 1, 1, ∗).

Lemma 3.4. Let S be a balanced 1-∗ string with lattice path height h = h(S) and r runs. Then

|NC2(S)| ≤ C(h)
r ≤ rr−1

r!
(1 + h)r−1. (3.2)

Proof. This is a purely combinatorial fact, owing to a nice inclusion NC2(S) ⊆ NC2

(
(1h, ∗h)r

)
, as

follows. In the lattice path P
(
(1h, ∗h)r

)
, locally pair those peaks and troughs whose height-labels

do not occur at the corresponding levels in the lattice path P(S). (If the lattice path dips below
the horizontal axis, “locally” may mean matching the first block to the last one; one could take
care of this by first rotating the string so its minimal block is first.) The remaining unpaired entries
in (1h ∗h)r form a copy of S, and since the labels correspond, there is a bijection between pairings
of S and pairings of this inclusion of substrings. This gives the inclusion, and the result follows
from Equation 3.1. Figure 4 demonstrates the inclusion. �

1 1 1 1 ∗ ∗ ∗ ∗ 1 1 1 1 ∗ ∗ ∗ ∗ 1 1 1 1 ∗ ∗ ∗ ∗

1 1 1 ∗ 1 ∗ ∗ ∗ ∗ 1 1 ∗
1

2

3

4

1

2

3

4

FIGURE 4. S is injected into (1h, ∗h)r, with extraneous labels (dark lines) paired locally.

Remark 3.5. Note that the lattice path height is the smallest h which can be used in the proof of
Lemma 3.4, since all labels appearing in P(S) must be present in P

(
(1h, ∗h)r

)
. Unfortunately,

h(S) can be quite large in comparison to the average (or even maximum) block size in S: consider
the string (1,k, ∗),ℓ, (1, ∗,k),ℓ. The maximum block size is k, while the lattice path height is (k −
1)ℓ + 1. Indeed, this string has length 2(k + 1)ℓ, and so the height is about half the total length.
In general, this is about the best that can be said, and so the only generally useful corollary is the
following.
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Corollary 3.6. Let S be a balanced string of length 2n (n 1s and n ∗s), with r runs. Then

|NC2(S)| ≤ rr−1

r!
(1 + n)r−1. (3.3)

Proof. From Lemma 3.4, it suffices to show that if S has n 1s then h(S) ≤ n. Let us rotate S so that
its minimum block is first. This means that the lattice path P(S) never drops below the horizontal
axis, and so each vertical label corresponds to at least one up-slope (the first one where it appears,
for example). This means that the lattice path height h(S) is bounded above by the number of up
slopes, which is n. This bound is achieved only when r = 1. �

Remark 3.7. The bound in Corollary 3.6 is quite large and essentially never achieved. A better
bound, proved in our paper [17], replaces h in Equation 3.2 with the average block size; in view
of Equation 3.1, this is the best possible general bound. Its proof is very involved, and the very
rough estimate of Equation 3.3 is sufficient for our purposes in what follows.

For small r, it is possible to give explicit formulas for the sizes |NC(S)| and |NC2(S)| for all
strings S. Following are such formulas in the case r = 2, which we will use in Section 3.3 below.

Theorem 3.8. Let S = (1n1 , ∗m1 , 1n2 , ∗m2) be any balanced string with 2 runs (so n1 + n2 = m1 +m2).
Then

|NC2(S)| = 1 + min{n1,m1, n2,m2},
|NC(S)| = 1 + 2min{n1,m1, n2,m2}.

Proof. If π ∈ NC(S), then each of its blocks alternates between 1s and ∗s; from the form of S

this means blocks must have length at most 4, so π consists of 2-blocks and 4-blocks. If π has a
4-block, all remaining blocks of π are nested between its consecutive pairings, and since a 4-block
must connect one element from each of the four segments in S, it follows from the non-crossing
condition that all remaining blocks of π are 2-blocks, and are determined by the position of the 4-
block. This is demonstrated in Figure 5. Hence, the number of π ∈ NC(S) with a 4-block is equal

1 1 ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1 1 1 1 1 ∗ ∗ ∗ ∗11 ∗∗

FIGURE 5. The 4-block (dark) determines all other blocks of the partition in this
2-run string. The high and low peaks must be paired locally since there are no
other choices at the same level; the 4-block can be placed at any height within the
first (minimal) string of 1s, and once in place it determines all other pairings: local
inside, and far outside. These pairings are dotted in the partition diagram.

to the number of positions the 4-block can occupy. If we rotate S so that n1 = min{n1,m1, n2,m2}
as in Figure 5 then it is clear this number is precisely n1: the height of the 4-block must be within
the smallest block n1, and this height determines the rest of the partition.

If, on the other hand, π contains no 4-blocks, then it is in NC2(S). Rotate again so n1 is the
minimum block size. Since pairings must be made at the same vertical level in the lattice diagram
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of S, all the points below the axis or above n1 in height must be paired locally. The unpaired

entries of S form a regular string (1n1 , ∗n1)2 whose pairings number C
(n1)
2 = 1 + n1. This proves

the result. �

Remark 3.9. A formula in the case of 3 runs can also be written down with a little more difficulty. In
fact, there is a general formula for |NC2(S)| expressed as a sum of binomial coefficients, indexed
by rooted trees determined by the string S; see [17].

3.2. Lp-bounds of Dt. Let p be a positive even integer, p = 2r, and let a1, . . . , ad be ∗-free R-
diagonal operators in (A , ϕ). Our goal in this section is to give optimal bounds on the norm of an
R-diagonal dilation semigroupDt : L

2
hol(a1, . . . , ad)→ Lp(A , ϕ). In [18], we proved such a bound

in the case p = ∞, through an application of our strong Haagerup inequality. In the circular case
(generators c1, . . . , cd ∗-free circular operators), the same techniques we developed in that paper
demonstrate the following estimate holds for small t > 0:

‖Dt : L
2
hol(c1, . . . , cd)→ Lp(A , ϕ)‖ ≤ αp t

−1+ 1
p .

One can check from the asymptotics of the Fuss-Catalan numbers that ‖cn‖p ∼ n
1
2
− 1

p , and as
a result the above estimate cannot be improved by means of a Haagerup inequality approach
similar to that in Section 5 of [18]. Nevertheless, this estimate is not optimal. In the case of a single
circular generator c, the correct bound is

‖Dt : L
2
hol(c)→ Lp(W ∗(c), ϕ)‖ ∼ t−1+ 2

p , (3.4)

for even p and t > 0. As a lower-bound, this holds more generally for any R-diagonal genera-
tor with non-negative free cumulants, or any infinite ∗-free R-diagonal generating set (through a
straightforward application of the free central limit theorem). We proceed to prove these bounds
in the following; first, we begin with a well-known estimate which will be key to the proofs.

Lemma 3.10. Let 0 ≤ q <∞. There are constants αq, βq > 0 such that, for 0 < t < 1,

αq t
−q−1 ≤

∑

n≥0

nq e−nt ≤ βq t
−q−1.

Proof. For the lower bound, for any integer k ≥ 1 look at just those terms n that lie strictly between
1

(k+1)t and 1
kt ; since the difference is 1

t
1

k(k+1) , there are at least 1
t

1
(k+1)2 such terms. For each one,

n ≤ 1
kt and so e−nt ≥ e−1/k, while nq ≥ 1

((k+1)t)q . So in total, we have

∑

1
(k+1)t

≤n≤ 1
kt

nqe−nt ≥ e−1/k 1

t

1

(k + 1)2
1

((k + 1)t)q
= e−1/k 1

(k + 1)q+2
t−q−1.

The largest such term is achieved with k = 1, but we can add them up; since e−1/k ≥ e−1, this
yields that the sum over all n ≥ 0 is at least e−1

∑
k≥1

1
(k+1)q+2 t

−q−1, which yields the results.

As to the upper bound, note that the function x 7→ xqe−x/2 is bounded for x ≥ 0, with maximum

value (2q)qe−q achieved at x = 2q. Therefore xqe−x ≤ (2q)qe−q e−x/2, and plugging in x = nt we
have ∑

n≥0

(nt)qe−nt ≤ (2q)qe−q
∑

n≥0

e−nt/2 =
(2q)qe−q

1− e−t/2
.

The function t/(1 − e−t/2) is bounded near 0 and increasing on (0, 1); at 1 its value is < 3, and so

(1− e−t/2)−1 ≤ 3/t on the interval (0, 1), yielding the result. �

Following is the upper-bound half of Equation 3.4.

Theorem 3.11. Let T ∈ L2
hol(c), and let Dt denote the associated R-diagonal dilation semigroup (in this

case, Dt is the free O–U semigroup). For each even p ≥ 4, there is a constant αp so that, for 0 < t < 1,

‖Dt T‖p ≤ αp t
−1+ 2

p ‖T‖2.
14



Remark 3.12. A version of the following proof works for any finite circular generating set as well,
but is significantly more complicated. We do not include it here since the p =∞ case, which is our
main interest, is proved independently in Section 3.3.

Proof. Let T =
∑

n λnc
n. By Corollary 2.7, this is an orthogonal sum. Also,

‖cn‖22 = ϕ(cnc∗n) =
∑

π∈NC2(S)

κπ[c, . . . , c, c∗, . . . , c∗]

by Equation 2.3 and the fact that only κ2 6= 0 for c, where S = (1n, ∗n). This is a regular pattern

treated by Equation 3.1, and so the number of such π is C
(n)
1 = 1. Indeed, the only element of

NC(S) is the fully nested pairing ̟: (All partitions in NC(S) are pairings, since each block of

̟ =

FIGURE 6. The only partition in NC(1, . . . , 1, ∗, . . . , ∗).

such a partition must alternate between 1 and ∗, and all ∗s in S follow all 1s.) Thus, ‖cn‖22 =
κ̟[c, . . . , c, c∗, . . . , c∗] = (κ2[c, c

∗])n = 1, and we have

‖T‖22 =
∑

n

|λn|2. (3.5)

Now, let p = 2r for r ∈ N. Note that Dt T =
∑

n e
−ntλnc

n, and so

[(Dt T )(Dt T )∗]r =
∑

n,m

e−(|n|+|m|)tλnλm cn1c∗m1 · · · cnrc∗mr ,

where n = (n1, . . . , nr) and m = (m1, . . . ,mr) range independently over N
r, and λn = λn1 · · · λnr .

From Corollary 2.4, ϕ(cn1c∗m1 · · · cnrc∗mr ) = 0 unless |n| = n1 + · · · + nr = m1 + · · · +mr = |m|,
and so

‖Dt T‖pp =
∞∑

n=0

e−2nt
∑

|n|=|m|=n

λnλm ϕ(cn1c∗m1 · · · cnrc∗mr )). (3.6)

From Equation 2.3, ϕ(cn1c∗m1 · · · cnrc∗mr )) =
∑

π∈NC(Sn,m) κπ[cn1 , c∗m1 , . . . , cnr , c∗mr ] where Sn,m =

(1n1 , ∗m1 , . . . , 1nr , ∗mr ). Since only κ2 6= 0 for circular variables, the sum is really over NC2(Sn,m),
and all such terms are equal to 1 since κ2[c, c

∗] = 1. Hence

‖Dt T‖pp =
∞∑

n=0

e−2nt
∑

|n|=|m|=n

λnλm |NC2(Sn,m)|. (3.7)

We now employ the estimate of Equation 3.3:

|NC2(Sn,m)| ≤ rr−1

r!
(1 + n)r−1.

Thus,

‖Dt T‖pp ≤
rr−1

r!

∞∑

n=0

(1 + n)r−1e−2nt
∑

|n|=|m|=n

λnλm. (3.8)

Note that ∑

|n|=|m|=n

λnλm =
∣∣ ∑

|n|=n

λn

∣∣2,
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and using the optimal ℓ1–ℓ2 estimate |
∑

k∈S ak|2 ≤ |S|
∑

k∈S |ak|2 and the fact that the set of or-

dered integer partitions {n ∈ N
r ; |n| = n} is counted by the binomial coefficient

(n+r−1
r−1

)
, we

have
∣∣ ∑

|n|=n

λn

∣∣2 ≤
(
n+ r − 1

r − 1

) ∑

|n|=n

|λn|2.

Combining with Equation 3.8 yields

‖Dt T‖pp ≤
rr−1

r!

∞∑

n=0

(1 + n)r−1

(
n+ r − 1

r − 1

)
e−2nt

∑

|n|=n

|λn|2. (3.9)

Let S(t) = supn≥0(1 + n)r−1
(n+r−1

r−1

)
e−2nt; then we can roughly estimate Equation 3.9 by

‖Dt T‖pp ≤
rr−1

r!
S(t)

∞∑

n=0

∑

|n|=n

|λn|2,

and this latter sum
∑

n
|λn|2 = (

∑
n |λn|2)r is simply ‖T‖2r

2 = ‖T‖p2 from Equation 3.5. We are left,
therefore, to estimate S(t). Note that

(
n+ r − 1

r − 1

)
=

(n+ r − 1) · · · (n + 1)

(r − 1)!
≤ (n + r − 1)r−1

(r − 1)!
,

and so estimating n+ 1 ≤ n+ r − 1,

S(t) ≤ 1

(r − 1)!
sup
n≥0

(n+ r − 1)2(r−1)e−2nt

=
1

(r − 1)!

(
sup
n≥0

(n+ r − 1) e−
n

r−1
t

)2(r−1)

.

Elementary calculus yields that the supremum over all real n ≥ 0 of (n + r − 1)e−
n

r−1
t is r−1

t et−1,
and so

S(t) ≤ (r − 1)2(r−1)

(r − 1)!
e2(r−1)(t−1) t−2r+2.

Altogether, then, we have

‖Dt T‖pp ≤
(r(r − 1)2)r−1

r!(r − 1)!
e2(r−1)(t−1)t−p+2 ‖T‖p2. (3.10)

For 0 < t < 1, e2(r−1)(t−1) ≤ 1, and so taking pth roots and letting αp represent the ratio following
the ≤ in Equation 3.10 yields the desired result. �

Remark 3.13. The constant αp developed through Equation 3.10 tends to∞ as p → ∞. However,
the p = ∞ case of Theorem 3.11 is actually a special case of Theorem 5.4 in [18], following a
different technique.

We now turn to the lower-bound in Equation 3.4, and show that it is optimal in considerable
generality.

Theorem 3.14. Let a1, . . . , ad be ∗-free R-diagonal operators, and suppose that a1 has non-negative free
cumulants: for each n, κ2n[a1, a

∗
1, . . . , a1, a

∗
1] ≥ 0 and κ2n[a∗1, a1, . . . , a

∗
1, a1] ≥ 0. Then for each even

integer p ≥ 2, there is a constant αp > 0 such that, for 0 < t < 1,

‖Dt : L
2
hol(a1, . . . , ad)→ Lp(W ∗(a1, . . . , ad), ϕ)‖ ≥ αp t

−1+ 2
p .

Moreover, this bound is achieved on the subspace L2
hol(a1) ⊂ L2

hol(a1, . . . , ad).
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Proof. Set p = 2r, and denote a1 by a. We will show that t1−1/r · ‖Dt : L
2
hol(a)→ L2r(W ∗(a), ϕ)‖ is

bounded above 0 for small t. In fact, we will show that for each small t > 0, there is an element
ψt ∈ L2

hol(a) so that t2r−2‖Dt ψt‖2r
2r/‖ψt‖2r

2 ≥ αr for a t-independent constant αr > 0. Indeed, for
fixed t > 0 define

ψt =
∑

n≥0

e−nt an,

where we rescale a so that ‖a‖2 = 1. (Formally ψt is Dtψ where ψ =
∑

n≥0 a
n = (1 − a)−1 if 1− a

is invertible in L2
hol(a).) ThusDt ψt = ψ2t, and so we wish to consider the ratio ‖ψ2t‖2r

2r/‖ψt‖2r
2 . We

begin by expanding the numerator.

‖ψ2t‖2r
2r = ϕ[(ψ2tψ

∗
2t)

r] = ϕ
∑

n1,...,nr≥0
m1,...,mr≥0

e−2n1t an1 e−2m1t a∗m1 · · · e−2nrt anr e−2mrt a∗mr . (3.11)

It is convenient to add two more summation indices: n = n1 + · · · + nr and m = m1 + · · · +mr.
Equation 3.11 then becomes

‖ψ2t‖2r
2r =

∑

n,m≥0

e−2(n+m)t
∑

n1,...,nr≥0
n1+···+nr=n

∑

m1,...,mr≥0
m1+···+mr=m

ϕ(an1a∗m1 · · · anra∗mr). (3.12)

Referring back to Corollary 2.4, the only non-zero terms in Equation 3.12 are those for which
the word an1a∗m1 · · · anra∗mr is balanced: there must be as many as as a∗s, and so we must have
n1 + · · ·+ nr = m1 + · · · +mr; i.e. n = m. Thus

‖ψ2t‖2r
2r =

∑

n≥0

e−4nt
∑

n1,...,nr≥0
n1+···+nr=n

∑

m1,...,mr≥0
m1+···+mr=n

ϕ(an1a∗m1 · · · anra∗mr). (3.13)

Now, let S
n1,...,nr
m1,...,mr denote the string (1n1 , ∗m1 , . . . , 1nr , ∗mr ). Equation 2.3 then yields that

ϕ(an1a∗m1 · · · anra∗mr ) =
∑

π∈NC(S
n1,...,nr
m1,...,mr )

κπ[a,n1 , a∗,m1 , . . . , a,nr , a∗,mr ]. (3.14)

(The formerly implied commas are now explicit in the exponents; this is to make clear that the
free cumulants have 2n arguments and are not being evaluated at products of arguments.) By
assumption, all cumulants in a, a∗ are ≥ 0, and so we may restrict the summation in Equation 3.14
to those π that are pairings.

ϕ(an1a∗m1 · · · anra∗mr ) ≥
∑

π∈NC2(S
n1,...,nr
m1,...,mr )

κπ[a,n1 , a∗,m1 , . . . , a,nr , a∗,mr ]. (3.15)

Now, for each pairing π ∈ NC2(S
n1,...,nr
m1,...,mr), each block π matches an a with an a∗; there are n

such blocks in total, and each is κ2[a, a
∗] or κ2[a

∗, a]. Since a is R-diagonal, ϕ(a) = κ1[a] = 0 and
ϕ(a∗) = κ1[a

∗] = 0; thus κ2[a, a
∗] = ϕ(aa∗) − ϕ(a)ϕ(a∗) = ‖a‖22 = 1, and κ2[a

∗, a] = ϕ(a∗a) −
ϕ(a∗)ϕ(a) = ϕ(a∗a) = ‖a‖22 = 1 by the traciality assumption. In general, then, we have

κπ[a,n1 , a∗,m1 , . . . , a,nr , a∗,mr ] = ‖a‖2n
2 = 1.

Combining this with Equation 3.14 and Equation 3.13 we get

‖ψ2t‖2r
2r ≥

∑

n≥0

e−4nt
∑

n1,...,nr≥0
n1+···+nr=n

∑

m1,...,mr≥0
m1+···+mr=n

|NC2(S
n1,...,nr
m1,...,mr

)|. (3.16)

We will now throw away all of the terms where any index nj or mj is 0; in this case, since each of
the r indices nj (or mj) is at least 1, their sum n must be at least r, and so we have

‖ψ2t‖2r
2r ≥

∑

n≥r

e−4nt
∑

n1,...,nr≥1
n1+···+nr=n

∑

m1,...,mr≥1
m1+···+mr=n

|NC2(S
n1,...,nr
m1,...,mr

)|. (3.17)

Now, fix n and let us reorganize the internal summation. As the indices n1, . . . , nr and m1, . . . , nr

range over their summation sets, the string S
n1,...,nr
m1,...,mr ranges over all possible balanced 1-∗ strings
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(beginning with 1 and ending with ∗) with length 2n and r runs. Let us denote this set of strings
by Ωn

r . Then the internal sum in Equation 3.17 can be rewritten as
∑

n1,...,nr≥0
n1+···+nr=n

∑

m1,...,mr≥0
m1+···+mr=n

|NC2(S
n1,...,nr
m1,...,mr

)| =
∑

S∈Ωn
r

|NC2(S)|. (3.18)

We can break up the set Ωn
r according to the size of the minimal block in each element. Let Ωn,i

r

denote the subset of Ωn
r of all balanced, length 2n, r run strings with minimal block size i. (Note:

this set is empty unless n ≥ ir.) Evidently the sets Ωn,i
r are disjoint for different i, and indeed

Ωn
r =

⊔n/r
i=1 Ωn,i

r . Combining this with Equations 3.18 and 3.17, and reordering the sum, this yields

‖ψ2t‖2r
2r ≥

∞∑

i=1

∞∑

n=ir

e−4nt
∑

S∈Ωn,i
r

|NC2(S)|. (3.19)

Now employing Proposition 3.2, we have that for each S ∈ Ωn,i
r , |NC2(S)| ≥ (1 + i)r−1. Hence

‖ψ2t‖2r
2r ≥

∞∑

i=1

(1 + i)r−1
∞∑

n=ir

e−4nt |Ωn,i
r |. (3.20)

For fixed i, n it is relatively straightforward to enumerate the set Ωn,i
r . Let S ∈ Ωn,i

r ; then S can
be written as S

n1,...,nr
m1,...,mr for indices nj,mj satisfying n1 + · · · + nr = m1 + · · · + mr = n and

nj,mj ≥ i, and where at least one of n1, . . . ,mr is equal to i. We will consider here only those
terms for which n1 = i. Let n′j = nj − i and m′

j = mj − i; then we can rewrite S as the string

(10+i, ∗m′
1+i, . . . , 1n′

r+i, ∗m′
r+i), where the n′j,m

′
j are ≥ 0 and sum to n − ri. That is, there is an

injection

Ωn,i
r ←֓ {(0,m′

1, . . . , n
′
r,m

′
r) ; ∀j n′j,m′

j ≥ 0 & n′2+ · · ·+n′r = m′
1+m′

2 + · · ·+m′
r = n−ir}. (3.21)

The set on the right-hand-side of Equation 3.21 is a Cartesian product of the (ordered) integer
partition sets {(n′2, . . . , n′r) ; ∀j n′j ≥ 0 & n′2 + · · · + n′r = n − ir} and {(m′

1, . . . ,m
′
r) ; ∀j m′

j ≥
0 & m′

1 + · · · + m′
r = n − ir}; they have sizes

(n−ir+r−2
r−2

)
and

(n−ir+r−1
r−1

)
respectively. Thus,

Equation 3.20 yields

‖ψ2t‖2r
2r ≥

∞∑

i=1

(1 + i)r−1
∞∑

n=ir

e−4nt

(
n− ir + r − 2

r − 2

)(
n− ir + r − 1

r − 1

)
. (3.22)

We can lower bound the binomial coefficient as follows.
(
n− ir + r − 1

r − 1

)
=

(n− ir + r − 1)(n − ir + r − 2) · · · (n− ir + 1)

(r − 1)!
≥ (n− ir)r−1

(r − 1)!
,

and similarly
(
n−ir+r−2

r−2

)
≥ (n− ir)r−2/(r − 2)!. Combining with Equation 3.22 this yields

‖ψ2t‖2r
2r ≥

1

(r − 2)!(r − 1)!

∞∑

i=1

(1 + i)r−1
∞∑

n=ir

(n− ir)2r−3 e−4nt. (3.23)

Reindexing the internal sum, we have

∞∑

n=ir

(n− ir)2r−3 e−4nt =
∑

n≥0

n2r−3e−4(n+ir)t = e−4irt
∑

n≥0

n2r−3e−4nt.

Appealing to Lemma 3.10, the sum
∑

n≥0 n
2r−3e−4nt ≥ αr (4t)−(2r−3)−1 for small t. Combining

with Equation 3.23, this gives us

‖ψ2t‖2r
2r ≥ αr t

−2r+2
∞∑

i=1

(1 + i)r−1e−4irt. (3.24)
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(As before, αr is used for an arbitrary r-dependent constant.) Applying Lemma 3.10 again, the
remaining summation may be estimated

∞∑

i=i

(1 + i)r−1e−4irt ≥
∞∑

i=1

(i− 1)r−1e−4irt =
∑

i≥0

ir−1e−4(i+1)rt

≥ e−4rt · αr t
−(r−1)−1.

(3.25)

For 0 < t < 1, we have e−4rt > e−4r . Collecting all constants and combining Equations 3.24 and
3.25, we have

‖ψ2t‖2r
2r ≥ αr t

−3r+2. (3.26)

Now turning to the denominator, since different powers of a are orthogonal (by Corollary 2.7)
we have

‖ψt‖22 =
∑

n≥0

e−2nt ‖an‖22, (3.27)

and an analysis completely analogous to that leading up to Equation 3.5 (coupled with the nor-
malization ‖a‖2 = 1) yields ‖an‖22 = 1 as well. Thus, ‖ψt‖22 =

∑
n≥0 e

−2nt = (1 − e−2t)−1, and so
from Equation 3.26 we have

t2r−2 · ‖ψ2t‖2r
2r

‖ψt‖2r
2

≥ t2r−2 · αrt
−3r+2 · (1− e−2t)r = αr(1− e−2t)r t−r. (3.28)

The function t 7→ (1 − e−2t)/t is bounded and decreasing on (0, 1), and so is ≥ (1 − e−2) on this
interval. We therefore have that t2r−2 · ‖ψ2t‖2r

2r/‖ψt‖2r
2 ≥ αr for 0 < t < 1. Taking 2rth roots, this

means that for each t we have

‖Dt ψt‖2r

‖ψt‖2
=
‖ψ2t‖2r

‖ψt‖2
≥ αr t

−1+ 1
r .

Since ψt ∈ L2
hol(a) for each t > 0, this proves the theorem. �

Remark 3.15. While the constant αp in the above calculation is strictly positive, it decreases ex-
ponentially fast to 0 as r → ∞. Hence, Theorem 3.14 does not yield the optimal ultracontrac-
tive bound in [18], but rather a slightly weaker statement: it follows that ‖Dt : L

2
hol(a1, . . . , ad) →

W ∗(a1, . . . , ad)‖ ≥ αǫ t
−1+ǫ for any ǫ > 0. The fully optimal sharp bound does hold true, however,

and also does not require the stringent non-negative cumulant condition of Theorem 3.14. For this
purpose, we require an alternate technique which s is the subject of Section 3.3.

Remark 3.16. The condition of non-negative free cumulants is not entirely superfluous, as can
easily be seen in the example of a single Haar unitary generator (some of whose free cumulants
are negative). In this case, an analysis similar to the proof of Theorem 3.11 yields an L2 → Lp

bound of order t−
1
2
+ 1

p , which is optimal.

Theorem 3.17. Let a1, a2, . . . be an infinite set of ∗-free R-diagonal operators, and let A = W ∗(a1, a2, . . .).
Let p ≥ 2 be an even integer. Then there is a constant αp > 0 so that, for 0 < t < 1,

‖Dt : L
2
hol(a1, a2, . . .)→ Lp(A , ϕ)‖ ≥ αp t

−1+ 2
p .

Proof. This is an application of the free central limit theorem due to R. Speicher, [25]. Let A =
{a1, a2, . . .}, where the generators are renormalized so that ‖aj‖2 = 1 for all j. Since aj is R-
diagonal, we then have ϕ(aj) = ϕ(a∗j ) = 0, and ϕ(a∗jaj) = ϕ(aja

∗
j ) = ‖aj‖22 = 1 for each j, while

ϕ(a2
j ) = ϕ(a∗2j ) = 0 (thanks to Corollary 2.4). Hence, by Theorem 3 (and more specifically the

remark following Theorem 6) in [25], the sequence of elements

a(N) =
1√
N

(a1 + · · ·+ aN ) ∈ L2
hol(A)
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converges in ∗-distribution to a standard circular element c. Then define, for each t > 0,

ψ
(N)
t =

∑

n≥0

e−nt[a(N)]n ∈ L2
hol(A).

Following the proof of Theorem 3.14, we have ‖ψ(N)
t ‖2 = (1−e−2t)−1/2 (since ‖a(N)‖2 = 1 for each

N ). As before, Dt ψ
(N)
t = ψ

(N)
2t . We also have that ‖ψ(N)

2t ‖2r
2r = ϕ

[(
ψ

(N)
2t (ψ

(N)
2t )∗

)r]
converges, as

N → ∞, to ϕ[(ψ2tψ
∗
2t)

r] where ψt =
∑

n≥0 e
−ntcn. (This follows by truncating the infinite sums in

the definitions of ψ
(N)
t and ψt, using the above limit-in-distribution, and then using the normality

of ϕ.) Appealing to Theorem 3.14, since ψt ∈ L2
hol(c) for each t > 0 and c is R-diagonal with

non-negative cumulants, as N → ∞ we have ‖ψ(N)
2t ‖2r

2r converges to a limit which is ≥ αr t
−3r+2

for some αr > 0. Now following the conclusion of the proof of Theorem 3.14, we have

lim
N→∞

‖ψ(N)
2t ‖2r

‖ψ(N)
t ‖2

≥ αr t
−1+ 1

r .

Since ψ
(N)
t ∈ L2

hol(A) for each N and each t > 0, the result now follows. �

3.3. Optimal Ultracontractivity. We now prove Theorem 1.4. It is restated here as Theorem 3.18,
with conditions that appear slightly different from those state in Theorem 1.4; however, the two
are equivalent, as is explained in Remark 3.21.

Theorem 3.18. Let a1, . . . , ad be ∗-free R-diagonal operators such that sup ‖aj‖/‖aj‖2 <∞, and suppose
that one of the generators a = aj satisfies ‖a‖2 = 1 while ‖a‖4 > 1. Then there are constants α, β > 0 so
that, for 0 < t < 1,

α t−1 ≤ ‖Dt : L
2
hol(a1, . . . , ad)→W ∗(a1, . . . , ad)‖ ≤ β t−1.

Moreover, this optimal lower bound is achieved on the subspace L2
hol(a) ⊂ L2

hol(a1, . . . , ad).

Remark 3.19. The upper bound of Theorem 3.18 was proved as Theorem 5.4 in [18], stated in the
special case that all the generators are identically-distributed. In fact, the proof therein yields the
above-stated theorem without modification, and so we only prove the lower bound below.

Proof. The main technique we use here is the following simple estimate. If x is a bounded oper-
ator and ϕ is a state on C∗(x), then since xx∗ is a positive semidefinite operator it is less than or
equal to ‖xx∗‖ 1; that is, ‖xx∗‖ 1 − xx∗ is positive semidefinite. A product of commuting positive
semidefinite operators is positive semidefinite, and so ‖xx∗‖xx∗ − xx∗xx∗ ≥ 0. Since ϕ is a state,
it follows that

ϕ(xx∗xx∗) ≤ ϕ(‖xx∗‖xx∗) = ‖x‖2ϕ(xx∗).

In other words, we have the estimate ‖x‖2 ≥ ‖x‖44/‖x‖22.

Now, let a be R-diagonal with ‖a‖2 = 1 and ‖a‖4 > 1, and for fixed t > 0 let x = Dt ψt from the
proof of Theorem 3.14:

ψt =
∑

n≥0

e−ntan.

Then x = Dt ψt = ψ2t. We need to estimate ‖ψ2t‖44 from below, but the estimate of Equation 3.26
will not suffice because it holds valid only for a with non-negative free cumulants; this is because
we ignored non-pairing cumulants to develop it. Here, instead, we will estimate this norm more
accurately with all relevant partitions, using Theorem 3.8.

Equations 3.13 and 3.14, in the present case r = 2, say

‖ψ2t‖44 =
∑

n≥0

e−4nt
∑

n1+n2=m1+m2=n

ϕ(an1a∗m1an2a∗m2), (3.29)
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where
ϕ(an1a∗m1an2a∗m2) =

∑

π∈NC(1n1 ,∗m1 ,1n2 ,∗m2 )

κπ[a,n1 , a∗,m1 , a,n2 , a∗,m2 ]. (3.30)

Break up this sum into those π that contain a 4-block, and those that are pairings. From the proof
of Theorem 3.8, if π contains a 4-block then it is the only one, and all other blocks are pairings. We
normalized ‖a‖2 = 1, so that κ2[a, a

∗] = κ2[a
∗, a] = 1. The four block yields a term κ4[a, a

∗, a, a∗]
or κ4[a

∗, a, a∗, a]. From page 177 in [23] we calculate these as

κ4[a, a
∗, a, a∗] = κ4[a

∗, a, a∗, a] = ϕ(aa∗aa∗)− 2ϕ(aa∗)2 = ‖a‖44 − 2.

Let v(a) = ‖a‖44 − 1. Thus, if π contains a 4-block, then κπ[a,n1, a∗,m1 , a,n2 , a∗,m2 ] = v(a) − 1, while
if π ∈ NC2 then κπ[a,n1 , a∗,m1 , a,n2 , a∗,m2 ] = 1. From the enumeration of NC(S) and NC2(S) in
Theorem 3.8, we then have

ϕ(an1a∗m1an2a∗m2) = µ (v(a) − 1) + µ+ 1 = µ · v(a) + 1,

where µ = min{n1,m1, n2,m2}. Note that the assumption ‖a‖4 > 1 is precisely to ensure that
v(a) > 0 in this expression. From Equation 3.29, we have

‖ψ2t‖44 =
∑

n≥0

e−4nt
∑

n1+n2=m1+m2=n

(1 + v(a)min{n1,m1, n2,m2}) . (3.31)

Rewrite the internal sum in terms of only the variables n1 = i,m1 = j,
∑

0≤i,j≤n

(1 + v(a)min{i, j, n − i, n − j}) = (n + 1)2 + v(a)
∑

0≤i,j≤n

min{i, j, n − i, n − j}.

This sum can be evaluated exactly, but for this estimate it is sufficient to look only at the terms
∑

0≤i,j≤n

min{i, j, n − i, n − j} ≥
∑

0≤i≤j≤n/2

min{i, j, n − i, n − j}.

Since i ≤ j, n − j ≤ n − i, and so the summation is over min{i, n − j}. We can then write this as∑n/2
j=0

∑j
i=0 min{i, n − j}, and since j ≤ n/2, n− j ≥ n/2 ≥ i so we have

n/2∑

j=0

j∑

i=0

min{i, n − j} =
∑

0≤i≤j≤n/2

min{i, n − j} =

n/2∑

j=0

j∑

i=0

i

=
1

2

n/2∑

j=0

j(j + 1) =
1

48
n3 +

1

4
n2 +

1

3
n.

Returning to Equation 3.31, this means

‖ψ2t‖44 ≥
1

48
v(a)

∑

n≥0

n3 e−4nt ≥ α v(a) t−4, (3.32)

where the second inequality follows from Lemma 3.10. Now, Equation 3.27 yields (via the normal-
ization ‖a‖2 = 1 and replacing t with 2t) ‖ψ2t‖22 =

∑
n≥0 e

−4nt ≤ α t−1, and so from the discussion

at the beginning of the proof, ‖ψ2t‖2 ≥ ‖ψ2t‖44/‖ψ2t‖22 ≥ αv(a) t−3. Finally, again using Equation
3.27 we have ‖ψt‖22 ≥ α t−1, and thus

‖Dt ψt‖2
‖ψt‖22

≥ αv(a) t−2.

Since v(a) > 0, this proves the result. �

Remark 3.20. The condition ‖a‖4 > 1 (equivalently v(a) = ‖a‖44−1 > 0) is required for the theorem
to hold. Indeed, if v(a) = 0 then Equation 3.31 gives ‖ψ2t‖44 =

∑
n e

−4nt(n + 1)2 which is of

order t−3; this translates to an O(t−1/2)–lower–bound for the action of Dt, as is realized by a Haar
unitary generator.
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Remark 3.21. In fact, the condition v(a) = 0 actually requires a to be (a scalar multiple of a) Haar
unitary. For if ‖a‖2 = 1 and v(a) = 0 then ‖a‖4 = 1 as well. Let b = a∗a, so ϕ(b) = ‖a‖22 = 1 and
ϕ(b2) = ‖a‖44 = 1. Since b ≥ 0, this means that Var(b) = ϕ(b2) − ϕ(b)2 = 0, and therefore b is a.s.
constant; since ϕ(b) = 1, this means b = 1 a.s. Now write a = ur with u Haar unitary and r ≥ 0,
following Remark 2.2. Then b = a∗a = r2 and so r2 = 1 a.s. which implies that r = 1 a.s. since
r ≥ 0. Thus a = u, a Haar unitary as required. Hence, Theorem 3.18 shows universal behaviour for
all non-Haar unitary R-diagonal operators.

Remark 3.22. Letting e−t = 1/λ, the proofs of Theorems 3.14 and 3.18 are estimates for various
norms of the resolvent of a: ψt =

∑
n≥0 e

−ntan = λ/(λ − a). We have provided here only rough
estimates of constants involved. In fact, there is completely universal behaviour for this resol-
vent function over all R-diagonal a; the only dependence in the blow-up is on v(a). These sharp
estimates will be discussed in [11].

Acknowledgments. The author wishes to thank Uffe Haagerup, Karl Mahlburg, Mark Meckes,
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[8] Graczyk, P.; Kemp, T.; Loeb, J.; Żak, T.: Hypercontractivity for log-subharmonic functions. Preprint.
[9] Gross, L.: Hypercontractivity over complex manifolds. Acta. Math. 182, 159-206 (1999)

[10] Haagerup, U.: Random matrices, free probability and the invariant subspace problem relative to a von Neumann algebra.
Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 273–290

[11] Haagerup, U.; Kemp, T.; Speicher, R.: Resolvents of R-diagonal operators. Preprint.
[12] Haagerup, U.; Larsen, F.: Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras.

J. Funct. Anal. 176, 331-367 (2000)
[13] Janson, S.: On hypercontractivity for multipliers on orthogonal polynomials. Ark. Math. 21, 97-110 (1983)
[14] Junge, M.; Le Merdy, C.; Xu, Q.: Calcul fonctionnel et fonctions carrées dans les espaces Lp non commutatifs. C. R. Math.

Acad. Sci. Paris 337 93-98 (2003)
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