ENUMERATION OF NON-CROSSING PAIRINGS ON BIT STRINGS

TODD KEMP ${ }^{(1)}$, KARL MAHLBURG $^{(2)}$, AMARPREET RATTAN ${ }^{(3)}$, AND CLIFFORD SMYTH ${ }^{(4)}$

Abstract

A non-crossing pairing on a bit string is a matching of 1 s and 0 s in the string with the property that the pairing diagram has no crossings. For an arbitrary bit-string $w=1^{p_{1}} 0^{q_{1}} \ldots 1^{p_{r}} 0^{q_{r}}$, let $\varphi(w)$ be the number of such pairings. This enumeration problem arises when calculating moments in the theory of random matrices and free probability, and we are interested in determining useful formulas and asymptotic estimates for $\varphi(w)$. Our main results include explicit formulas in the "symmetric" case where each $p_{i}=q_{i}$, as well as upper and lower bounds for $\varphi(w)$ that are uniform across all words of fixed length and fixed r. In addition, we offer more refined conjectural expressions for the upper bounds. Our proofs follow from the construction of combinatorial mappings from the set of non-crossing pairings into certain generalized "Catalan" structures that include labeled trees and lattice paths.

1. Introduction

A pairing π of $V=\{1, \ldots, 2 k\}$ is a partition of V into k pairs, $\pi=\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{k}, j_{k}\right\}\right\}$. A crossing of π is a pair of pairs $\left\{i_{1}, i_{2}\right\},\left\{j_{1}, j_{2}\right\} \in \pi$ such that $i_{1}<j_{1}<i_{2}<j_{2}$, see Figure 1 . We say that these two pairs are crossing. The pairing π is called non-crossing if it has no crossings. Let $N C_{2}(2 k)$ be the set of all non-crossing pairings of $\{1, \ldots, 2 k\}$.

Figure 1. A crossing in a pairing.
A binary word (or bit-string) of length n is $w=w_{1} w_{2} \cdots w_{n}$ with $w_{i} \in\{0,1\}$ for $1 \leq i \leq n$. We write $|w|$ for the length of w. If w is a binary word of length $2 k$ and $\pi \in N C_{2}(2 k)$, we say w and π are compatible if, for each pair $\{i, j\} \in \pi, w_{i} \neq w_{j}$; that is, the letters in w that are paired by π are distinct. Note that if w is compatible with some pairing π then w is necessarily balanced, i.e. w contains the same number of 1 s as 0 s . We are interested in the set of pairings compatible with w.

Definition 1.1. Let w be a binary word with $|w|=2 k$. Then the set of noncrossing pairings on w is

$$
N C_{2}(w):=\left\{\pi \in N C_{2}(2 k): \pi \text { and } w \text { are compatible }\right\},
$$

and the number of such pairings is denoted by

$$
\varphi(w):=\left|N C_{2}(w)\right| .
$$

Example 1.2. If $w=110100$, then $N C_{2}(w)=\left\{\pi_{1}, \pi_{2}\right\}$ where $\pi_{1}=\{\{1,6\},\{2,5\},\{3,4\}\}$ and $\pi_{2}=$ $\{\{1,6\},\{2,3\},\{4,5\}\}$. Thus $\varphi(w)=2$. Similarly, $\varphi(101010)=5$ and $\varphi(111000)=1$.
Example 1.3. Let $w=110100110101011001100100$. Each of the two diagrams in Figure 2 represents a pairing compatible with w. In each diagram, w is listed clockwise around the circle, beginning with the topmost 1 , while the internal arcs in the diagram represent the pairs.

The function φ arises naturally in random matrix theory. Let X_{n} be an $n \times n$ matrix whose entries are all independent, identically distributed random variables, each with mean 0 and variance $1 / n$. Such a matrix is almost surely not normal (at least in the case that the law of the entries has a continuous density), and so the eigenvalues are difficult to compute. $G_{n}=\frac{1}{2}\left(X_{n}+X_{n}^{*}\right)$, the Hermitian cousin of X_{n}, has been studied by physicists for over half a century. The density of

Figure 2. Two members of $N C_{2}(110100110101011001100100)$.
eigenvalues of G_{n} converges, regardless of the law of the entries, to the semicircle law $\frac{1}{2 \pi} \sqrt{4-x^{2}} d x$ on $[-2,2]$, c.f. $[14,4]$. For a Hermitian matrix such as G_{n}, the law of eigenvalues contains the same information as the matrix moments $\frac{1}{n} \operatorname{Tr}\left(G_{n}^{p}\right)$ for $p \in \mathbb{Z}_{+}$, where Tr denote the ordinary trace of a matrix. For a non-Hermitian matrix like X_{n}, one studies instead the mixed matrix moments $\frac{1}{n} \operatorname{Tr}\left(X_{n}^{p_{1}} X_{n}^{* q_{1}} \cdots X_{n}^{p_{r}} X_{n}^{* q_{r}}\right)$, which do not correlate as directly with eigenvalues, and in general contain vastly more data. The connection between these moments and our interests is summed up in the following proposition, whose proof can be found in [7]; see also [21, 16].

Proposition 1.4. If $p, q \in\left(\mathbb{Z}_{+}\right)^{r}$ are r-tuples of positive integers then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr}\left(X_{n}^{p_{1}}\left(X_{n}^{*}\right)^{q_{1}} \cdots X_{n}^{p_{r}}\left(X_{n}^{*}\right)^{q_{r}}\right)=\varphi\left(1^{p_{1}} 0^{q_{1}} 1^{p_{2}} 0^{q_{2}} \ldots 1^{p_{r}} 0^{q_{r}}\right)
$$

almost surely.
Definition 1.5. For all $p, q \in\left(\mathbb{Z}_{+}\right)^{r}$, the number of noncrossing pairings on r-tuples is defined as

$$
\varphi(p, q):=\varphi\left(1^{p_{1}} 0^{q_{1}} 1^{p_{2}} 0^{q_{2}} \ldots 1^{p_{r}} 0^{q_{r}}\right)
$$

We also define the weight of an r-tuple of integers p to be $|p|:=\sum_{i=1}^{r} p_{i}$. Note that $\varphi(p, q)=0$ unless the underlying word is balanced, i.e. $|p|=|q|$.

Our goal, in a sense, is to calculate all asymptotic mixed matrix moments of a random matrix with independent entries. However, the set of such non-crossing pairings is far more generic than in this one example. In [15], the authors introduced \mathscr{R}-diagonal operators, which represent the limiting eigenvalue distributions of a large class of non-Hermitian random matrices with nonindependent entries (but that nevertheless have nice symmetry and invariance properties). Such ensembles of random matrices have recently played very important roles in free probability and beyond: for example, in [8], Haagerup has produced the most significant progress towards the resolution of the Invariant Subspace Conjecture in decades, and his proof is concentrated in the theory of \mathscr{R}-diagonal operators. In [10], the first author showed that the asymptotic mixed matrix moments of \mathscr{R}-diagonal random matrices are controlled, in an appropriate sense, by the set of non-crossing pairings we consider in this paper. Indeed, the results of the present paper followed from discussions motivated by applications to \mathscr{R}-diagonal operators.

Computations with small cases illustrate that $\varphi(w)$ depends on w in a very complex way. For example, while $\varphi\left(1^{i} 0^{i} 1^{j} 0^{j} 1^{k} 0^{k}\right)=\binom{i+1}{2}+\binom{i+1}{1}\binom{j+1}{1}$ if $i \leq j \leq k$ (c.f. Theorem 1.15), the general formula for $\varphi\left(1^{p_{1}} 0^{q_{1}} 1^{p_{2}} 0^{q_{2}} 1^{p_{3}} 0^{q_{3}}\right)$ takes several lines to write down. Although a closed form for φ may be unobtainable, much can still be said.

We define an important parameter of a word, the number of runs, $r(w)$. For $i=0,1$ an i-block of w is a maximal subword of cyclically adjacent i^{\prime} s in w. Let $r(w)$ be the number of 1-blocks in w (equivalently, the number of 0-blocks). Even if we restrict our attention to words with the same length and the same number of runs, the value of φ can fluctuate wildly. We seek the maximum value of φ over each such class and, ideally, the words at which the maximum occurs.

Main Problem

For all $1 \leq r \leq k$, determine

$$
\operatorname{Max}_{k, r}:=\max \{\varphi(w): w \text { balanced, }|w|=2 k, r(w)=r\},
$$

and find the w for which which this maximum is attained.
We now outline our main results (the proofs are all left for Section 3.) The following result is an important first step toward addressing our main problem.

Theorem 1.6 (The Symmetrization Theorem).
For all $p, q \in\left(\mathbb{Z}_{+}\right)^{r}$,

$$
\varphi(p, q) \leq \varphi(p, p) .
$$

This shows that in order to determine $\operatorname{Max}_{k, r}$, it suffices to restrict attention to symmetric words, i.e. words of the form $1^{p_{1}} 0^{q_{1}} \ldots 1^{p_{r}} 0^{q_{r}}$ with $p_{i}=q_{i}$ for $1 \leq i \leq r$.

For all $m \geq 1, r \geq 0$ the corresponding Fuss-Catalan number is $C_{r}^{(m)}:=\frac{1}{m r+1}(\underset{r}{(m+1) r})$. Note that $C_{r}^{(1)}=C_{r}$ is the ordinary Catalan number. It is well-known that $\left|N C_{2}(2 r)\right|=C_{r}$ (c.f. [20]), and the Fuss-Catalan numbers also count certain pairings on words.
Proposition 1.7. For all $m \geq 1, \varphi\left(\left(1^{m} 0^{m}\right)^{r}\right)=C_{r}^{(m)}$.
Remark 1.8. If $r=1$ it is easy to see that $\varphi\left(1^{m} 0^{m}\right)=1=C_{1}^{(m)}$. If $m=1$ it is also easy to see that any $\pi \in N C_{2}(2 r)$ is automatically compatible with $w=1010 \cdots 10$. Thus $\varphi\left((10)^{r}\right)=C_{r}=C_{r}^{(1)}$. Indeed, if $\{i, j\} \in \pi$ and $w_{i}=w_{j}$ then $|i-j|$ must be even. Since an odd number of points then lie between i and j there must be another pair of π with exactly one end between i and j, contradicting the assumption that π is non-crossing. A more sophisticated version of this reasoning, together with the recurrence for the Fuss-Catalan numbers, forms a proof of Proposition 1.7 as discussed in [5]. This proposition was also proved in a more topological manner by the first author in [11], which relies on the non-crossing partition multichain enumeration results in [6] (proofs are also essentially contained in [13] and [17]).

Our most significant result is a near-sharp upper bound for $\varphi(w)$.
Theorem 1.9 (Main Theorem).
For $1 \leq r \leq k$,

$$
\operatorname{Max}_{k, r} \leq \varphi\left(\left(1^{\left\lceil\frac{k}{r}\right\rceil} 0^{\left\lceil\frac{k}{r}\right\rceil}\right)^{r}\right)=C_{r}^{\left(\left\lceil\frac{k}{r}\right\rceil\right)}
$$

Notice that when $r \mid k$, our Main Theorem is exact, and implies that

$$
\operatorname{Max}_{k, r}=\varphi\left(\left(1^{\frac{k}{r}} 0^{\frac{k}{r}}\right)^{r}\right)=C_{r}^{\left(\frac{k}{r}\right)},
$$

i.e. the maximum occurs at a word whose 1-blocks and 0-blocks are all of the same length.

We believe the following sharp statement can be made for the other cases of r and k.
Conjecture 1.10 (Main Conjecture).
If $r \nmid k$ then

$$
\operatorname{Max}_{k, r}=\varphi\left(\left(1^{\left\lfloor\frac{k}{r}\right\rfloor} 0^{\left\lfloor\frac{k}{r}\right\rfloor}\right)^{r^{\prime}}\left(1^{\left\lceil\frac{k}{r}\right\rceil} 0^{\left[\frac{k}{r}\right\rceil}\right)^{r^{\prime \prime}}\right)
$$

where $r^{\prime}, r^{\prime \prime}$ are the unique positive integers with $k=r^{\prime}\left\lfloor\frac{k}{r}\right\rfloor+r^{\prime \prime}\left\lceil\frac{k}{r}\right\rceil$ and $r=r^{\prime}+r^{\prime \prime}$.

In other words, we believe $\operatorname{Max}_{k, r}$ is attained when w is symmetric and has 1-blocks and 0 blocks that are as equal in length as possible, with all of the largest blocks grouped adjacently.

Theorem 1.15 below provides exact polynomial formulas for the symmetric case $\varphi(p, p)$. These formulas will be instrumental in our proof of Theorems 1.6 and 1.9 in Section 3. They will also play a key part in the statement of the Rearrangement Conjecture, an intricate but appealing result that directly implies Conjecture 1.10. We now introduce the notation needed to enumerate noncrossing pairings in the symmetric case.

Quoting Stanley, [20], p.294, we recursively define a plane tree T to be a finite non-empty set of vertices so that (i) one specially designated vertex in T is called the root of T and (ii) the remaining vertices of T, excluding the root, are partitioned into an ordered list, $\left(T_{1}, \ldots, T_{d}\right)$, of $d \geq 0$ disjoint non-empty sets T_{1}, \ldots, T_{d}, each of which is a plane tree. Let $|T|$ be the number of vertices of T. If $r \geq 1$, let \mathcal{T}_{r} denote the set of plane trees on r vertices, i.e. the set of isomorphism classes of plane trees with $|T|=r$. It is well-known that $\left|\mathcal{T}_{r}\right|=C_{r}$, the r th Catalan number (c.f. [20]).

We also make use of several additional standard definitions and terminology. Given a plane tree T with root u and subtrees T_{i} as in the definition, the decomposition of T is $\left(u, T_{1}, \ldots, T_{d}\right)$. The vertices in T apart from u are all descendants of u, and if u_{i} is the root of T_{i} for $1 \leq i \leq d$, then the u_{i} are the children of u, and that u is their parent. Finally, all of the u_{i} are siblings.

The canonical ordering (also commonly known as the depth-first or clockwise ordering) of the vertices of T is recursively defined by first putting $u<T_{1}<\ldots<T_{d}$, i.e. $u<v<w$ for all $v \in T_{i}$, $w \in T_{j}$, where $i<j$. Then, each T_{i} is canonically ordered internally. If $v_{1}<\cdots<v_{r}$ is the canonical ordering of the vertices V of T, then the canonical vertex labeling of T is the function $L: V \rightarrow[r]$ given by $L\left(v_{i}\right)=i$. Given v in T, let T_{v} be the subtree of T with root v. The degree of v in T, $d_{T}(v)$, is defined to be the number of children of v in T. The degree sequence of T is the sequence $\left(d_{T}(v): v \in V\right)$ where the vertices are listed in canonical order.

Figure 3. The five plane trees on $V=\{1,2,3,4\}$, canonically labeled. The respective degree sequences are $(1,1,1,0),(1,2,0,0),(2,1,0,0),(2,0,1,0)$ and $(3,0,0,0)$.

Remark 1.11. As in Figure 3, we always depict plane trees so that (i) each vertex is connected to each of its children by an edge, (ii) children are positioned above their parent, (iii) siblings are ordered from left to right in canonical order .

If $\gamma:[r] \rightarrow \mathbb{Z}$ we also write γ as an r-tuple $\gamma=(\gamma(1), \ldots, \gamma(r))$. If $\gamma:[r] \rightarrow \mathbb{Z}$ and $\gamma^{\prime}:\left[r^{\prime}\right] \rightarrow \mathbb{Z}$, the concatenation $\tau=\gamma \gamma^{\prime}$ is the map $\tau:\left[r+r^{\prime}\right] \rightarrow \mathbb{Z}$ where $\tau(i):=\gamma(i)$ for $i \in[r]$ and $\tau(r+i):=\gamma^{\prime}(i)$ for $i \in\left[r^{\prime}\right]$.
Definition 1.12. If $T \in \mathcal{T}_{r}$ and $\gamma:[r] \rightarrow \mathbb{Z}$ is an injective map, then the min-first vertex labeling of T by γ is the following recursively defined map $\gamma_{T}: T \rightarrow \mathbb{Z}$. Let $1 \leq j \leq r$ be such that $\gamma_{j}=\gamma_{\text {min }}:=$ $\min \{\gamma(i): 1 \leq i \leq r\}$ and let $\gamma^{\prime}=\operatorname{Rot}_{j}(\gamma):=(\gamma(j), \gamma(j+1), \ldots, \gamma(r), \gamma(1), \ldots, \gamma(j-1))$ be the left-rotation of γ to its minimum element. Using the decomposition of T, written as $\left(u, T_{1}, \ldots, T_{d}\right)$, let $\gamma_{i}^{\prime}:\left[\left|T_{i}\right|\right] \rightarrow \mathbb{Z}$ for $1 \leq i \leq d$ be defined so that $\gamma^{\prime}=\gamma_{\min } \gamma_{1}^{\prime} \ldots \gamma_{r}^{\prime}$. Then the labeling is recursively given by $\gamma_{T}:=\gamma_{\min }\left(\gamma_{1}^{\prime}\right)_{T_{1}} \ldots\left(\gamma_{d}^{\prime}\right)_{T_{d}}$.

Example 1.13. We give an example to illuminate Definition 1.12. Let T be the fourth tree in Figure 3 and $\gamma=(4,1,3,2)$. We will determine the vertex labeling $\gamma_{T}=(a, b, c, d)$, which indicates that
$\left(\gamma_{T}\right)(1)=a,\left(\gamma_{T}\right)(2)=b$ etc., where $\{a, b, c, d\}=\{1,2,3,4\} . T$ has decomposition $\left(1, T_{1}, T_{2}\right)$ where T_{1} is the tree sub-tree rooted at vertex 2 in the canonical ordering, and T_{2} is the subtree rooted at vertex 3 in the canonical ordering, see Figure 3. After the first round of recursion, $\gamma^{\prime}=1 \gamma_{1}^{\prime} \gamma_{2}^{\prime}$ where $\gamma_{1}^{\prime}=(3)$ and $\gamma_{2}^{\prime}=(2,4)$. Thus $\gamma_{T}=(1, b, c, d)$. After further recursion, $(b)=\left(\gamma_{1}^{\prime}\right)_{T_{1}}=(3)$ and $(c, d)=\left(\gamma_{2}^{\prime}\right)_{T_{2}}=(2,4)$, so $\gamma_{T}=(1,3,2,4)$. Figure 4 shows each $T \in \mathcal{T}_{4}$ labeled with γ_{T} for $\gamma=(4,1,3,2)$.

Figure 4. Plane trees labeled by $\gamma=(4,1,3,2) . \gamma_{T}(v)$ appears next to each vertex v.
Figure 5 shows a less trivial example of a vertex labeling of a plane tree.

Figure 5. A plane tree T. If $\gamma=(2,9,6,3,5,1,8,7,4,10), \gamma_{T}=$ $(1,8,4,10,7,2,9,3,6,5) \cdot \gamma_{T}(v)$ is shown next to each vertex v.

Remark 1.14. It is clear from the definition that (i) γ_{T} is increasing, i.e. $\left(\gamma_{T}\right)(v)<\left(\gamma_{T}\right)(w)$ whenever w is a descendant of v, and (ii) for each v, the sub-labeling $\gamma_{T}\left(T_{v}\right)$ is a cyclically consecutive subsequence of γ. Note that if γ is increasing, i.e. $\gamma(i)<\gamma(j)$ for all $i<j$, then no rotations ever occur in the calculation of γ_{T}. In this case, if $v_{1}<\cdots<v_{r}$ is the canonical ordering of T then $\left(\gamma_{T}\right)\left(v_{i}\right)=\gamma(i)$ for all i.

We use the vertex labelings described above to define polynomials that arise in the enumeration of $\varphi(p, p)$. Let S_{r} denote the symmetric group on $[r]$, where $\mathrm{e}=(1,2, \ldots, r)$ is the identity permutation. If $T \in \mathcal{T}_{r}$ and $\gamma \in S_{r}$, the tree-monomial in the indeterminates (x_{1}, \ldots, x_{r}) is defined as

$$
m_{T, \gamma}\left(x_{1}, \ldots, x_{r}\right)=\prod_{v \in T}\binom{x_{\gamma_{T}(v)}+1}{d_{T}(v)}
$$

The tree-polynomial is then the sum

$$
P_{\gamma}\left(x_{1}, x_{2}, \ldots, x_{r}\right):=\sum_{T \in \mathcal{T}_{r}} m_{T, \gamma}\left(x_{1}, \ldots, x_{r}\right) .
$$

Finally, we construct arbitrary r-tuples of integers by beginning with a weakly increasing vector $p \in\left(\mathbb{Z}_{+}\right)^{r}$ (i.e. $\left.p_{1} \leq \cdots \leq p_{r}\right)$, and then permuting the entries. In particular, we define the natural group action as $p_{\gamma}:=\left(p_{\gamma_{1}}, \ldots, p_{\gamma_{r}}\right)$.

Theorem 1.15 (The Polynomial Formula).
If $\gamma \in S_{r}$ and $p \in\left(\mathbb{Z}_{+}\right)^{r}$ is weakly increasing, then

$$
\varphi\left(p_{\gamma}, p_{\gamma}\right)=P_{\gamma}(p) .
$$

For notational convenience in writing tree polynomials, if $d \geq 0$ is an integer and x an indeterminate, we define $[x]^{d}:=\binom{x+1}{d}=\frac{1}{d!}(x+1)(x) \ldots(x-d+2)$, with $[x]^{0}:=1$. Note that for integers $p \geq 0,[p]^{d}=0$ when $p<d-1$, so some of the terms in $P_{\gamma}(p)$ may vanish.
Example 1.16. Let $\mathrm{e}=(1,2,3,4)$ and $\gamma=(4,1,3,2)$. If $p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is weakly increasing, we can apply Theorem 1.15 to to show

$$
\begin{gathered}
\varphi(p, p)=P_{\mathrm{e}}(p)=\left[p_{1}\right]^{1}\left[p_{2}\right]^{1}\left[p_{3}\right]^{1}+\left[p_{1}\right]^{1}\left[p_{2}\right]^{2}+\left[p_{1}\right]^{2}\left[p_{2}\right]^{1}+\left[p_{1}\right]^{2}\left[p_{3}\right]^{1}+\left[p_{1}\right]^{3}, \\
\varphi\left(p_{\gamma}, p_{\gamma}\right)=P_{\gamma}(p)=\left[p_{1}\right]^{1}\left[p_{2}\right]^{1}\left[p_{3}\right]^{1}+\left[p_{1}\right]^{1}\left[p_{2}\right]^{2}+\left[p_{1}\right]^{2}\left[p_{2}\right]^{1}+\left[p_{1}\right]^{2}\left[p_{2}\right]^{1}+\left[p_{1}\right]^{3} .
\end{gathered}
$$

(see Remark 1.14 and Figure 4). Note that these formulas imply

$$
\varphi\left(p_{\gamma}, p_{\gamma}\right) \leq \varphi(p, p)
$$

for all weakly increasing p. This is because we have $m_{T, 4132} \equiv m_{T, \mathrm{e}}$ for every $T \in \mathcal{T}_{4} \operatorname{except} T^{\prime}$, the fourth tree listed in Figure 4. But for T^{\prime}, we have $m_{T^{\prime}, 4132}(p)=\left[p_{1}\right]^{2}\left[p_{2}\right]^{1} \leq\left[p_{1}\right]^{2}\left[p_{3}\right]^{1}=m_{T^{\prime}, \mathrm{e}}(p)$ since $p_{2} \leq p_{3}$.

The polynomial inequalities in this example are indicative of a much larger pattern of such comparisons. Given a sequence $d=\left(d_{1}, \ldots, d_{r}\right)$, we say that d^{\prime} is a swap from d if there exist $1 \leq i<j \leq r$ so that $d_{i}^{\prime}=d_{j}, d_{j}^{\prime}=d_{i}$, and $d_{k}^{\prime}=d_{k}$ for all $k \neq i, j$. This swap is increasing if $d_{i}>d_{j}$. We say that d is below d^{\prime}, written $d \sqsubseteq d^{\prime}$, if and only if d^{\prime} can be obtained by applying a sequence of increasing swaps to d. Note that if $d \sqsubseteq d^{\prime}$, then d and d^{\prime} are equal when considered as multi-sets.
Definition 1.17. If $x=\left(x_{1}, \ldots, x_{r}\right)$ and d is an r-tuple of non-negative integers, we define the monomial $[x]^{d}:=\prod_{i=1}^{r}\left[x_{i}\right]^{d_{i}}$. We say $[x]^{d}$ is below $[x]^{d^{\prime}}$, written $[x]^{d} \sqsubseteq[x]^{d^{\prime}}$, iff $d \sqsubseteq d^{\prime}$.

An easy argument on binomial coefficients shows that if $0 \leq p_{1} \leq p_{2}$ and $0 \leq d_{2} \leq d_{1}$ then $\left[p_{1}\right]^{d_{1}}\left[p_{2}\right]^{d_{2}} \leq\left[p_{1}\right]^{d_{2}}\left[p_{2}\right]^{d_{1}}$. Thus if p is weakly increasing and d^{\prime} is an increasing swap of $d,[p]^{d} \leq$ $[p]^{d^{\prime}}$. These observations are succinctly stated in the following result.
Lemma 1.18. If $d \sqsubseteq d^{\prime}$, then $[p]^{d} \leq[p]^{d^{\prime}}$ for all weakly increasing sequences $p \in\left(\mathbb{Z}_{+}\right)^{r}$.
In Example 1.16, we had $m_{T, \gamma} \sqsubseteq m_{T, \mathrm{e}}$ for all T. For example, $m_{T^{\prime}, 4132}(x)=[x]^{d}$ where $d=$ $(2,1,0,0)$ and $m_{T^{\prime}, \mathrm{e}}(x)=[x]^{d^{\prime}}$ where $d^{\prime}=(2,0,1,0)$. Since $d \sqsubseteq d^{\prime}$, Lemma 1.18 implies our earlier observation that $m_{T^{\prime}, 4132} \sqsubseteq m_{T^{\prime}, \mathrm{e}}$.

We believe that a similar phenomenon of termwise inequality always holds, although in general it may be necessary to further permute the vertex labeled trees.
Conjecture 1.19 (The Rearrangement Conjecture).
For all $r \geq 1$ and $\gamma \in S_{r}$ there exists a permutation τ of \mathcal{T}_{r} such that $m_{T, \gamma} \sqsubseteq m_{\tau(T), \mathrm{e}}$ for all $T \in \mathcal{T}_{r}$.
Given such a bijection τ, we have

$$
\varphi\left(p_{\gamma}, p_{\gamma}\right)=\sum_{T \in \mathcal{T}_{r}} m_{T, \gamma}(p) \leq \sum_{T \in \mathcal{T}_{r}} m_{\tau(T), \mathrm{e}}(p)=\varphi(p, p)
$$

for all weakly increasing p. Thus the Rearrangement Conjecture immediately implies a corresponding inequality for noncrossing pairings.

Conjecture 1.20 (The Weak Rearrangement Conjecture).

Let $r \geq 1$. If $\gamma \in S_{r}$,

$$
\varphi\left(p_{\gamma}, p_{\gamma}\right) \leq \varphi(p, p)
$$

for all weakly increasing $p \in\left(\mathbb{Z}_{+}\right)^{r}$.
Either version of the Rearrangement Conjecture is sufficient to prove our main desired result.

Theorem 1.21. The rearrangement conjecture implies the main conjecture.
We have used Mathematica to computationally verify the Rearrangement Conjecture (and hence the Main Conjecture) for every $\gamma \in S_{r}$ with $r \leq 7$.

We conclude with another partial result that addresses certain special cases of the Main Conjecture. A sequence $\left(a_{1}, \ldots, a_{r}\right)$ is unimodal if there is a $1 \leq k \leq r$ such that $a_{1} \leq a_{2} \leq \cdots \leq a_{k-1} \leq$ $a_{k} \geq a_{k+1} \geq \cdots a_{r}$. Similarly, a permutation $\gamma \in S_{r}$ is unimodal if $(\gamma(1), \ldots, \gamma(r))$ is unimodal. Given any permutation $\gamma \in S_{r}$, we define $\mathcal{M}_{\gamma}:=\left\{m_{T, \gamma}: T \in \mathcal{T}_{r}\right\}$ to be the multiset of monomials appearing in $P_{\gamma}(p)$.

Theorem 1.22. The Rearrangement Conjecture holds for any γ that is unimodal or a cyclic rotation of a unimodal permutation. In those cases, $\mathcal{M}_{\gamma}=\mathcal{M}_{\mathrm{e}}$. For all other γ, we have $\mathcal{M} \not \subset \mathcal{M}_{\mathrm{e}}$.

The rest of this paper is organized as follows. In Section 2, we prove some basic results about φ concerning its symmetries, recurrence relation, and (non-commutative) generating function. We also give several preliminary upper and lower bounds. In Section 3, we prove all the main results of our paper as outlined above, as well as some additional enumeration results that connect the polynomials $P_{\mathrm{e}}(x)$ to certain classes of Dyck paths. We conclude with a brief discussion comparing the present work to other generalized Catalan structures, including the enumeration of monomials in certain algebraic expressions [2].

2. BAsic Results

2.1. Symmetries. The set of non-crossing pairings exhibits both rotational and reflective symmetry. Let Refl := $2 k, 2 k-1, \ldots, 2,1)$ and, for $1 \leq l \leq 2 k$, let $\operatorname{Rot}_{l}=(l, l+1, \ldots, k, 1,2, \ldots, l-1)$ be the left-rotation by l. These permutations of $S_{2 k}$ extend to permutations of $N C_{2}(2 k)$. If $\pi \in N C_{2}(2 k)$ then $\operatorname{Refl}(\pi):=\{\{\operatorname{Refl}(i), \operatorname{Refl}(j)\}:\{i, j\} \in \pi\} \in N C_{2}(2 k) ; \operatorname{Rot}_{l}(\pi)$ is defined analagously. These permutations generate the (dihedral) automorphism group of the lattice $N C_{2}(2 k)$ (cf. [16]). We also define similar operations on words.

Definition 2.1. If $w=w_{1} w_{2} \cdots w_{2 k}$, the reflection of w is $\operatorname{Refl}(w):=w_{2 k} \cdots w_{2} w_{1}$, for $1 \leq l \leq 2 k$, the left-rotation of w by l is $\operatorname{Rot}_{l}(w):=w_{l} w_{l+1} \cdots w_{2 k} w_{1} w_{2} \cdots w_{l-1}$. The negation of w replaces each w_{i} by $1-w_{i}$, and is denoted by \bar{w}.

Note that if $\pi \in N C_{2}(w)$, then $\operatorname{Refl}(\pi)$ is compatible with $\operatorname{Refl}(w)$, and similarly for Rot_{l}. Also note that switching the roles of 1 s and 0 s in w does not affect whether a pairing π is compatible with w. Thus the set of noncrossing pairings is preserved under all of these simple operations.

Proposition 2.2. For $w=w_{1} \ldots w_{n}$ is a binary word and $1 \leq l \leq n$,

$$
\varphi(w)=\varphi\left(\operatorname{Rot}_{l}(w)\right)=\varphi(\operatorname{Refl}(w))=\varphi(\bar{w})
$$

We omit the proof of this proposition, but refer the reader to Figure 6.

Figure 6. The action of the rotation Rot_{k}.

Proposition 2.2 makes it clear that it is natural to draw non-crossing pairings of binary words around a circle as in Figure 2. However, we will mostly use the linear representation while keeping Proposition 2.2 in mind.
2.2. Recursion Formula. We consider $\varphi:\{0,1\}^{*} \rightarrow \mathbb{N}$ as a function defined on binary words; it is clear that $\varphi(w)=0$ if $|w|$ is odd. We let λ denote the empty word, the unique word of length 0 . We consider the empty set to have exactly one pairing, the empty pairing $\pi_{0}=\varnothing$, which is vacuously compatible with λ. Thus $\varphi(\lambda)=1$.

One of the fundamental properties of φ is that it satisfies a quadratic recurrence formula.
Theorem 2.3. If $w=w_{1} \ldots w_{n}$ is a binary word, then

$$
\varphi(w)=\sum_{j: w_{j} \neq w_{1}} \varphi\left(w_{2} \ldots w_{j-1}\right) \varphi\left(w_{j+1} \ldots w_{n}\right) .
$$

Proof. Fix $1 \leq j \leq n$ and let $N_{j}:=\left\{\pi \in N C_{2}(w):\{1, j\} \in \pi\right\}$ be the set of pairings on w that contain $\{1, j\}$. If $w_{j}=w_{1}$ then $N_{j}=\varnothing$. Otherwise, we claim $\left|N_{j}\right|=\varphi\left(w^{\prime}\right) \varphi\left(w^{\prime \prime}\right)$ where $w^{\prime}=w_{2} \ldots w_{j-1}$ and $w^{\prime \prime}=w_{j+1} \ldots w_{n}$. If $\pi \in N_{j}$ then π decomposes as $\pi=\{\{1, j\}\} \cup \pi^{\prime} \cup \pi^{\prime \prime}$ where π^{\prime} consists of pairs in $\{2, \ldots, j-1\}$ and $\pi^{\prime \prime}$ consists of pairs in $\{j+1, \ldots, n\}$. Clearly $\tau^{\prime}=\operatorname{Rot}_{1}\left(\pi^{\prime}\right) \in N C_{2}\left(w^{\prime}\right)$ and $\tau^{\prime \prime}=\operatorname{Rot}_{j+1}\left(\pi^{\prime \prime}\right) \in N C_{2}\left(w^{\prime \prime}\right)$ (here we view π^{\prime} and $\pi^{\prime \prime}$ as partial pairings on $\{1, \ldots, 2 k\}$). The map sending $\pi \in N_{j}$ to $\left(\tau^{\prime}, \tau^{\prime \prime}\right) \in N C_{2}\left(w^{\prime}\right) \times N C_{2}\left(w^{\prime \prime}\right)$ is clearly a bijection. Summing over all j yields $\varphi(w)=\sum_{j}\left|N_{j}\right|$, which is the claimed formula.

Theorem 2.3 can also be expressed as a functional equation for the non-commutative generating function of φ. Let $\mathbb{C}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ be the ring of power series in the non-commuting indeterminates x_{0}, x_{1}. The generating function for φ is the power series $F \in \mathbb{C}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ given by

$$
F\left(x_{0}, x_{1}\right)=\sum_{w} \varphi(w) x_{w}
$$

where $x_{w}:=\prod_{i=1}^{n} x_{w_{i}}$.
Theorem 2.4. $F=\sum_{w} \varphi(w) x_{w}$ is the unique solution in $\mathbb{C}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ to the functional equation

$$
F=1+x_{1} F x_{0} F+x_{0} F x_{1} F .
$$

Proof. Since $\varphi(\lambda)=1$ and $\varphi(1)=\varphi(0)=0$, we have $F-1=\sum_{|w| \geq 2} \varphi(w) x_{w}$. Let

$$
G=x_{1} F x_{0} F+x_{0} F x_{1} F=\sum_{|w| \geq 2} \psi(w) x_{w} .
$$

If $|w| \geq 2$ it is easy to see that

$$
\psi(w)=\sum\left\{\varphi\left(w^{\prime}\right) \varphi\left(w^{\prime \prime}\right): w=1 w^{\prime} 0 w^{\prime \prime} \text { or } w=0 w^{\prime} 1 w^{\prime \prime}\right\} .
$$

But the right-hand-side of this last equation is the recurrence for $\varphi(w)$ from Theorem 2.3 and so $G=F-1$, as claimed.

This result is also stated in Example 16.17 in [16], but is proven there by very different means.

2.3. Path Representations of Words.

Definition 2.5. Given a binary word $w=w_{1} w_{2} \cdots w_{n}$, set $Y_{0}=0$, and $Y_{i}:=\sum_{j=1}^{i}(-1)^{w_{j}+1}$ for $1 \leq i \leq 2 k$. Define the points $P_{i}:=\left(i, Y_{i}\right) \in \mathbb{R}^{2}$, and the corresponding path lattice path of w, denoted by $\mathscr{P}(w) \in \mathbb{R}^{2}$, as the piecewise linear path consisting of the union of the n line segments $P_{i-1} P_{i}$ for $1 \leq i \leq 2 k$ (i.e., 1 s in w correspond to northeast moves, $(1,1)$, and 0 s to southwest moves, $(1,-1)$).
Definition 2.6. Given $w=w_{1} w_{2} \cdots w_{n}$ as above, set $m:=\min \left\{Y_{0}, Y_{1}, \ldots, Y_{n}\right\}$. Then the height of w_{i} for $1 \leq i \leq 2 k$ is defined to be the integer $h_{i}:=\frac{1}{2}\left(Y_{i-1}+Y_{i}\right)+\frac{1}{2}+m$. We define $h(w)=\max \left\{h_{i}\right.$: $1 \leq i \leq n\}$ to be the height of the path $\mathscr{P}(w)$.

Note that the shift by m in the definition of path height ensures that the lowest height is always 1.

Lattice path heights give a simple necessary and sufficient condition for the existence of noncrossing pairings with a specified pair.

Figure 7. The lattice path $\mathscr{P}(w)$ of the word $w=1^{4} 0^{2} 1^{2} 0^{5} 1^{2} 0$ and the heights of the characters in w.

Lemma 2.7. Let w be a balanced binary word and let $1 \leq i<j \leq|w|$. Then there exists a $\pi \in N C_{2}(w)$ with $\{i, j\} \in \pi$ if and only if $w_{i} \neq w_{j}$ and $h_{i}=h_{j}$. In particular, $N C_{2}(w) \neq \varnothing$ if and only if w is balanced.

Proof. Let $1 \leq i<j \leq n$. We claim that $w^{\prime}=w_{i+1} w_{i+2} \ldots w_{j-1}$ and $w^{\prime \prime}=w_{i} w_{i+1} \ldots w_{j}$ are both balanced if and only if $h_{i}=h_{j}$ and $w_{i} \neq w_{j}$. Each of these sets of conditions can be written as a system of equations in the Y_{i}. The conditions that w^{\prime} and $w^{\prime \prime}$ are balanced are equivalent to the equations $Y_{i}=Y_{j-1}$ and $Y_{i-1}=Y_{j}$, respectively. On the other hand the set of conditions $h_{i}=h_{j}$ and $w_{i} \neq w_{j}$ are equivalent to the equations $Y_{i-1}+Y_{i}=Y_{j-1}+Y_{j}$ and $Y_{i}-Y_{i-1}=-\left(Y_{j}-Y_{j-1}\right)$, respectively. It is easy to check that these two sets of equations are equivalent.

If $\{i, j\} \in \pi \in N C_{2}(w)$, then w^{\prime} and $w^{\prime \prime}$ must both be balanced, and hence $h_{i}=h_{j}$ and $w_{i} \neq w_{j}$. For the other direction, we proceed by induction and use the fact that if $h_{i}=h_{j}$ and $w_{i} \neq w_{j}$, then w^{\prime} and $w^{\prime \prime}$ are balanced. Since w and $w^{\prime \prime}$ are balanced, so is $w_{0}=w_{1} w_{2} \ldots w_{i-1} w_{j+1} \ldots w_{n}$. By inductive hypothesis, there then exists $\pi_{0} \in N C_{2}\left(w_{0}\right)$ and $\pi^{\prime} \in N C_{2}\left(w^{\prime}\right)$. Thus $\pi=\{\{i, j\}\} \cup$ $\pi^{\prime} \cup \pi_{0} \in N C_{2}(w)$ (some obvious re-labelings of the ground sets of π^{\prime} and π_{0} must be carried out to make this expression for π correct, but we suppress those details).

For the final claim, if a nonempty word w is balanced, pick i so that $w_{i} \neq w_{i+1}$. Then $h_{i}=h_{i+1}$ and there exists $\pi \in N C_{2}(w)$ with $\{i, i+1\} \in \pi$. Remove w_{i}, w_{i+1} from w to obtain a new, shorter balanced word w^{\prime} and proceed inductively to construct the pairing.
Remark 2.8. Let w is a binary word of length $2 k$. If for some $h \geq 1$, only two letters in w are at height h, say w_{i} and w_{j}, then every $\pi \in N C_{2}(w)$ must contain $\{i, j\}$.
Corollary 2.9. For any word w we have $\varphi(w)=\varphi(\widetilde{w})$, where \widetilde{w} is the result of removing the tallest peak and lowest valley in w to level them with the second tallest peak and second lowest valley.
2.4. Rough Bounds. We conclude this section with a few upper and lower bounds on φ.

Proposition 2.10. Let $w=1^{p_{1}} 0^{q_{1}} \cdots 1^{p_{r}} 0^{q_{r}}$ be a balanced word, and let i be the minimum block size, $i:=\min \left\{p_{1}, q_{1}, \ldots, p_{r}, q_{r}\right\} \geq 1$. Then

$$
\varphi(w) \geq(1+i)^{r-1} .
$$

If $r=1,2$, then $\varphi(w)=(1+i)^{r-1}$.
Proof. Clearly $\varphi\left(1^{i} 0^{i}\right)=1$. Suppose $r \geq 2$. Without loss of generality we assume that $p_{1}=i$, see Proposition 2.2. Since both $q_{1}, q_{r} \geq i$, for any $0 \leq \ell \leq i=p_{1}$ we may pair the last $\ell 1$ s in the block $1^{p_{1}}$ to the first $\ell 0 \mathrm{~s}$ in the $0^{q_{1}}$ block and the remaining $i-\ell \leq q_{r} 1 \mathrm{~s}$ to the last $i-\ell 0 \mathrm{~s}$ in the $0^{q_{r}}$ block. The remaining word is then $0^{q_{1}-\ell} 1^{p_{2}} \cdots 0^{q_{r-1}} 1^{p_{r}} 0^{p_{r}-(i-\ell)}$, which can be rotated to

$$
\tilde{w}=1^{p_{2}} 0^{q_{2}} \cdots 1^{p_{r}} 0^{q_{1}+q_{r}-i} .
$$

This is a balanced word with $r-1$ runs, and with minimum run length $\tilde{i}=\min \left\{p_{2}, q_{2}, \cdots, p_{r}, q_{r}+\right.$ $\left.q_{1}-i\right\} \geq i$. The inductive hypothesis then implies that $\varphi(\tilde{w}) \geq(1+\tilde{i})^{r-2}$.

Thus for each choice of $0 \leq \ell \leq i$, we have at least $(1+i)^{r-2}$ distinct pairings of w. Furthermore, pairings corresponding to different ℓ are distinct. This implies that $\varphi(w) \geq(1+i)^{r-1}$ as claimed.

Figure 8. A binary word whose first 1-block, 1^{i}, is the smallest, here $i=3$. These 1 s can be paired to the first and last blocks of 0 s in exactly $i+1$ ways. In this example, $\ell=2$.

When $r=2$, the pairings counted are the only types possible, as there are only two blocks of 0 s. Furthermore the remaining word is always a rotation of $\tilde{w}=1^{p_{2}} 0^{p_{2}}$, which has only one compatible pairing. Thus $\varphi(w)=1+i$ when $r=2$.

The preceding inductive proof actually yields a somewhat larger lower bound. Let i_{1}, \ldots, i_{r-1} be the minima defined by the inductive process in the proof of Proposition 2.10 (i.e. $i_{1}=i$ is the global minimum in the proof and each i_{k+1} is the minimum of the block lengths in the leftover word after the inductive step has been applied at stage k (so $i_{2}=\tilde{i}$ from the proof, and so on). The following is a strengthening of Proposition 2.10.
Proposition 2.11. Let w be defined as in Proposition 2.10 and i_{1}, \ldots, i_{r-1} be defined as in the preceding paragraph. Then

$$
\varphi(w) \geq\left(1+i_{1}\right) \cdots\left(1+i_{r-1}\right) .
$$

Remark 2.12. This bound is sharp, as demonstrated by applying Lemma 2.7 to the family of examples

$$
w=1^{a_{1}+a_{2}} 0^{a_{2}} 1^{a_{2}+a_{3}} 0^{a_{3}} \ldots 1^{a_{r-1}+a_{r}} 0^{a_{r}} 1^{a_{r}+a_{r+1}} 0^{a_{1}+a_{2}+\cdots+a_{r}+a_{r+1}},
$$

where the a_{i} are any positive integers.
In the other direction, we prove a simple upper bound (which is not sharp in general).
Proposition 2.13. Let w be a binary word with height $h=h(w)$ and r runs. Then

$$
\begin{equation*}
\varphi(w) \leq C_{r}^{(h)} \leq \frac{r^{r-1}}{r!}(1+h)^{r-1} . \tag{2.1}
\end{equation*}
$$

Proof. The proof relies on the following simple injection of pairings on w to pairings on $w^{\prime}=$ $\left(1^{h} 0^{h}\right)^{r}$. In w, the 1^{\prime} s in the block $1^{p_{k}}$ have successive heights $a, a+1, \ldots, a+p_{k}-1$ for some a, and all heights are in the range $[1, h]$. The k-th run of 1 s in w^{\prime} hits every height $1, \ldots, h$, and thus we use the height-preserving map from w to w^{\prime} (the situation for runs of 0 s is inverted and analogous). Furthermore, we preserve the pairings of w when injecting into w^{\prime}. If a run $1^{p_{k}}$ in w ends at position i with $h_{i}=a$, then the following run of 0 s in w also begins at the same height $h_{i+1}=a$. This leaves excess bits $1^{h-a} 0^{h-a}$ at the "top" of a run in w^{\prime}, at heights $a+1, \ldots, h$, which we pair locally. Similarly, if a run of 0 s in w ends at height b, then there will in general be excess bits $0^{b-1} 1^{b-1}$ in w^{\prime} that are also paired locally.

This gives the inclusion, and the first inequality then follows from Proposition 1.7. The second inequality is an elementary rough estimate of the Fuss-Catalan number, which is left to the reader. Figure 9 demonstrates the inclusion.

Note that the lattice path height is the smallest h that can be used in the proof of Proposition 2.13, since all heights appearing in $\mathscr{P}(w)$ must appear in $\mathscr{P}\left(\left(1^{h} 0^{h}\right)^{r}\right)$. Unfortunately, $h(w)$ can be quite large in comparison to the average (or even maximum) block size in w : consider the word $\left(1^{k} 0\right)^{\ell}\left(10^{k}\right)^{\ell}$. The maximum block size is k, while the lattice path height is $(k-1) \ell+1$. Indeed, this word has length $2(k+1) \ell$, and the height is nearly half the total length. In general, a word of length $2 k$ with r runs can have height $k-r+1$, so the following corollary is essentially the best that can be said using height considerations.

FIGURE 9. w is injected into $\left(1^{h} 0^{h}\right)^{r}$, with extraneous labels (dark lines) paired locally.

Corollary 2.14. Let w be a balanced word of length $2 k$ with r runs. Then

$$
\begin{equation*}
\varphi(w) \leq \frac{r^{r-1}}{r!}(1+k)^{r-1} . \tag{2.2}
\end{equation*}
$$

Remark 2.15. The bound in Corollary 2.14 is not tight but for fixed k has the correct asymptotic behaviour in r. Theorem 1.9 implies that k may be replaced with k / r in this bound.

3. Main Results

3.1. Overview.

We prove our results by constructing injective maps from the set of noncrossing pairings into sets of related combinatorial structures whose properties are easier to manage. In Section 3.2 we define an injective mapping from $\mathrm{NC}_{2}(w)$ into a certain class of (edge) labeled trees. The properties of this map together with a straightforward enumeration of the trees allows us to prove Theorems 1.6 and 1.15.

In Section 3.3, we define an injective mapping from the pairings enumerated by $\varphi(p, q)$ into certain classes of lattice paths. The results we obtain on these types of paths allow us to prove Theorems 1.9 and 1.21. We conclude the section with the proof of Theorem 1.22.

3.2. Injection From $N C_{2}(w)$ Into Edge Labeled Trees.

In Section 2.4 we saw that the pairings enumerated by $\varphi(p, q)$ are strongly limited by the minimum run lengths (c.f. Proposition 2.10), and we also have remarked repeatedly on the rotational invariance of noncrossing pairings. In this section we construct injections from noncrossing pairings into edge-labeled trees, which allow us to encode the successive minima and rotational structure very easily.

Before beginning, we must also note that our perspective and terminology here is somewhat "inverted" from our earlier presentation of Theorem 1.15, where we began with an ordered, weakly increasing multiset p and considered words p_{γ} that arose from permuting these run lengths (there, γ referred to such a permutation). In this section we instead begin with an arbitrary sequence p of runs and consider the permutations γ that might have led to such a sequence; i.e., such γ s that $p_{\gamma^{-1}}$ is weakly increasing. This may not be uniquely defined, which is the reason for much of the intricate and technical notation in this section.

The labeled trees will be built from balanced words in which the runs of 1 s are specified, but where the 0 s are arbitrary. If $r \geq 1$ and $p \in\left(\mathbb{Z}_{+}\right)^{r}$, then the set of p-words is defined to be

$$
W_{p}:=\left\{0^{a} 1^{p_{1}} 0^{q_{1}} \ldots 1^{p_{r}} 0^{q_{r}-a}: w \text { is balanced, } q_{i} \geq 0 \text { for all } 1 \leq i \leq r, \text { and } 0 \leq a \leq q_{r}\right\} .
$$

Given $w=0^{a} 1^{p_{1}} 0^{q_{1}} \ldots 1^{p_{r}} 0^{q_{r}-a} \in W_{p}$, we define the subword $1^{p_{i}}$ in this representation to be the i th 1 -block of w for $1 \leq i \leq r$. We do this even if some $1^{p_{i}}$ are adjacent in w, i.e. even if some q_{i} s are 0 .

We next define a set of related trees that are also determined by a vector p. If $d \geq 0$ and $p>0$ are integers, then a label of degree d and weight p is a $(d+1)$-tuple of integers $\ell=\left(\ell_{0}, \ell_{1}, \ldots, \ell_{d}\right)$ such that (i) $\ell_{0}, \ell_{d} \geq 0$, (ii) $\ell_{i}>0$ for all $0<i<d$, and (iii) $|\ell|=p$. For a plane tree $T \in \mathcal{T}_{r}$ and permutation $\gamma \in S_{r}$, an edge (p, γ)-labeling of T is a function L mapping each $v \in T$ to a label $L(v)$ of degree $d_{T}(v)$ and weight $p_{\gamma^{-1}\left(\gamma_{T}(v)\right)}$ (recall the vertex labeling from Definition 1.12). Note that a tree T does not necessarily need to have an edge (p, γ)-labeling as labels on vertices of degree d must have weight $p \geq d-1$.

Definition 3.1. Adopting the preceding notation, the set of edge (p, γ)-labeled trees is

$$
L T(p, \gamma):=\left\{(T, L): T \in \mathcal{T}_{r}, L \text { is a }(p, \gamma) \text {-labeling of } T\right\} .
$$

Remark 3.2. Properly speaking, a (p, γ) labeling is not on the edges of a tree T, but rather can be thought of as lying in the "gaps" between edges. See Figure 13 for an example of such a labeling.

We now define a map from noncrossing pairings to edge-labeled trees. Given $w \in W_{p}$, a permutation $\gamma \in S_{r}$, and $\pi \in N C_{2}(w)$, we recursively construct an edge-labeled tree $L T(w, \gamma, \pi) \in$ $L T(p, \gamma)$. Choose $1 \leq j \leq r$ so that $\gamma(j)=1$, and denote the rotations $\gamma^{\prime}:=\operatorname{Rot}_{j}(\gamma)$ and $p^{\prime}:=\operatorname{Rot}_{j}(p)$. Note that $\gamma^{-1}(1)=j$, and $p^{\prime}=\left(p_{j}, p_{j+1}, \ldots, p_{j-1}\right)$. Furthermore, define the word rotation $\pi^{\prime}:=\operatorname{Rot}_{s}(\pi)$, where s is the integer such that $w^{\prime}=\operatorname{Rot}_{s}(w)$ begins with the $1^{p_{j}}$ block of w.

We can now write down the decompositions of w^{\prime} and π^{\prime} :

$$
\begin{gathered}
w^{\prime}=1^{p_{j}} 0^{\ell_{0}} w_{1}^{\prime} 0^{\ell_{1}} w_{2}^{\prime} 0^{\ell_{2}} \ldots .0^{\ell_{d-1}} w_{d}^{\prime} 0^{\ell_{d}}, \\
\pi^{\prime}=\pi_{0}^{\prime} \cup \pi_{1}^{\prime} \cup \cdots \cup \pi_{d}^{\prime},
\end{gathered}
$$

where π_{0}^{\prime} pairs the 1 s in the $1^{p_{j}}$ of w^{\prime} to the 0 s in $0^{\ell_{i}}$ for $0 \leq i \leq d$ (so $\ell_{0}+\cdots+\ell_{d}=p_{j}$), and $\pi_{i}^{\prime} \in N C_{2}\left(w_{i}^{\prime}\right)$ for $1 \leq i \leq d$. The pairings π_{i}^{\prime} are simply the restriction of π^{\prime} to the subwords w_{i}^{\prime}. Note that in the above procedure we have $d=0$ if and only if $r=1$. In this case, $w^{\prime}=1^{p_{1}} 0^{p_{1}}$, all 0 s are paired to $1^{p_{1}}$, and $\ell_{0}=\ell_{d}=p_{1}$.

We now create the root vertex in $L T(w, \gamma, \pi)$ with d children and edge-label $\ell=\left(\ell_{0}, \ldots, \ell_{d}\right)$. Recall that the weight of this label is $p_{j}=p_{\gamma^{-1}(1)}=p_{\gamma^{-1}\left(\gamma_{T}(1)\right)}$, so this is the beginning of a valid (p, γ) labeling.

For $1 \leq i \leq d$, let $t_{i}>0$ be the number of 1-blocks of w^{\prime} that are contained in w_{i}^{\prime}, and decompose γ^{\prime} into corresponding components $\gamma_{i}^{\prime}:\left[t_{i}\right] \rightarrow \mathbb{Z}$ so that

$$
\gamma^{\prime}=\gamma_{\min } \gamma_{1}^{\prime} \ldots \gamma_{d}^{\prime}
$$

This is compatible with the original labeling, in which we view the i th block of w as being labeled by $\gamma(i)$; the 1 -blocks of w_{i}^{\prime} are similarly labeled by γ_{i}^{\prime}. The definitions of γ^{\prime} and the γ_{i}^{\prime} are made to ensure that a 1-block in w^{\prime} or w_{i}^{\prime} retains the same label it had in w. Note that when this procedure is invoked recursively we must temporarily re-index labels so that $\gamma_{i}^{\prime} \in S_{t_{i}}$.

See Figure 10 for an example of a pairing $\pi \in N C_{2}(w)$ and Figure 11 for the decompositions of $\pi^{\prime} \in N C_{2}\left(w^{\prime}\right)$. As can be seen in Figure 11, the γ-labels of blocks remain invariant.

To complete the construction of the labeling, for $1 \leq i \leq d$, we recursively calculate $\left(T_{i}, L_{i}\right)=$ $L T\left(w_{i}^{\prime}, \gamma_{i}^{\prime}, \pi_{i}^{\prime}\right)$. Then $L T(w, \gamma, \pi):=(T, L)$, where T has decomposition $\left(u, T_{1}, \ldots, T_{d}\right)$, and where

$$
L(v):= \begin{cases}L(u) & \text { if } v=u, \\ L_{i}(v) & \text { if } v \in T_{i} .\end{cases}
$$

Figures 10-13 illustrate the complete calculation of $L T(w, \gamma, \pi)$ for the given example.
Although we have developed the previous labeling algorithms in great generality, we are most interested in the edge-labeled trees that correspond closely to noncrossing pairings. We say p and

Figure 10. $w \in W_{p}$ and $\pi \in N C_{2}(w)$, where $p=(5,3,6,4) . \gamma=(4,1,3,2)$.

Figure 11. $L T(w, \gamma, \pi)$ after one round of recursion. $L(1)=(1,1,1)$. Removed characters are shown in dotted boxes.

Figure 12. $L T(w, \gamma, \pi)$ after two rounds of recursion. $L(2)=(4,0)$ and $L(4)=(5)$.
γ are concordant if and only if for all $i, j, \gamma(i)<\gamma(j)$ implies $p_{i} \leq p_{j}$. In such a case γ should be viewed as an encoding of a weakly increasing ordering of p, which will be very useful in managing the rotational symmetries of $\varphi(p, p)$. Note that every p has at least one concordant γ, and that if p is weakly increasing, then p_{γ} is by definition concordant with γ.

The following result describes how concordancy exactly corresponds with bijective mappings.
Theorem 3.3. Let $p \in\left(\mathbb{Z}_{+}\right)^{r}$. If $w \in W_{p}$ and $\gamma \in S_{r}$, then $L T(w, \gamma, \cdot): N C_{2}(w) \rightarrow L T(p, \gamma)$ is injective. If, in addition, w is symmetric (or the rotation of a symmetric word) and γ is concordant with p, then $L T(w, \gamma, \cdot)$ is a bijection.
Proof. It is clear that when $r=1, L T(w, \gamma, \cdot)$ is bijective. In this case $w^{\prime}=1^{p_{1}} 0^{p_{1}}$ and the mapping sends the only member π of $N C_{2}(w)$ to the only member of $L T(p, \gamma)$, a single root with label $\left(p_{1}\right)$.

We now prove that $L T(w, \gamma, \cdot)$ is injective by induction on r. Suppose $\pi, \tau \in N C_{2}(w)$ and $L T(w, \gamma, \pi)=L T(w, \gamma, \tau)=(T, L)$. If T has the decomposition $\left(u, T_{1}, \ldots, T_{d}\right)$ and the root label is

Figure 13. $L T(w, \gamma, \pi)$, completed. $L(3)=(6)$.
denoted $\ell=L(u)$, then we have the word decomposition $w^{\prime}=1^{p_{j}} 0^{\ell_{0}} w_{1}^{\prime} 0^{\ell_{1}} w_{2}^{\prime} 0^{\ell_{2}} \ldots 0^{\ell_{d-1}} w_{d}^{\prime} 0^{\ell_{d}}$, and pairing decomposition $\pi^{\prime}=\pi_{0}^{\prime} \cup \pi_{1}^{\prime} \cup \cdots \cup \pi_{d}^{\prime}$, where $\pi_{i}^{\prime} \in N C_{2}\left(w_{i}^{\prime}\right)$. Since $\left(T_{i}, L_{i}\right)=$ $L T\left(w_{i}^{\prime}, \gamma_{i}^{\prime}, \pi_{i}^{\prime}\right)$, the number of 1-blocks in w_{i}^{\prime} is $\left|T_{i}\right|$. This means the w_{i}^{\prime} are completely determined by w, γ and (T, L). Thus $\tau^{\prime}=\tau_{0}^{\prime} \cup \tau_{1}^{\prime} \cup \cdots \cup \tau_{d^{\prime}}^{\prime}$, where $\tau_{i}^{\prime} \in N C_{2}\left(w_{i}^{\prime}\right)$. We must have $\tau_{0}^{\prime}=\pi_{0}^{\prime}$ since these pairs match the 1 s in $1^{p_{j}}$ to the same set of 0 s in w^{\prime}. Since $L T\left(w_{i}^{\prime}, \gamma_{i}^{\prime}, \pi_{i}^{\prime}\right)=L T\left(w_{i}^{\prime}, \gamma_{i}^{\prime}, \tau_{i}^{\prime}\right)=\left(T_{i}, L_{i}\right)$ we have $\pi_{i}^{\prime}=\tau_{i}^{\prime}$ by induction and thus $\pi=\tau$.

We now prove that $L T(w, \gamma, \cdot)$ is bijective when (i) w is symmetric, and (ii) γ is concordant with p. We proceed by induction on r, and note that the base case $r=1$ has already been shown. Since p and γ are concordant, $p_{j}=\min \left\{p_{i}: 1 \leq i \leq r\right\}$. Since w is symmetric,

$$
w^{\prime}=1^{p_{j}} 0^{p_{j}} 1^{p_{j+1}} 0^{p_{j+1}} \ldots 1^{p_{r}} 0^{p_{r}} 1^{p_{1}} 0^{p_{1}} \ldots 1^{p_{j-1}} 0^{p_{j-1}} .
$$

This means that the last $p_{j} 0$ s in each 0 -block of w^{\prime} are at heights $p_{j}, p_{j}-1, \ldots, 2,1$. Thus any 1 in $1^{p_{j}}$ of height h can be paired to any 0 of height h in any 0 -block. Consider the decomposition $w^{\prime}=1^{p_{j}} 0^{\ell_{0}} w_{1}^{\prime} 0^{\ell_{1}} w_{2}^{\prime} 0^{\ell_{2}} \ldots 0^{\ell_{d-1}} w_{d}^{\prime} 0^{\ell_{d}}$. If $0^{\ell_{i}}$ occurs in the k th 0 -block of w^{\prime} and $0^{\ell_{i+1}}$ in the l th, (where $l>k$) then $w_{i}^{\prime}=0^{\ell_{i+1}+\cdots+\ell_{d}} 1^{p_{k+1}} 0^{p_{k+1}} \ldots 1^{p_{l}} 0^{p_{l}-\ell_{i+1}-\ell_{i+2}-\cdots-\ell_{d}}$ and thus w_{i}^{\prime} is symmetric (see Figure 14). Since γ_{i}^{\prime} is also concordant with p_{i}^{\prime}, the maps $L T\left(w_{i}^{\prime}, \gamma_{i}^{\prime}, \cdot\right): N C_{2}\left(w_{i}^{\prime}\right) \rightarrow L T\left(p_{i}^{\prime}, \gamma_{i}^{\prime}\right)$ are bijective by induction.

Given $(T, L) \in L T(p, \gamma)$ we now construct π so that $L T(w, \gamma, \pi)=(T, L)$. Let T have decomposition $\left(u, T_{1}, \ldots, T_{d}\right)$. Let $L(u)=\ell$, a label of degree d and weight p_{j}. Pick a partial pairing π_{0}^{\prime} achieving a decomposition $w^{\prime}=1^{p_{j}} 0^{\ell_{0}} w_{1}^{\prime} 0^{\ell_{1}} w_{2}^{\prime} 0^{\ell_{2}} \ldots 0^{\ell_{d-1}} w_{d}^{\prime} 0^{\ell_{d}}$ so that each w_{i}^{\prime} contains $\left|T_{i}\right|$ 1-blocks. The restricted edge-labelings satisfy $\left(T_{i}, L_{i}\right) \in L T\left(p_{i}^{\prime}, \gamma_{i}^{\prime}\right)$, and so by induction there exists $\pi_{i}^{\prime} \in N C_{2}\left(w_{i}^{\prime}\right)$ with $L T\left(w_{i}^{\prime}, \gamma_{i}^{\prime}, \pi_{i}^{\prime}\right)=\left(T_{i}, L_{i}\right)$. Thus if $\pi^{\prime}=\pi_{0}^{\prime} \cup \pi_{1}^{\prime} \cup \cdots \cup \pi_{d}^{\prime}$, then $L T(w, \gamma, \pi)=(T, L)$.

Note that a simple counting argument shows that there are $[p]^{d}:=\binom{p+1}{d}$ possible labels $\ell=$ $\left(\ell_{0}, \ldots, \ell_{d}\right)$ of weight p and degree d. This means that edge-labeled trees can be enumerated by the tree polynomials of Section 1.

Lemma 3.4. If $p \in\left(\mathbb{Z}_{+}\right)^{r}$ and $\gamma \in S_{r}$, then $|L T(p, \gamma)|=P_{\gamma}\left(p_{\gamma^{-1}}\right)$.
Proof. Suppose that $T \in \mathcal{T}_{r}$. In any (p, γ) labeling of T, the weight of the label of vertex i is by definition $p_{\gamma^{-1}\left(\gamma_{T}(i)\right)}$, and the degree is of course $d_{T}(i)$. Thus there are $m_{T, \gamma}\left(p_{\gamma^{-1}}\right)=\prod\left[p_{\gamma^{-1}\left(\gamma_{T}(v)\right)}\right]^{d_{T}(v)}$ possible (p, γ)-labelings of T. Summing over all of \mathcal{I}_{r} gives the result.

Finally, Theorem 3.3 immediately enables us to translate formulas for edge-labeled trees to formulas and bounds for noncrossing pairings.

FIGURE 14. A symmetric word with smallest 1-block coming first. A 1 in this block at height h can be paired to any 0 at height h. There is one such 0 in each $0-$ bock. Once these 1 s are paired respecting the non-crossing and height conditions, the resulting w_{i}^{\prime} will again be symmetric.

Proof of Theorem 1.6. Let γ be concordant with p. By Theorem 3.3 we have

$$
\varphi(p, q) \leq|L T(p, \gamma)|=\varphi(p, p)
$$

Proof of Theorem 1.15. Suppose that p is weakly increasing and that $\gamma \in S_{r}$. Then by definition p_{γ} is concordant with γ, so Theorem 3.3 and Lemma 3.4 give

$$
\varphi\left(p_{\gamma}, p_{\gamma}\right)=\left|L T\left(p_{\gamma}, \gamma\right)\right|=P_{\gamma}\left(\left(p_{\gamma}\right)_{\gamma^{-1}}\right)=P_{\gamma}(p) .
$$

3.3. Injection From $N C_{2}(w)$ Into Lattice Paths.

We now extend the map from noncrossing pairings to edge-labeled trees and further inject into a certain class of lattice paths. The edge-labeled trees were very useful for managing the successive minima and rotations that arose in the enumeration of pairings on symmetric words, but to prove our inequalities we need to be able to easily compare pairings on different words. While this is cumbersome using labeled trees, the lattice paths have a very natural ordering that makes such comparisons straightforward.

A Dyck path is a finite walk in \mathbb{Z}^{2} taking steps of the form $(1,1)$ or $(1,-1)$ that starts at $(0,0)$, visits no point below the x-axis, and ends on the x-axis. If $p, p^{\prime} \in \mathbb{Z}^{r}$ we say p is dominated by p^{\prime} if $\sum_{i=1}^{j} p_{i} \leq \sum_{i=1}^{j} p_{i}^{\prime}$ for all $1 \leq j \leq r$, denoted by $p \preceq p^{\prime}$. Recall from Definition 2.5 that if w is a binary word, then $\mathscr{P}(w)$, the lattice path of w, is the walk in \mathbb{Z}^{2} starting at $(0,0)$ and with i th step equal to $(1,1)$ if $w_{i}=1$, or equal to $(1,-1)$ if $w_{i}=0$.

For a fixed $p \in\left(\mathbb{Z}_{+}\right)^{r}$, we again consider a class of p-words $w=1^{p_{1}} 0^{q_{1}} \ldots 1^{p_{r}} 0^{q_{r}}$, where q is an r-tuple of non-negative integers. It is easy to show that $\mathscr{P}(w)$ is a Dyck path if and only if $q \preceq p$ and $|q|=|p|$. In this case we say that $\mathscr{P}(w)$ is a p-path and w is a p-Dyck word (note that these are more restricted than the p-words of Section 3.2). Let

$$
\operatorname{Dyck}(p):=\left\{1^{p_{1}} 0^{q_{1}} \ldots 1^{p_{r}} 0^{q_{r}}: \forall i \quad q_{i} \geq 0, q \preceq p,|q|=|p|\right\}
$$

be the set of p-Dyck words, and let $\operatorname{Path}(p)$ denote the set of all p-paths. See Figure 15. We will denote both a word $w=1^{p_{1}} 0^{q_{1}} \ldots 1^{p_{r}} 0^{q_{r}}$ and the corresponding path $\mathscr{P}(w)$ by the pair (p, q).

We now recursively define a map $F: L T(p, \mathrm{e}) \rightarrow \operatorname{Dyck}(p)$ from edge-labeled trees to Dyck paths. Suppose $(T, L) \in L T(p, \mathrm{e})$, where T has the decomposition $\left(u, T_{1}, \ldots, T_{d}\right)$ and where the subtree T_{i} has labeling L_{i}. Also, write $\ell:=L(u)$ for the root label. Apply the map recursively to obtain $w_{i}=F\left(T_{i}, L_{i}\right)$ for $1 \leq i \leq d$; then

$$
F(T, L):=1^{p_{1}} 0^{\ell_{0}} w_{1} 0^{\ell_{1}} \ldots 0^{\ell_{d-1}} w_{d} 0^{\ell_{d}} .
$$

Lemma 3.5. If $p \in\left(\mathbb{Z}_{+}\right)^{r}$, then the map $F: L T(p, \mathrm{e}) \rightarrow \operatorname{Dyck}(p)$ is a bijection.

Figure 15. The three paths in $\operatorname{Path}(2,1)$, namely $\mathscr{P}=(p, q)$ with $p=(2,1)$ and $q=(2,1),(1,1)$, or $(0,3)$. The the northeast steps are shown in bold.

Proof. This is clear when $r=1$. The sole member of $L T(p, \mathrm{e})$ is a tree with root u and label $\ell=\left(p_{1}\right)$. Applying F results in $1^{p_{1}} 0^{p_{1}}$, the sole member of $\operatorname{Dyck}(p)$. It is then clear that in the general case $w=F(T, L)$ is always a Dyck word, as the $w_{i}=F\left(T_{i}, L_{i}\right)$ are recursively Dyck words, and thus $w=1^{p_{1}} 0^{\ell_{0}} w_{1} 0^{\ell_{1}} \ldots 0^{\ell_{d-1}} w_{d} 0^{\ell_{d}}$ is as well.

To show that this is a bijection, observe that every $w \in \operatorname{Dyck}(p)$ has a unique decomposition of the form

$$
w=1^{p_{1}} 0^{\ell_{0}} w_{1} 0^{\ell_{1}} \ldots 0^{\ell_{d-1}} w_{d} 0^{\ell_{d}}
$$

where ℓ is a label of degree d and weight p_{1}, and each w_{i} is a Dyck word. Indeed, for all $1 \leq$ $i \leq p_{1}$, the i th 0 shown in the above decomposition is the first 0 in w of height $p_{1}+1-i$. Let $1=k_{0}<k_{1}<\cdots<k_{d}=r$ be the indices such that $w_{i} \in \operatorname{Dyck}\left(p_{i}^{\prime}\right)$ where $p_{i}^{\prime}=\left(p_{k_{i-1}+1}, \ldots, p_{k_{i}}\right)$. By induction $L T\left(p_{i}^{\prime}, \mathrm{e}\right)$ is in bijective correspondence with $\operatorname{Dyck}\left(p_{i}^{\prime}\right)$. Thus trees $(T, L) \in L T(p, \mathrm{e})$ of the form $T=\left(u, T_{1}, \ldots, T_{d}\right)$ with label $L(u)=\ell$ are in bijective correspondence with words of the form $1^{p_{j}} 0^{\ell_{0}} w_{1} 0^{\ell_{1}} \ldots 0^{\ell_{d-1}} w_{d} 0^{\ell_{d}}$; considering all possible labels ℓ of weight p_{1} and arbitrary degree gives the claim.

Composing this bijection with the map from Theorem 3.3 gives a map from noncrossing pairings to Dyck paths.
Theorem 3.6. Suppose that $p \in\left(\mathbb{Z}_{+}\right)^{r}$. If $w \in W_{p}$, then the map $P(w, \cdot): N C_{2}(w) \rightarrow \operatorname{Dyck}(p)$ given by $P(w, \pi)=F(L T(w, \mathrm{e}, \pi))$ is an injection. If p is weakly increasing, then it is a bijection.

Thus Theorem 1.15 gives an enumeration for paths.
Lemma 3.7. If $p \in\left(\mathbb{Z}_{+}\right)^{r}$ is weakly increasing, then $|\operatorname{Path}(p)|=P_{\mathrm{e}}(p)$.
Now that we have related Dyck paths to noncrossing pairings, we provide a simple comparison criterion for the number of paths associated to different vectors.
Lemma 3.8. For all $r \geq 1$ and $p, p^{\prime} \in\left(\mathbb{Z}_{+}\right)^{r}$, if $p \preceq p^{\prime}$ then

$$
|\operatorname{Path}(p)| \leq\left|\operatorname{Path}\left(p^{\prime}\right)\right| .
$$

Proof. Since $p \preceq p^{\prime}$, the difference $D:=\left|p^{\prime}\right|-|p| \geq 0$. We define an injection $\operatorname{Path}(p) \rightarrow \operatorname{Path}\left(p^{\prime}\right)$ by mapping $(p, q) \in \operatorname{Path}(p)$ to $\left(p^{\prime}, q^{\prime}\right)$ where $q^{\prime}=q+(0, \ldots, 0, D)$. Since $q \preceq p \preceq p^{\prime}$, we have

$$
\sum_{j=1}^{i} q_{i}^{\prime}=\sum_{j=1}^{i} q_{i} \leq \sum_{j=1}^{i} p_{i} \leq \sum_{j=1}^{i} p_{i}^{\prime}
$$

for all $1 \leq i<r$. By construction $\left|q^{\prime}\right|=\left|p^{\prime}\right|$, so $q^{\prime} \preceq p^{\prime}$ and $\left(p^{\prime}, q^{\prime}\right) \in \operatorname{Path}(p)$. This map is clearly injective, so the claimed inequality holds.

Note if p is weakly increasing, then $\varphi(p, p)=P_{\mathrm{e}}(p)$ by Theorem 1.15, and thus Theorem 3.6 and Lemmas 3.7 and 3.8 imply a simple comparison criterion for pairings.
Corollary 3.9. If $p, p^{\prime} \in\left(Z_{+}\right)^{r}$ are weakly increasing and $p \preceq p^{\prime}$ then $\varphi(p, p) \leq \varphi\left(p^{\prime}, p^{\prime}\right)$.
Next we characterize the situations where Corollary 3.9 applies.
Lemma 3.10. If $p, p^{\prime} \in\left(\mathbb{Z}_{+}\right)^{r}$ and $|p| \leq\left|p^{\prime}\right|$ then for some $1 \leq l \leq r, \operatorname{Rot}_{l}(p) \preceq \operatorname{Rot}_{l}\left(p^{\prime}\right)$.

Proof. We extend p, p^{\prime} cyclically to all $i \in \mathbb{Z}$ by putting $p_{i}=p_{j}$ iff $i \equiv j(\bmod r)$. For $i \geq 1$ let $h_{i}=\sum_{j=1}^{i}\left(p_{j}^{\prime}-p_{j}\right)$. Note $h_{i+r}-h_{i}=\left|p^{\prime}\right|-|p| \geq 0$, for all $i \geq 1$. Thus there exists $0 \leq k<r$ so that $h_{k}=\min \left\{h_{i}: i \geq 1\right\}$. Thus $h_{k} \leq h_{k+i}$ for $1 \leq i \leq r$, or equivalently, $\sum_{j=k+1}^{k+i}\left(p_{j}^{\prime}-p_{j}\right) \geq 0$ for $1 \leq i \leq r$. This means that $\operatorname{Rot}_{k+1}(p) \preceq \operatorname{Rot}_{k+1}\left(p^{\prime}\right)$.

Let $1 \leq r \leq k$. The Main Conjecture claims that $\operatorname{Max}_{k, r}=\varphi(P, P)$ where P is the r-tuple $P=(m-1, \ldots, m-1, m \ldots, m)$ with $m=\left\lceil\frac{k}{r}\right\rceil$ and $|P|=k$. The Main Theorem states that $\operatorname{Max}_{k, r} \leq \varphi\left(P^{\prime}, P^{\prime}\right)$ where P^{\prime} is the r-tuple (m, \ldots, m). If $|p|=k$, we relate p to P and P^{\prime} in order to use the above results.

Lemma 3.11. Suppose $1 \leq r \leq k$. If $p \in\left(\mathbb{Z}_{+}\right)^{r}$ is weakly increasing and $|p|=k$ and P, P^{\prime} are defined as in the preceding paragaph. then $p \preceq P \preceq P^{\prime}$.
Proof. It suffices to show $p \preceq P$; by definition we have $|P|=|p|$. Suppose that $p \npreceq P$ and let j be the smallest integer $1 \leq j<r$ for which $\sum_{i=1}^{j} p_{j}>\sum_{i=1}^{j} P_{j}$. Note that we must have $p_{j}>P_{j}$, and hence $p_{j+1} \geq p_{j} \geq P_{j}+1 \geq m \geq P_{i}$ for all i. But then

$$
|p|=\sum_{i \leq j} p_{i}+\sum_{i>j} p_{i} \geq \sum_{i \leq j} p_{i}+(r-j) p_{j+1}>\sum_{i \leq j} P_{i}+\sum_{i>j} P_{j}=|P|,
$$

a contradiction.
Proof of Theorems 1.9 and 1.21. To prove the Main Theorem, let $p=\left(p_{1}, \ldots, p_{r}\right)$ have weight $|p|=k$. By construction $|p| \leq\left|P^{\prime}\right|$, and thus by Lemma 3.10 there is a rotation γ such that $p_{\gamma} \preceq P_{\gamma}^{\prime}=$ P^{\prime}. Thus $\varphi(p, q) \leq \varphi(p, p)=\varphi\left(p_{\gamma}, p_{\gamma}\right) \leq \varphi\left(P^{\prime}, P^{\prime}\right)$; the first inequality is due to Theorem 1.6, the middle equality is due to the rotational invariance of φ, and the last inequality comes from Corollary 3.9 (it is in this last point that it is essential to use P^{\prime} rather than P, as Corollary 3.9 requires weakly increasing sequences).

As for Theorem 1.21, suppose that the Rearrangement Conjecture is true. Then we may assume $\varphi(p, p) \leq \varphi(\tilde{p}, \tilde{p})$, where \tilde{p} is the weakly increasing rearrangement of p. But then by the Symmetrization Theorem and Lemma 3.11 we have $\varphi(p, q) \leq \varphi(p, p) \leq \varphi(\tilde{p}, \tilde{p}) \leq \varphi(P, P)$, and the Main Conjecture follows.

For the next proof we will need the following result on identities involving multivariable polynomials.

Proposition 3.12 (The Combinatorial Nullstellensatz, Theorem 1.2, [1]).
Let F be an arbitrary field, and let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $F\left[x_{1}, \ldots, x_{n}\right]$. Suppose the degree $\operatorname{deg}(f)$ of f is $\sum_{i=1}^{n} t_{i}$, where each t_{i} is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in f is non-zero. If S_{1}, \ldots, S_{n} are subsets of F with $\left|S_{i}\right|>t_{i}$, then there is an $s \in S_{1} \times \cdots \times S_{n}$ so that $f(s) \neq 0$.

Our results give the following interesting polynomial recurrences.
Theorem 3.13. If $p=\left(p_{1}, \ldots, p_{r}\right) \in\left(\mathbb{Z}_{+}\right)^{r}$ and $p^{\prime}=\left(p_{1}, \ldots, p_{i}+1, p_{i+1}-1, \ldots, p_{r}\right)$, then

$$
\left|\operatorname{Path}\left(p^{\prime}\right)\right|=|\operatorname{Path}(p)|+\left|\operatorname{Path}\left(p_{1}, \ldots, p_{i-1}, p_{i}\right)\right| \cdot\left|\operatorname{Path}\left(p_{i+1}-1, p_{i+2}, \ldots, p_{r}\right)\right| .
$$

Furthermore, if $x=\left(x_{1}, \ldots, x_{r}\right)$ is an r-tuple of indeterminates and $x^{\prime}:=\left(x_{1}, \ldots, x_{i}+1, x_{i+1}-\right.$ $\left.1, \ldots, x_{r}\right)$, then

$$
P_{e}\left(x^{\prime}\right)=P_{e}(x)+P_{e}\left(x_{1}, \ldots, x_{i-1}, x_{i}\right) P_{e}\left(x_{i+1}-1, x_{i+2}, \ldots, x_{r}\right) .
$$

Proof. Note that $p \preceq p^{\prime}$. Recall the injective map $I: \operatorname{Path}(p) \rightarrow \operatorname{Path}\left(p^{\prime}\right)$ from the proof of Lemma 3.8, and consider any $\left(p^{\prime}, q^{\prime}\right) \in X:=\operatorname{Path}\left(p^{\prime}\right) \backslash I(\operatorname{Path}(p))$, i.e. a p^{\prime}-path that is not the image of a p-path (p, q). This means that (p, q^{\prime}) is not a p-path. This can only happen if $p_{1}+\cdots+p_{i}=$ $q_{1}^{\prime}+\cdots+q_{i}^{\prime}-1$, as every other truncation of p and p^{\prime} have the same sum. Thus if $a=\left(p_{1}, \ldots, p_{i-1}, p_{i}\right)$ and $b=\left(p_{i+1}-1, p_{i+2}, \ldots, p_{r}\right)$, then $\left(a,\left(q_{1}^{\prime}, \ldots, q_{i}^{\prime}-1\right)\right)$ is a a-path and $\left(b,\left(q_{i+1}^{\prime}, \ldots q_{r}^{\prime}\right)\right)$ is a b-path. Conversely, any a-path and b-path can be recombined to get (p^{\prime}, q^{\prime}) in X. This proves the first equation.

By Lemma 3.7 we have the second equation for all $x \in\left(\mathbb{Z}_{+}\right)^{r}$ with x, x^{\prime} both weakly increasing. Since $P_{e}(x)$ is polynomial with fixed total degree of $r-1$, the polynomials are identical. (Apply the Combinatorial Nullstellensatz with $S_{i}=\{2 i r+1,2 i r+2, \ldots, 2 i r+r\}$.)

3.4. The Unimodal Case of the Rearrangment Conjecture.

We conclude this section by proving the Rearrangement Conjecture in the unimodal case. First note that if $a \in\left(\mathbb{Z}_{+}\right)^{r}$ is unimodal, then any consecutive subsequence of a is also unimodal.
Lemma 3.14. For any $1 \leq l<k$, let a^{\prime} be the subsequence that remains when the $l-1$ smallest elements are removed from a. Then a^{\prime} is a consecutive subsequence of a and the lth smallest element of a is either the first element or last element of a^{\prime}.
Proof of Theorem 1.22. Let $T \in \mathcal{T}_{r}$. By Remark 1.14, $m_{T, \mathrm{e}}=[x]^{d}$, where d is the degree sequence of T. Given d, the following procedure constructs a $T^{\prime} \in \mathcal{T}_{r}$ with $m_{T^{\prime}, \gamma}=[x]^{d}$. Since $\left|\mathcal{M}_{\gamma}\right|=\left|\mathcal{M}_{\mathrm{e}}\right|$ and all $m_{T, \mathrm{e}}$ are distinct, this shows that $\mathcal{M}_{\gamma}=\mathcal{M}_{\mathrm{e}}$.
Procedure (recall Lemma 3.14):
(1) Create vertex 1 with d_{1} children. Initialize $s=(\gamma(1), \ldots, \gamma(r))$, set $i=2$, and remove 1 from s.
(2) If i is the left-most term in s, then label the smallest unlabeled leaf with i. Similarly, if i is the right-most term in s, label the largest unlabeled leaf with i.
(3) Add d_{i} children to vertex i.
(4) If $i<r$, remove i from s, increment i by 1 , and return to step (2).

This procedure is well-defined, as there is always at least one unlabeled leaf for each step $i<r$. Indeed, since $\{1, \ldots, i\}$ form the vertices of a proper subtree T_{0} of T, we have $d_{1}+\cdots+d_{i} \geq i$. By construction the resulting tree polynomial is clearly as desired, $m_{T^{\prime}, \gamma}=m_{T, \gamma}$.

Now suppose γ is not unimodal. Lemma 3.14 implies that there exists an $l \geq 1$ such that there is no consecutive subsequence in $(\gamma(1), \ldots, \gamma(r))$ that consists of precisely $\{l+1, l+2, \ldots, r\}$. Let T be the tree in \mathcal{T}_{r} whose root has l children, and whose largest child having $r-l-1$ children of its own. The degree sequence d of this tree has $d_{1}=l, d_{l+1}=r-l-1$ and $d_{i}=0$ for $i \neq 1, l+1$. We claim that \mathcal{M}_{γ} does not contain $m_{T, \mathrm{e}}(x)=[x]^{d}$, which means that $\mathcal{M}_{\gamma} \neq \mathcal{M}_{\mathrm{e}}$.

If there were a tree $T^{\prime} \in \mathcal{T}_{r}$ such that $m_{T^{\prime}, \gamma}=\left[x_{1}\right]^{l}\left[x_{l+1}\right]^{r-l-1}$, then some vertex v of degree $r-l-1$ in T^{\prime} must have been labeled $l+1$ by $T^{\prime} \gamma$. Since $T^{\prime} \gamma$ is increasing this means all the vertices in T_{v}^{\prime} must be labeled by $S:=\{l+1, \ldots, r\}$. Since T_{v}^{\prime} has at least $r-l$ vertices, all of the labels in S must have been used to label T_{v}^{\prime}. But by Remark 1.14, only sets that that were originally consecutive in γ^{\prime} are ever used to label a subtree, which is a contradiction.
Remark 3.15. Thus if γ is unimodal or the rotation of a unimodal permutation, then $P_{\gamma}(x)=P_{\mathrm{e}}(x)$ and $\varphi\left(p_{\gamma}, p_{\gamma}\right)=\varphi(p, p)$, for all weakly increasing p.

4. CONCLUSION

One of the chief difficulties in evaluating φ explicitly is that the rotational invariance of Proposition 2.2 is surprisingly strong compared to other, related combinatorial structures. Although the numbers $\varphi(w)$ are a kind of generalization of a Catalan number (which are known to count unrestricted noncrossing pairings), they seemingly stand out when compared to other generalizations of Catalan structures.

For arbitrary nonnegative integers p_{i}, define the generalized Catalan numbers by

$$
C_{r}\left(p_{1}, \ldots, p_{r}\right):=\sum_{T \in \mathcal{T}_{r}} \prod_{i=1}^{r}\binom{p_{i}+1}{d_{i}(T)},
$$

where $d_{i}(T)$ denotes the degree of the i-th (clockwise) vertex of a plane tree T (compare with Theorem 1.15 and Lemma 3.4). Note $C_{r}(x)=P_{e}(x)$. These polynomial sums are easily seen to enumerate generalized versions of most of the structures found in [19], including:

- The number of decompositions of a ($p_{1}+\cdots+p_{r}+2$)-gon into distinct, (clockwise) consecutive $\left(p_{1}+2\right), \ldots,\left(p_{r}+2\right)$-gons;
- The number of words $0^{p_{1}} 1^{q_{1}} \ldots 0^{p_{r}} 1^{q_{1}}$ such that the cumulative number of 0 s is always at least as large as the cumulative number of 1 s ;
- The number of lattice points in certain polygonal regions defined by Ambdeberhan and Stanley [2].
For the above structures, it is not in general true that $C_{r}\left(p_{1}, \ldots, p_{r}\right)=C_{r}\left(p_{2}, \ldots, p_{r}, p_{1}\right)$, which is in sharp contrast to our Proposition 2.2. Indeed, an early version of this paper used an injection from noncrossing pairings on p to generalized Catalan structures enumerated by $C_{r}\left(p_{1}, \ldots, p_{r}\right)$ with the express purpose of breaking this rotational symmetry. The maps that we currently use in Section 3 are somewhat less directly related to $C_{r}\left(p_{1}, \ldots, p_{r}\right)$, but they do lead to much shorter proofs.

References

[1] Alon, N. Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7-29.
[2] Ambdeberhan, T., Stanley, R.: Polynomial coefficient enumeration., preprint, http://arxiv.org/abs/0811.3652.
[3] Bisch, D.; Jones, V.: Algebras associated to intermediate subfactors. Invent. Math. 128, 89-157 (1997)
[4] Bai, Z.; Yin, Y.: Convergence to the semicircle law. Ann. Probab. 16 (1988), no. 2, 863-875.
[5] Chou, E.; Fricano, A.; Kemp, T.; Poh, J.; Shore, W.; Whieldon, G.; Wong, T.; Zhang, Y.: Convex posets in non-crossing pairings on bitstrings. Preprint.
[6] Edelman, P.: Chain enumeratation and non-crossing partitions. Discrete Math. 31, 171-180 (1980)
[7] Girko, V.: The circular law. Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 669-679.
[8] Haagerup, U.: Random matrices, free probability and the invariant subspace problem relative to a von Neumann algebra. Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 273-290
[9] Haagerup, U.; Kemp, T.; Speicher, R.: Resolvents of \mathscr{R}-diagonal operators. To appear in Trans. Amer. Math. Soc.
[10] Kemp, T.: \mathscr{R}-diagonal dilation semigroups. Math. Z. 264, 111-136 (2010)
[11] Kemp, T.; Speicher, R.: Strong Haagerup inequalities for free \mathscr{R}-diagonal elements. J. Funct. Anal. 251 (2007), no. 1, 141-173.
[12] Kreweras, G.: Sur les partitions non-croisses d'un cycle. Discrete Math. 1, 333-350 (1972)
[13] Larsen, F.: Powers of R-diagonal elements. J. Operator Theory 47 no. 1, 197-212 (2002)
[14] Mehta, M. Random Matrices, 3rd Ed. Elsevier, 2004.
[15] Nica, A.; Speicher, R.: \mathscr{R}-diagonal pairs—a common approach to Haar unitaries and circular elements. Fields Inst. Commun., 12, 149-188 (1997)
[16] Nica, A.; Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, no. 335, Cambridge University Press, 2006
[17] Oravecz, F.: On the powers of Voiculescu's circular element. Studia Math. 145 85-95 (2001)
[18] Speicher, R.: Multiplicative functions on the lattice of noncrossing partitions and free convolution. Math. Ann. 298, 611628 (1994)
[19] Stanley, R.: Catalan Addendum, online http://math.mit.edu/~rstan/ec/catadd.pdf, accessed Sep. 27, 2008.
[20] Stanley, R.: Enumerative Combinatorics Vol. 2, Cambridge University Press, Cambridge, MA, 1997.
[21] Tao, T.; Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10 (2008), 261-307.
[22] Voiculescu, D.V.; Dykema, K.; Nica, A.: Free random variables. CRM Monograph Series, 1. American Mathematical Society, Providence, RI, 1992.
(1) Department of Mathematics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0112

E-mail address: tkemp@math.ucsd.edu
(2) Department of Mathematics, Princeton University, Washington Rd, Princeton, NJ 08540

E-mail address: mahlburg@math.princeton.edu
(3) Department of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK

E-mail address: amarpreet.rattan@bristol.ac.uk
(4) Mathematics and Statistics Department, University of North Carolina Greensboro, 116 Petty Building, Greensboro, NC 27402

E-mail address: cdsmyth@uncg.edu

