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ABSTRACT. A non-crossing pairing on a bit string is a matching of 1s and 0s in the string with the
property that the pairing diagram has no crossings. For an arbitrary bit-string w = 1p10q1 . . . 1pr0qr ,
let ϕ(w) be the number of such pairings. This enumeration problem arises when calculating moments
in the theory of random matrices and free probability, and we are interested in determining useful
formulas and asymptotic estimates for ϕ(w). Our main results include explicit formulas in the “sym-
metric” case where each pi = qi, as well as upper and lower bounds for ϕ(w) that are uniform across
all words of fixed length and fixed r. In addition, we offer more refined conjectural expressions for
the upper bounds. Our proofs follow from the construction of combinatorial mappings from the set
of non-crossing pairings into certain generalized “Catalan” structures that include labeled trees and
lattice paths.

1. INTRODUCTION

A pairing π of V = {1, . . . , 2k} is a partition of V into k pairs, π = {{i1, j1}, . . . , {ik, jk}}. A
crossing of π is a pair of pairs {i1, i2}, {j1, j2} ∈ π such that i1 < j1 < i2 < j2, see Figure 1. We
say that these two pairs are crossing. The pairing π is called non-crossing if it has no crossings. Let
NC2(2k) be the set of all non-crossing pairings of {1, . . . , 2k}.

i1 j1 i2 j2· · · · · · · · ·· · ·· · ·

FIGURE 1. A crossing in a pairing.

A binary word (or bit-string) of length n is w = w1w2 · · ·wn with wi ∈ {0, 1} for 1 ≤ i ≤ n. We
write |w| for the length of w. If w is a binary word of length 2k and π ∈ NC2(2k), we say w and
π are compatible if, for each pair {i, j} ∈ π, wi 6= wj ; that is, the letters in w that are paired by π
are distinct. Note that if w is compatible with some pairing π then w is necessarily balanced, i.e. w
contains the same number of 1s as 0s. We are interested in the set of pairings compatible with w.

Definition 1.1. Let w be a binary word with |w| = 2k. Then the set of noncrossing pairings on w is

NC2(w) := {π ∈ NC2(2k) : π and w are compatible},
and the number of such pairings is denoted by

ϕ(w) := |NC2(w)|.
Example 1.2. If w = 110100, then NC2(w) = {π1, π2} where π1 = {{1, 6}, {2, 5}, {3, 4}} and π2 =
{{1, 6}, {2, 3}, {4, 5}}. Thus ϕ(w) = 2. Similarly, ϕ(101010) = 5 and ϕ(111000) = 1.

Example 1.3. Let w = 110100110101011001100100. Each of the two diagrams in Figure 2 represents
a pairing compatible with w. In each diagram, w is listed clockwise around the circle, beginning
with the topmost 1, while the internal arcs in the diagram represent the pairs.

The function ϕ arises naturally in random matrix theory. LetXn be an n×nmatrix whose entries
are all independent, identically distributed random variables, each with mean 0 and variance 1/n.
Such a matrix is almost surely not normal (at least in the case that the law of the entries has a
continuous density), and so the eigenvalues are difficult to compute. Gn = 1

2(Xn + X∗n), the
Hermitian cousin of Xn, has been studied by physicists for over half a century. The density of
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FIGURE 2. Two members of NC2(110100110101011001100100).

eigenvalues ofGn converges, regardless of the law of the entries, to the semicircle law 1
2π

√
4− x2 dx

on [−2, 2], c.f. [14, 4]. For a Hermitian matrix such as Gn, the law of eigenvalues contains the
same information as the matrix moments 1

nTr (Gpn) for p ∈ Z+, where Tr denote the ordinary trace
of a matrix. For a non-Hermitian matrix like Xn, one studies instead the mixed matrix moments
1
nTr (Xp1

n X
∗q1
n · · ·Xpr

n X
∗qr
n ), which do not correlate as directly with eigenvalues, and in general

contain vastly more data. The connection between these moments and our interests is summed
up in the following proposition, whose proof can be found in [7]; see also [21, 16].

Proposition 1.4. If p, q ∈ (Z+)r are r-tuples of positive integers then

lim
n→∞

1
n

Tr (Xp1
n (X∗n)q1 · · ·Xpr

n (X∗n)qr) = ϕ(1p10q11p20q2 . . . 1pr0qr)

almost surely.

Definition 1.5. For all p, q ∈ (Z+)r, the number of noncrossing pairings on r-tuples is defined as

ϕ(p, q) := ϕ(1p10q11p20q2 . . . 1pr0qr),

.

We also define the weight of an r-tuple of integers p to be |p| :=
∑r

i=1 pi. Note that ϕ(p, q) = 0
unless the underlying word is balanced, i.e. |p| = |q|.

Our goal, in a sense, is to calculate all asymptotic mixed matrix moments of a random matrix
with independent entries. However, the set of such non-crossing pairings is far more generic
than in this one example. In [15], the authors introduced R-diagonal operators, which represent
the limiting eigenvalue distributions of a large class of non-Hermitian random matrices with non-
independent entries (but that nevertheless have nice symmetry and invariance properties). Such
ensembles of random matrices have recently played very important roles in free probability and
beyond: for example, in [8], Haagerup has produced the most significant progress towards the
resolution of the Invariant Subspace Conjecture in decades, and his proof is concentrated in the
theory of R-diagonal operators. In [10], the first author showed that the asymptotic mixed matrix
moments of R-diagonal random matrices are controlled, in an appropriate sense, by the set of
non-crossing pairings we consider in this paper. Indeed, the results of the present paper followed
from discussions motivated by applications to R-diagonal operators.

Computations with small cases illustrate that ϕ(w) depends on w in a very complex way. For
example, while ϕ(1i0i1j0j1k0k) =

(
i+1
2

)
+
(
i+1
1

)(
j+1
1

)
if i ≤ j ≤ k (c.f. Theorem 1.15), the general

formula for ϕ(1p10q11p20q21p30q3) takes several lines to write down. Although a closed form for ϕ
may be unobtainable, much can still be said.
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We define an important parameter of a word, the number of runs, r(w). For i = 0, 1 an i-block
of w is a maximal subword of cyclically adjacent i’s in w. Let r(w) be the number of 1-blocks in
w (equivalently, the number of 0-blocks). Even if we restrict our attention to words with the same
length and the same number of runs, the value of ϕ can fluctuate wildly. We seek the maximum
value of ϕ over each such class and, ideally, the words at which the maximum occurs.

Main Problem
For all 1 ≤ r ≤ k, determine

Maxk,r := max{ϕ(w) : w balanced, |w| = 2k, r(w) = r},
and find the w for which which this maximum is attained.

We now outline our main results (the proofs are all left for Section 3.) The following result is an
important first step toward addressing our main problem.

Theorem 1.6 (The Symmetrization Theorem).
For all p, q ∈ (Z+)r,

ϕ(p, q) ≤ ϕ(p, p).

This shows that in order to determine Maxk,r, it suffices to restrict attention to symmetric words,
i.e. words of the form 1p10q1 . . . 1pr0qr with pi = qi for 1 ≤ i ≤ r.

For all m ≥ 1, r ≥ 0 the corresponding Fuss-Catalan number is C(m)
r := 1

mr+1

(
(m+1)r

r

)
. Note that

C
(1)
r = Cr is the ordinary Catalan number. It is well-known that |NC2(2r)| = Cr (c.f. [20]), and the

Fuss-Catalan numbers also count certain pairings on words.

Proposition 1.7. For all m ≥ 1, ϕ((1m0m)r) = C
(m)
r .

Remark 1.8. If r = 1 it is easy to see that ϕ(1m0m) = 1 = C
(m)
1 . If m = 1 it is also easy to see that

any π ∈ NC2(2r) is automatically compatible with w = 1010 · · · 10. Thus ϕ((10)r) = Cr = C
(1)
r .

Indeed, if {i, j} ∈ π and wi = wj then |i− j|must be even. Since an odd number of points then lie
between i and j there must be another pair of π with exactly one end between i and j, contradicting
the assumption that π is non-crossing. A more sophisticated version of this reasoning, together
with the recurrence for the Fuss-Catalan numbers, forms a proof of Proposition 1.7 as discussed
in [5]. This proposition was also proved in a more topological manner by the first author in [11],
which relies on the non-crossing partition multichain enumeration results in [6] (proofs are also
essentially contained in [13] and [17]).

Our most significant result is a near-sharp upper bound for ϕ(w).

Theorem 1.9 (Main Theorem).
For 1 ≤ r ≤ k,

Maxk,r ≤ ϕ
((

1d
k
r
e0d

k
r
e
)r)

= C
(d k

r
e)

r .

Notice that when r | k, our Main Theorem is exact, and implies that

Maxk,r = ϕ((1
k
r 0

k
r )r) = C

( k
r
)

r ,

i.e. the maximum occurs at a word whose 1-blocks and 0-blocks are all of the same length.
We believe the following sharp statement can be made for the other cases of r and k.

Conjecture 1.10 (Main Conjecture).
If r - k then

Maxk,r = ϕ

((
1b

k
r
c0b

k
r
c
)r′ (

1d
k
r
e0d

k
r
e
)r′′)

where r′, r′′ are the unique positive integers with k = r′bkr c+ r′′dkr e and r = r′ + r′′.
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In other words, we believe Maxk,r is attained when w is symmetric and has 1-blocks and 0-
blocks that are as equal in length as possible, with all of the largest blocks grouped adjacently.

Theorem 1.15 below provides exact polynomial formulas for the symmetric case ϕ(p, p). These
formulas will be instrumental in our proof of Theorems 1.6 and 1.9 in Section 3. They will also play
a key part in the statement of the Rearrangement Conjecture, an intricate but appealing result that
directly implies Conjecture 1.10. We now introduce the notation needed to enumerate noncrossing
pairings in the symmetric case.

Quoting Stanley, [20], p.294, we recursively define a plane tree T to be a finite non-empty set of
vertices so that (i) one specially designated vertex in T is called the root of T and (ii) the remaining
vertices of T , excluding the root, are partitioned into an ordered list, (T1, . . . , Td), of d ≥ 0 disjoint
non-empty sets T1, . . . , Td, each of which is a plane tree. Let |T | be the number of vertices of T . If
r ≥ 1, let Tr denote the set of plane trees on r vertices, i.e. the set of isomorphism classes of plane
trees with |T | = r. It is well-known that |Tr| = Cr, the rth Catalan number (c.f. [20]).

We also make use of several additional standard definitions and terminology. Given a plane
tree T with root u and subtrees Ti as in the definition, the decomposition of T is (u, T1, . . . , Td). The
vertices in T apart from u are all descendants of u, and if ui is the root of Ti for 1 ≤ i ≤ d, then the
ui are the children of u, and that u is their parent. Finally, all of the ui are siblings.

The canonical ordering (also commonly known as the depth-first or clockwise ordering) of the ver-
tices of T is recursively defined by first putting u < T1 < . . . < Td, i.e. u < v < w for all v ∈ Ti,
w ∈ Tj , where i < j. Then, each Ti is canonically ordered internally. If v1 < · · · < vr is the canoni-
cal ordering of the vertices V of T , then the canonical vertex labeling of T is the function L : V → [r]
given by L(vi) = i. Given v in T , let Tv be the subtree of T with root v. The degree of v in T ,
dT (v), is defined to be the number of children of v in T . The degree sequence of T is the sequence
(dT (v) : v ∈ V ) where the vertices are listed in canonical order.

FIGURE 3. The five plane trees on V = {1, 2, 3, 4}, canonically labeled. The respec-
tive degree sequences are (1, 1, 1, 0), (1, 2, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0) and (3, 0, 0, 0).

Remark 1.11. As in Figure 3, we always depict plane trees so that (i) each vertex is connected to
each of its children by an edge, (ii) children are positioned above their parent, (iii) siblings are
ordered from left to right in canonical order .

If γ : [r] → Z we also write γ as an r-tuple γ = (γ(1), . . . , γ(r)). If γ : [r] → Z and γ′ : [r′] → Z,
the concatenation τ = γγ′ is the map τ : [r+r′]→ Z where τ(i) := γ(i) for i ∈ [r] and τ(r+i) := γ′(i)
for i ∈ [r′].

Definition 1.12. If T ∈ Tr and γ : [r]→ Z is an injective map, then the min-first vertex labeling of T
by γ is the following recursively defined map γT : T → Z. Let 1 ≤ j ≤ r be such that γj = γmin :=
min{γ(i) : 1 ≤ i ≤ r} and let γ′ = Rotj(γ) := (γ(j), γ(j + 1), . . . , γ(r), γ(1), . . . , γ(j − 1)) be the
left-rotation of γ to its minimum element. Using the decomposition of T , written as (u, T1, . . . , Td),
let γ′i : [|Ti|]→ Z for 1 ≤ i ≤ d be defined so that γ′ = γminγ

′
1 . . . γ

′
r. Then the labeling is recursively

given by γT := γmin(γ′1)T1 . . . (γ
′
d)Td

.

Example 1.13. We give an example to illuminate Definition 1.12. Let T be the fourth tree in Figure
3 and γ = (4, 1, 3, 2). We will determine the vertex labeling γT = (a, b, c, d), which indicates that
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(γT )(1) = a, (γT )(2) = b etc., where {a, b, c, d} = {1, 2, 3, 4}. T has decomposition (1, T1, T2) where
T1 is the tree sub-tree rooted at vertex 2 in the canonical ordering, and T2 is the subtree rooted
at vertex 3 in the canonical ordering, see Figure 3. After the first round of recursion, γ′ = 1γ′1γ

′
2

where γ′1 = (3) and γ′2 = (2, 4). Thus γT = (1, b, c, d). After further recursion, (b) = (γ′1)T1 = (3)
and (c, d) = (γ′2)T2 = (2, 4), so γT = (1, 3, 2, 4). Figure 4 shows each T ∈ T4 labeled with γT for
γ = (4, 1, 3, 2).

FIGURE 4. Plane trees labeled by γ = (4, 1, 3, 2). γT (v) appears next to each vertex v.

Figure 5 shows a less trivial example of a vertex labeling of a plane tree.

FIGURE 5. A plane tree T . If γ = (2, 9, 6, 3, 5, 1, 8, 7, 4, 10), γT =
(1, 8, 4, 10, 7, 2, 9, 3, 6, 5). γT (v) is shown next to each vertex v.

Remark 1.14. It is clear from the definition that (i) γT is increasing, i.e. (γT )(v) < (γT )(w) when-
ever w is a descendant of v, and (ii) for each v, the sub-labeling γT (Tv) is a cyclically consecutive
subsequence of γ. Note that if γ is increasing, i.e. γ(i) < γ(j) for all i < j, then no rotations ever
occur in the calculation of γT . In this case, if v1 < · · · < vr is the canonical ordering of T then
(γT )(vi) = γ(i) for all i.

We use the vertex labelings described above to define polynomials that arise in the enumer-
ation of ϕ(p, p). Let Sr denote the symmetric group on [r], where e = (1, 2, . . . , r) is the identity
permutation. If T ∈ Tr and γ ∈ Sr, the tree-monomial in the indeterminates (x1, . . . , xr) is defined
as

mT,γ(x1, . . . , xr) =
∏
v∈T

(
xγT (v) + 1
dT (v)

)
.

The tree-polynomial is then the sum

Pγ(x1, x2, . . . , xr) :=
∑
T∈Tr

mT,γ(x1, . . . , xr).

Finally, we construct arbitrary r-tuples of integers by beginning with a weakly increasing vector
p ∈ (Z+)r (i.e. p1 ≤ · · · ≤ pr), and then permuting the entries. In particular, we define the natural
group action as pγ := (pγ1 , . . . , pγr).
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Theorem 1.15 (The Polynomial Formula).
If γ ∈ Sr and p ∈ (Z+)r is weakly increasing, then

ϕ(pγ , pγ) = Pγ(p).

For notational convenience in writing tree polynomials, if d ≥ 0 is an integer and x an indeter-
minate, we define [x]d :=

(
x+1
d

)
= 1

d!(x+ 1)(x) . . . (x− d+ 2), with [x]0 := 1. Note that for integers
p ≥ 0, [p]d = 0 when p < d− 1, so some of the terms in Pγ(p) may vanish.

Example 1.16. Let e = (1, 2, 3, 4) and γ = (4, 1, 3, 2). If p = (p1, p2, p3, p4) is weakly increasing, we
can apply Theorem 1.15 to to show

ϕ(p, p) = Pe(p) = [p1]1[p2]1[p3]1 + [p1]1[p2]2 + [p1]2[p2]1 + [p1]2[p3]1 + [p1]3,

ϕ(pγ , pγ) = Pγ(p) = [p1]1[p2]1[p3]1 + [p1]1[p2]2 + [p1]2[p2]1 + [p1]2[p2]1 + [p1]3.
(see Remark 1.14 and Figure 4). Note that these formulas imply

ϕ(pγ , pγ) ≤ ϕ(p, p)

for all weakly increasing p. This is because we have mT,4132 ≡ mT,e for every T ∈ T4 except T ′, the
fourth tree listed in Figure 4. But for T ′, we have mT ′,4132(p) = [p1]2[p2]1 ≤ [p1]2[p3]1 = mT ′,e(p)
since p2 ≤ p3.

The polynomial inequalities in this example are indicative of a much larger pattern of such
comparisons. Given a sequence d = (d1, . . . , dr), we say that d′ is a swap from d if there exist
1 ≤ i < j ≤ r so that d′i = dj , d′j = di, and d′k = dk for all k 6= i, j. This swap is increasing if di > dj .
We say that d is below d′, written d v d′, if and only if d′ can be obtained by applying a sequence of
increasing swaps to d. Note that if d v d′, then d and d′ are equal when considered as multi-sets.

Definition 1.17. If x = (x1, . . . , xr) and d is an r-tuple of non-negative integers, we define the
monomial [x]d :=

∏r
i=1[xi]di . We say [x]d is below [x]d

′
, written [x]d v [x]d

′
, iff d v d′.

An easy argument on binomial coefficients shows that if 0 ≤ p1 ≤ p2 and 0 ≤ d2 ≤ d1 then
[p1]d1 [p2]d2 ≤ [p1]d2 [p2]d1 . Thus if p is weakly increasing and d′ is an increasing swap of d, [p]d ≤
[p]d

′
. These observations are succinctly stated in the following result.

Lemma 1.18. If d v d′, then [p]d ≤ [p]d
′ for all weakly increasing sequences p ∈ (Z+)r.

In Example 1.16, we had mT,γ v mT,e for all T . For example, mT ′,4132(x) = [x]d where d =
(2, 1, 0, 0) and mT ′,e(x) = [x]d

′
where d′ = (2, 0, 1, 0). Since d v d′, Lemma 1.18 implies our earlier

observation that mT ′,4132 v mT ′,e.
We believe that a similar phenomenon of termwise inequality always holds, although in general

it may be necessary to further permute the vertex labeled trees.

Conjecture 1.19 (The Rearrangement Conjecture).
For all r ≥ 1 and γ ∈ Sr there exists a permutation τ of Tr such that mT,γ v mτ(T ),e, for all T ∈ Tr.

Given such a bijection τ , we have

ϕ(pγ , pγ) =
∑
T∈Tr

mT,γ(p) ≤
∑
T∈Tr

mτ(T ),e(p) = ϕ(p, p)

for all weakly increasing p. Thus the Rearrangement Conjecture immediately implies a corre-
sponding inequality for noncrossing pairings.

Conjecture 1.20 (The Weak Rearrangement Conjecture).
Let r ≥ 1. If γ ∈ Sr,

ϕ(pγ , pγ) ≤ ϕ(p, p)
for all weakly increasing p ∈ (Z+)r.

Either version of the Rearrangement Conjecture is sufficient to prove our main desired result.
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Theorem 1.21. The rearrangement conjecture implies the main conjecture.

We have used Mathematica to computationally verify the Rearrangement Conjecture (and hence
the Main Conjecture) for every γ ∈ Sr with r ≤ 7.

We conclude with another partial result that addresses certain special cases of the Main Conjec-
ture. A sequence (a1, . . . , ar) is unimodal if there is a 1 ≤ k ≤ r such that a1 ≤ a2 ≤ · · · ≤ ak−1 ≤
ak ≥ ak+1 ≥ · · · ar. Similarly, a permutation γ ∈ Sr is unimodal if (γ(1), . . . , γ(r)) is unimodal.
Given any permutation γ ∈ Sr, we defineMγ := {mT,γ : T ∈ Tr} to be the multiset of monomials
appearing in Pγ(p).

Theorem 1.22. The Rearrangement Conjecture holds for any γ that is unimodal or a cyclic rotation of a
unimodal permutation. In those cases,Mγ =Me. For all other γ, we haveMγ 6⊆ Me.

The rest of this paper is organized as follows. In Section 2, we prove some basic results about ϕ
concerning its symmetries, recurrence relation, and (non-commutative) generating function. We
also give several preliminary upper and lower bounds. In Section 3, we prove all the main results
of our paper as outlined above, as well as some additional enumeration results that connect the
polynomials Pe(x) to certain classes of Dyck paths. We conclude with a brief discussion comparing
the present work to other generalized Catalan structures, including the enumeration of monomials
in certain algebraic expressions [2].

2. BASIC RESULTS

2.1. Symmetries. The set of non-crossing pairings exhibits both rotational and reflective symme-
try. Let Refl := (2k, 2k−1, . . . , 2, 1) and, for 1 ≤ l ≤ 2k, let Rotl = (l, l+1, . . . , k, 1, 2, . . . , l−1) be the
left-rotation by l. These permutations of S2k extend to permutations of NC2(2k). If π ∈ NC2(2k)
then Refl(π) := {{Refl(i),Refl(j)} : {i, j} ∈ π} ∈ NC2(2k); Rotl(π) is defined analagously. These
permutations generate the (dihedral) automorphism group of the lattice NC2(2k) (cf. [16]). We
also define similar operations on words.

Definition 2.1. If w = w1w2 · · ·w2k, the reflection of w is Refl(w) := w2k · · ·w2w1, for 1 ≤ l ≤ 2k,
the left-rotation of w by l is Rotl(w) := wlwl+1 · · ·w2kw1w2 · · ·wl−1. The negation of w replaces each
wi by 1− wi, and is denoted by w.

Note that if π ∈ NC2(w), then Refl(π) is compatible with Refl(w), and similarly for Rotl. Also
note that switching the roles of 1s and 0s in w does not affect whether a pairing π is compatible
with w. Thus the set of noncrossing pairings is preserved under all of these simple operations.

Proposition 2.2. For w = w1 . . . wn is a binary word and 1 ≤ l ≤ n,

ϕ(w) = ϕ(Rotl(w)) = ϕ (Refl(w)) = ϕ(w).

We omit the proof of this proposition, but refer the reader to Figure 6.

1 1 0 0 1 0 . . . 0 1 0 1 0 1 1 0 0 1 0 . . . 0
k 1

FIGURE 6. The action of the rotation Rotk.

Proposition 2.2 makes it clear that it is natural to draw non-crossing pairings of binary words
around a circle as in Figure 2. However, we will mostly use the linear representation while keeping
Proposition 2.2 in mind.

7



2.2. Recursion Formula. We consider ϕ : {0, 1}∗ → N as a function defined on binary words; it is
clear that ϕ(w) = 0 if |w| is odd. We let λ denote the empty word, the unique word of length 0. We
consider the empty set to have exactly one pairing, the empty pairing π0 = ∅, which is vacuously
compatible with λ. Thus ϕ(λ) = 1.

One of the fundamental properties of ϕ is that it satisfies a quadratic recurrence formula.

Theorem 2.3. If w = w1 . . . wn is a binary word, then

ϕ(w) =
∑

j:wj 6=w1

ϕ(w2 . . . wj−1)ϕ(wj+1 . . . wn).

Proof. Fix 1 ≤ j ≤ n and let Nj := {π ∈ NC2(w) : {1, j} ∈ π} be the set of pairings on w
that contain {1, j}. If wj = w1 then Nj = ∅. Otherwise, we claim |Nj | = ϕ(w′)ϕ(w′′) where
w′ = w2 . . . wj−1 and w′′ = wj+1 . . . wn. If π ∈ Nj then π decomposes as π = {{1, j}} ∪ π′ ∪ π′′
where π′ consists of pairs in {2, . . . , j − 1} and π′′ consists of pairs in {j + 1, . . . , n}. Clearly
τ ′ = Rot1(π′) ∈ NC2(w′) and τ ′′ = Rotj+1(π′′) ∈ NC2(w′′) (here we view π′ and π′′ as partial
pairings on {1, . . . , 2k}). The map sending π ∈ Nj to (τ ′, τ ′′) ∈ NC2(w′) × NC2(w′′) is clearly a
bijection. Summing over all j yields ϕ(w) =

∑
j |Nj |, which is the claimed formula. �

Theorem 2.3 can also be expressed as a functional equation for the non-commutative generating
function of ϕ. Let C〈〈x0, x1〉〉 be the ring of power series in the non-commuting indeterminates
x0, x1. The generating function for ϕ is the power series F ∈ C〈〈x0, x1〉〉 given by

F (x0, x1) =
∑
w

ϕ(w)xw

where xw :=
∏n
i=1 xwi .

Theorem 2.4. F =
∑

w ϕ(w)xw is the unique solution in C〈〈x0, x1〉〉 to the functional equation

F = 1 + x1Fx0F + x0Fx1F.

Proof. Since ϕ(λ) = 1 and ϕ(1) = ϕ(0) = 0, we have F − 1 =
∑
|w|≥2 ϕ(w)xw. Let

G = x1Fx0F + x0Fx1F =
∑
|w|≥2

ψ(w)xw.

If |w| ≥ 2 it is easy to see that

ψ(w) =
∑
{ϕ(w′)ϕ(w′′) : w = 1w′0w′′ or w = 0w′1w′′}.

But the right-hand-side of this last equation is the recurrence for ϕ(w) from Theorem 2.3 and so
G = F − 1, as claimed. �

This result is also stated in Example 16.17 in [16], but is proven there by very different means.

2.3. Path Representations of Words.

Definition 2.5. Given a binary word w = w1w2 · · ·wn, set Y0 = 0, and Yi :=
∑i

j=1(−1)wj+1 for
1 ≤ i ≤ 2k. Define the points Pi := (i, Yi) ∈ R2, and the corresponding path lattice path of w,
denoted by P(w) ∈ R2, as the piecewise linear path consisting of the union of the n line segments
Pi−1Pi for 1 ≤ i ≤ 2k (i.e., 1s in w correspond to northeast moves, (1, 1), and 0s to southwest
moves, (1,−1)).

Definition 2.6. Given w = w1w2 · · ·wn as above, set m := min{Y0, Y1, . . . , Yn}. Then the height of
wi for 1 ≤ i ≤ 2k is defined to be the integer hi := 1

2(Yi−1 +Yi)+ 1
2 +m. We define h(w) = max{hi :

1 ≤ i ≤ n} to be the height of the path P(w).

Note that the shift by m in the definition of path height ensures that the lowest height is always
1.

Lattice path heights give a simple necessary and sufficient condition for the existence of non-
crossing pairings with a specified pair.
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FIGURE 7. The lattice path P(w) of the word w = 14021205120 and the heights of
the characters in w.

Lemma 2.7. Let w be a balanced binary word and let 1 ≤ i < j ≤ |w|. Then there exists a π ∈ NC2(w)
with {i, j} ∈ π if and only if wi 6= wj and hi = hj . In particular, NC2(w) 6= ∅ if and only if w is
balanced.

Proof. Let 1 ≤ i < j ≤ n. We claim that w′ = wi+1wi+2 . . . wj−1 and w′′ = wiwi+1 . . . wj are both
balanced if and only if hi = hj and wi 6= wj . Each of these sets of conditions can be written as a
system of equations in the Yi. The conditions that w′ and w′′ are balanced are equivalent to the
equations Yi = Yj−1 and Yi−1 = Yj , respectively. On the other hand the set of conditions hi = hj
and wi 6= wj are equivalent to the equations Yi−1 + Yi = Yj−1 + Yj and Yi − Yi−1 = −(Yj − Yj−1),
respectively. It is easy to check that these two sets of equations are equivalent.

If {i, j} ∈ π ∈ NC2(w), then w′ and w′′ must both be balanced, and hence hi = hj and wi 6= wj .
For the other direction, we proceed by induction and use the fact that if hi = hj and wi 6= wj ,
then w′ and w′′ are balanced. Since w and w′′ are balanced, so is w0 = w1w2 . . . wi−1wj+1 . . . wn.
By inductive hypothesis, there then exists π0 ∈ NC2(w0) and π′ ∈ NC2(w′). Thus π = {{i, j}} ∪
π′ ∪ π0 ∈ NC2(w) (some obvious re-labelings of the ground sets of π′ and π0 must be carried out
to make this expression for π correct, but we suppress those details).

For the final claim, if a nonempty word w is balanced, pick i so that wi 6= wi+1. Then hi = hi+1

and there exists π ∈ NC2(w) with {i, i+ 1} ∈ π. Remove wi, wi+1 from w to obtain a new, shorter
balanced word w′ and proceed inductively to construct the pairing. �

Remark 2.8. Let w is a binary word of length 2k. If for some h ≥ 1, only two letters in w are at
height h, say wi and wj , then every π ∈ NC2(w) must contain {i, j}.
Corollary 2.9. For any word w we have ϕ(w) = ϕ(w̃), where w̃ is the result of removing the tallest peak
and lowest valley in w to level them with the second tallest peak and second lowest valley.

2.4. Rough Bounds. We conclude this section with a few upper and lower bounds on ϕ.

Proposition 2.10. Let w = 1p10q1 · · · 1pr0qr be a balanced word, and let i be the minimum block size,
i := min{p1, q1, . . . , pr, qr} ≥ 1. Then

ϕ(w) ≥ (1 + i)r−1.

If r = 1, 2, then ϕ(w) = (1 + i)r−1.

Proof. Clearly ϕ(1i0i) = 1. Suppose r ≥ 2. Without loss of generality we assume that p1 = i, see
Proposition 2.2. Since both q1, qr ≥ i, for any 0 ≤ ` ≤ i = p1 we may pair the last ` 1s in the block
1p1 to the first ` 0s in the 0q1 block and the remaining i − ` ≤ qr 1s to the last i − ` 0s in the 0qr

block. The remaining word is then 0q1−`1p2 · · · 0qr−11pr0pr−(i−`), which can be rotated to

w̃ = 1p20q2 · · · 1pr0q1+qr−i.

This is a balanced word with r−1 runs, and with minimum run length ĩ = min{p2, q2, · · · , pr, qr +
q1 − i} ≥ i. The inductive hypothesis then implies that ϕ(w̃) ≥ (1 + ĩ)r−2.

Thus for each choice of 0 ≤ ` ≤ i, we have at least (1+ i)r−2 distinct pairings of w. Furthermore,
pairings corresponding to different ` are distinct. This implies that ϕ(w) ≥ (1 + i)r−1 as claimed.

9



1 1 1 1 1 1 1 1 1 1 1 10 0 00 00000000w =

w̃

FIGURE 8. A binary word whose first 1-block, 1i, is the smallest, here i = 3. These
1s can be paired to the first and last blocks of 0s in exactly i + 1 ways. In this
example, ` = 2.

When r = 2, the pairings counted are the only types possible, as there are only two blocks of
0s. Furthermore the remaining word is always a rotation of w̃ = 1p20p2 , which has only one
compatible pairing. Thus ϕ(w) = 1 + i when r = 2. �

The preceding inductive proof actually yields a somewhat larger lower bound. Let i1, . . . , ir−1

be the minima defined by the inductive process in the proof of Proposition 2.10 (i.e. i1 = i is the
global minimum in the proof and each ik+1 is the minimum of the block lengths in the leftover
word after the inductive step has been applied at stage k (so i2 = ĩ from the proof, and so on). The
following is a strengthening of Proposition 2.10.

Proposition 2.11. Let w be defined as in Proposition 2.10 and i1, . . . , ir−1 be defined as in the preceding
paragraph. Then

ϕ(w) ≥ (1 + i1) · · · (1 + ir−1).

Remark 2.12. This bound is sharp, as demonstrated by applying Lemma 2.7 to the family of exam-
ples

w = 1a1+a20a21a2+a30a3 . . . 1ar−1+ar0ar1ar+ar+10a1+a2+···+ar+ar+1 ,

where the ai are any positive integers.

In the other direction, we prove a simple upper bound (which is not sharp in general).

Proposition 2.13. Let w be a binary word with height h = h(w) and r runs. Then

ϕ(w) ≤ C(h)
r ≤ rr−1

r!
(1 + h)r−1. (2.1)

Proof. The proof relies on the following simple injection of pairings on w to pairings on w′ =
(1h0h)r. In w, the 1’s in the block 1pk have successive heights a, a + 1, . . . , a + pk − 1 for some
a, and all heights are in the range [1, h]. The k-th run of 1s in w′ hits every height 1, . . . , h, and
thus we use the height-preserving map from w to w′ (the situation for runs of 0s is inverted and
analogous). Furthermore, we preserve the pairings of w when injecting into w′. If a run 1pk in w
ends at position i with hi = a, then the following run of 0s in w also begins at the same height
hi+1 = a. This leaves excess bits 1h−a0h−a at the “top” of a run in w′, at heights a+ 1, . . . , h, which
we pair locally. Similarly, if a run of 0s in w ends at height b, then there will in general be excess
bits 0b−11b−1 in w′ that are also paired locally.

This gives the inclusion, and the first inequality then follows from Proposition 1.7. The second
inequality is an elementary rough estimate of the Fuss-Catalan number, which is left to the reader.
Figure 9 demonstrates the inclusion. �

Note that the lattice path height is the smallest h that can be used in the proof of Proposition
2.13, since all heights appearing in P(w) must appear in P

(
(1h0h)r

)
. Unfortunately, h(w) can be

quite large in comparison to the average (or even maximum) block size in w: consider the word
(1k0)`(10k)`. The maximum block size is k, while the lattice path height is (k − 1)` + 1. Indeed,
this word has length 2(k + 1)`, and the height is nearly half the total length. In general, a word of
length 2k with r runs can have height k − r + 1, so the following corollary is essentially the best
that can be said using height considerations.
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FIGURE 9. w is injected into (1h0h)r, with extraneous labels (dark lines) paired locally.

Corollary 2.14. Let w be a balanced word of length 2k with r runs. Then

ϕ(w) ≤ rr−1

r!
(1 + k)r−1. (2.2)

Remark 2.15. The bound in Corollary 2.14 is not tight but for fixed k has the correct asymptotic
behaviour in r. Theorem 1.9 implies that k may be replaced with k/r in this bound.

3. MAIN RESULTS

3.1. Overview.
We prove our results by constructing injective maps from the set of noncrossing pairings into sets
of related combinatorial structures whose properties are easier to manage. In Section 3.2 we define
an injective mapping from NC2(w) into a certain class of (edge) labeled trees. The properties of
this map together with a straightforward enumeration of the trees allows us to prove Theorems
1.6 and 1.15.

In Section 3.3, we define an injective mapping from the pairings enumerated by ϕ(p, q) into
certain classes of lattice paths. The results we obtain on these types of paths allow us to prove
Theorems 1.9 and 1.21. We conclude the section with the proof of Theorem 1.22.

3.2. Injection From NC2(w) Into Edge Labeled Trees.
In Section 2.4 we saw that the pairings enumerated by ϕ(p, q) are strongly limited by the minimum
run lengths (c.f. Proposition 2.10), and we also have remarked repeatedly on the rotational invari-
ance of noncrossing pairings. In this section we construct injections from noncrossing pairings
into edge-labeled trees, which allow us to encode the successive minima and rotational structure
very easily.

Before beginning, we must also note that our perspective and terminology here is somewhat
“inverted” from our earlier presentation of Theorem 1.15, where we began with an ordered,
weakly increasing multiset p and considered words pγ that arose from permuting these run lengths
(there, γ referred to such a permutation). In this section we instead begin with an arbitrary se-
quence p of runs and consider the permutations γ that might have led to such a sequence; i.e.,
such γs that pγ−1 is weakly increasing. This may not be uniquely defined, which is the reason for
much of the intricate and technical notation in this section.

11



The labeled trees will be built from balanced words in which the runs of 1s are specified, but
where the 0s are arbitrary. If r ≥ 1 and p ∈ (Z+)r, then the set of p-words is defined to be

Wp := {0a1p10q1 . . . 1pr0qr−a : w is balanced, qi ≥ 0 for all 1 ≤ i ≤ r, and 0 ≤ a ≤ qr}.
Given w = 0a1p10q1 . . . 1pr0qr−a ∈Wp, we define the subword 1pi in this representation to be the ith
1-block of w for 1 ≤ i ≤ r. We do this even if some 1pi are adjacent in w, i.e. even if some qis are 0.

We next define a set of related trees that are also determined by a vector p. If d ≥ 0 and p > 0
are integers, then a label of degree d and weight p is a (d + 1)-tuple of integers ` = (`0, `1, . . . , `d)
such that (i) `0, `d ≥ 0, (ii) `i > 0 for all 0 < i < d, and (iii) |`| = p. For a plane tree T ∈ Tr and
permutation γ ∈ Sr, an edge (p, γ)-labeling of T is a function L mapping each v ∈ T to a label L(v)
of degree dT (v) and weight pγ−1(γT (v)) (recall the vertex labeling from Definition 1.12). Note that
a tree T does not necessarily need to have an edge (p, γ)-labeling as labels on vertices of degree d
must have weight p ≥ d− 1.

Definition 3.1. Adopting the preceding notation, the set of edge (p, γ)-labeled trees is

LT (p, γ) := {(T, L) : T ∈ Tr, L is a (p, γ)-labeling of T}.
Remark 3.2. Properly speaking, a (p, γ) labeling is not on the edges of a tree T , but rather can be
thought of as lying in the “gaps” between edges. See Figure 13 for an example of such a labeling.

We now define a map from noncrossing pairings to edge-labeled trees. Given w ∈ Wp, a per-
mutation γ ∈ Sr, and π ∈ NC2(w), we recursively construct an edge-labeled tree LT (w, γ, π) ∈
LT (p, γ). Choose 1 ≤ j ≤ r so that γ(j) = 1, and denote the rotations γ′ := Rotj(γ) and
p′ := Rotj(p). Note that γ−1(1) = j, and p′ = (pj , pj+1, . . . , pj−1). Furthermore, define the word
rotation π′ := Rots(π), where s is the integer such that w′ = Rots(w) begins with the 1pj block of
w.

We can now write down the decompositions of w′ and π′:

w′ = 1pj 0`0 w′1 0`1 w′2 0`2 . . . 0`d−1 w′d 0`d ,

π′ = π′0 ∪ π′1 ∪ · · · ∪ π′d,
where π′0 pairs the 1s in the 1pj of w′ to the 0s in 0`i for 0 ≤ i ≤ d (so `0 + · · · + `d = pj), and
π′i ∈ NC2(w′i) for 1 ≤ i ≤ d. The pairings π′i are simply the restriction of π′ to the subwords w′i.
Note that in the above procedure we have d = 0 if and only if r = 1. In this case, w′ = 1p10p1 , all
0s are paired to 1p1 , and `0 = `d = p1.

We now create the root vertex in LT (w, γ, π) with d children and edge-label ` = (`0, . . . , `d).
Recall that the weight of this label is pj = pγ−1(1) = pγ−1(γT (1)), so this is the beginning of a valid
(p, γ) labeling.

For 1 ≤ i ≤ d, let ti > 0 be the number of 1-blocks of w′ that are contained in w′i, and decompose
γ′ into corresponding components γ′i : [ti]→ Z so that

γ′ = γminγ
′
1 . . . γ

′
d.

This is compatible with the original labeling, in which we view the ith block of w as being labeled
by γ(i); the 1-blocks of w′i are similarly labeled by γ′i. The definitions of γ′ and the γ′i are made to
ensure that a 1-block in w′ or w′i retains the same label it had in w. Note that when this procedure
is invoked recursively we must temporarily re-index labels so that γ′i ∈ Sti .

See Figure 10 for an example of a pairing π ∈ NC2(w) and Figure 11 for the decompositions of
π′ ∈ NC2(w′). As can be seen in Figure 11, the γ-labels of blocks remain invariant.

To complete the construction of the labeling, for 1 ≤ i ≤ d, we recursively calculate (Ti, Li) =
LT (w′i, γ

′
i, π
′
i). Then LT (w, γ, π) := (T, L), where T has decomposition (u, T1, . . . , Td), and where

L(v) :=
{
L(u) if v = u,
Li(v) if v ∈ Ti.

Figures 10-13 illustrate the complete calculation of LT (w, γ, π) for the given example.
Although we have developed the previous labeling algorithms in great generality, we are most

interested in the edge-labeled trees that correspond closely to noncrossing pairings. We say p and
12
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FIGURE 10. w ∈Wp and π ∈ NC2(w), where p = (5, 3, 6, 4). γ = (4, 1, 3, 2).
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FIGURE 11. LT (w, γ, π) after one round of recursion. L(1) = (1, 1, 1). Removed
characters are shown in dotted boxes.
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FIGURE 12. LT (w, γ, π) after two rounds of recursion. L(2) = (4, 0) and L(4) = (5).

γ are concordant if and only if for all i, j, γ(i) < γ(j) implies pi ≤ pj . In such a case γ should be
viewed as an encoding of a weakly increasing ordering of p, which will be very useful in managing
the rotational symmetries of ϕ(p, p). Note that every p has at least one concordant γ, and that if p
is weakly increasing, then pγ is by definition concordant with γ.

The following result describes how concordancy exactly corresponds with bijective mappings.

Theorem 3.3. Let p ∈ (Z+)r. If w ∈ Wp and γ ∈ Sr, then LT (w, γ, ·) : NC2(w) → LT (p, γ) is
injective. If, in addition, w is symmetric (or the rotation of a symmetric word) and γ is concordant with p,
then LT (w, γ, ·) is a bijection.

Proof. It is clear that when r = 1, LT (w, γ, ·) is bijective. In this case w′ = 1p10p1 and the mapping
sends the only member π of NC2(w) to the only member of LT (p, γ), a single root with label (p1).

We now prove that LT (w, γ, ·) is injective by induction on r. Suppose π, τ ∈ NC2(w) and
LT (w, γ, π) = LT (w, γ, τ) = (T, L). If T has the decomposition (u, T1, . . . , Td) and the root label is
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FIGURE 13. LT (w, γ, π), completed. L(3) = (6).

denoted ` = L(u), then we have the word decompositionw′ = 1pj 0`0 w′1 0`1 w′2 0`2 . . . 0`d−1 w′d 0`d ,
and pairing decomposition π′ = π′0 ∪ π′1 ∪ · · · ∪ π′d, where π′i ∈ NC2(w′i). Since (Ti, Li) =
LT (w′i, γ

′
i, π
′
i), the number of 1-blocks inw′i is |Ti|. This means thew′i are completely determined by

w, γ and (T, L). Thus τ ′ = τ ′0 ∪ τ ′1 ∪ · · · ∪ τ ′d, where τ ′i ∈ NC2(w′i). We must have τ ′0 = π′0 since these
pairs match the 1s in 1pj to the same set of 0s in w′. Since LT (w′i, γ

′
i, π
′
i) = LT (w′i, γ

′
i, τ
′
i) = (Ti, Li)

we have π′i = τ ′i by induction and thus π = τ .
We now prove that LT (w, γ, ·) is bijective when (i) w is symmetric, and (ii) γ is concordant with

p. We proceed by induction on r, and note that the base case r = 1 has already been shown. Since
p and γ are concordant, pj = min{pi : 1 ≤ i ≤ r}. Since w is symmetric,

w′ = 1pj 0pj 1pj+10pj+1 . . . 1pr0pr1p10p1 . . . 1pj−10pj−1 .

This means that the last pj 0s in each 0-block of w′ are at heights pj , pj − 1, . . . , 2, 1. Thus any 1
in 1pj of height h can be paired to any 0 of height h in any 0-block. Consider the decomposition
w′ = 1pj 0`0 w′1 0`1 w′2 0`2 . . . 0`d−1 w′d 0`d . If 0`i occurs in the kth 0-block of w′ and 0`i+1 in the
lth, (where l > k) thenw′i = 0`i+1+···+`d1pk+10pk+1 . . . 1pl0pl−`i+1−`i+2−···−`d and thusw′i is symmetric
(see Figure 14). Since γ′i is also concordant with p′i, the maps LT (w′i, γ

′
i, ·) : NC2(w′i) → LT (p′i, γ

′
i)

are bijective by induction.
Given (T, L) ∈ LT (p, γ) we now construct π so that LT (w, γ, π) = (T, L). Let T have decom-

position (u, T1, . . . , Td). Let L(u) = `, a label of degree d and weight pj . Pick a partial pairing π′0
achieving a decomposition w′ = 1pj 0`0 w′1 0`1 w′2 0`2 . . . 0`d−1 w′d 0`d so that each w′i con-
tains |Ti| 1-blocks. The restricted edge-labelings satisfy (Ti, Li) ∈ LT (p′i, γ

′
i), and so by induction

there exists π′i ∈ NC2(w′i) with LT (w′i, γ
′
i, π
′
i) = (Ti, Li). Thus if π′ = π′0 ∪ π′1 ∪ · · · ∪ π′d, then

LT (w, γ, π) = (T, L).
�

Note that a simple counting argument shows that there are [p]d :=
(
p+1
d

)
possible labels ` =

(`0, . . . , `d) of weight p and degree d. This means that edge-labeled trees can be enumerated by the
tree polynomials of Section 1.

Lemma 3.4. If p ∈ (Z+)r and γ ∈ Sr, then |LT (p, γ)| = Pγ(pγ−1).

Proof. Suppose that T ∈ Tr. In any (p, γ) labeling of T , the weight of the label of vertex i is by defi-
nition pγ−1(γT (i)), and the degree is of course dT (i). Thus there are mT,γ(pγ−1) =

∏
[pγ−1(γT (v))]dT (v)

possible (p, γ)-labelings of T . Summing over all of Tr gives the result. �

Finally, Theorem 3.3 immediately enables us to translate formulas for edge-labeled trees to for-
mulas and bounds for noncrossing pairings.
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FIGURE 14. A symmetric word with smallest 1-block coming first. A 1 in this
block at height h can be paired to any 0 at height h. There is one such 0 in each 0-
bock. Once these 1s are paired respecting the non-crossing and height conditions,
the resulting w′i will again be symmetric.

Proof of Theorem 1.6. Let γ be concordant with p. By Theorem 3.3 we have

ϕ(p, q) ≤ |LT (p, γ)| = ϕ(p, p).

�

Proof of Theorem 1.15. Suppose that p is weakly increasing and that γ ∈ Sr. Then by definition pγ
is concordant with γ, so Theorem 3.3 and Lemma 3.4 give

ϕ(pγ , pγ) = |LT (pγ , γ)| = Pγ
(
(pγ)γ−1

)
= Pγ(p).

�

3.3. Injection From NC2(w) Into Lattice Paths.
We now extend the map from noncrossing pairings to edge-labeled trees and further inject into a
certain class of lattice paths. The edge-labeled trees were very useful for managing the successive
minima and rotations that arose in the enumeration of pairings on symmetric words, but to prove
our inequalities we need to be able to easily compare pairings on different words. While this is
cumbersome using labeled trees, the lattice paths have a very natural ordering that makes such
comparisons straightforward.

A Dyck path is a finite walk in Z2 taking steps of the form (1, 1) or (1,−1) that starts at (0, 0),
visits no point below the x-axis, and ends on the x-axis. If p, p′ ∈ Zr we say p is dominated by p′

if
∑j

i=1 pi ≤
∑j

i=1 p
′
i for all 1 ≤ j ≤ r, denoted by p � p′. Recall from Definition 2.5 that if w is a

binary word, then P(w), the lattice path of w, is the walk in Z2 starting at (0, 0) and with ith step
equal to (1, 1) if wi = 1, or equal to (1,−1) if wi = 0.

For a fixed p ∈ (Z+)r, we again consider a class of p-words w = 1p10q1 . . . 1pr0qr , where q is an
r-tuple of non-negative integers. It is easy to show that P(w) is a Dyck path if and only if q � p
and |q| = |p|. In this case we say that P(w) is a p-path and w is a p-Dyck word (note that these are
more restricted than the p-words of Section 3.2). Let

Dyck(p) := {1p10q1 . . . 1pr0qr : ∀i qi ≥ 0, q � p, |q| = |p|}
be the set of p-Dyck words, and let Path(p) denote the set of all p-paths. See Figure 15. We will
denote both a word w = 1p10q1 . . . 1pr0qr and the corresponding path P(w) by the pair (p, q).

We now recursively define a map F : LT (p, e) → Dyck(p) from edge-labeled trees to Dyck
paths. Suppose (T, L) ∈ LT (p, e), where T has the decomposition (u, T1, . . . , Td) and where the
subtree Ti has labeling Li. Also, write ` := L(u) for the root label. Apply the map recursively to
obtain wi = F (Ti, Li) for 1 ≤ i ≤ d; then

F (T, L) := 1p10`0 w1 0`1 . . . 0`d−1 wd 0`d .

Lemma 3.5. If p ∈ (Z+)r, then the map F : LT (p, e)→ Dyck(p) is a bijection.
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FIGURE 15. The three paths in Path(2, 1), namely P = (p, q) with p = (2, 1) and
q = (2, 1), (1, 1), or (0, 3). The the northeast steps are shown in bold.

Proof. This is clear when r = 1. The sole member of LT (p, e) is a tree with root u and label ` = (p1).
Applying F results in 1p10p1 , the sole member of Dyck(p). It is then clear that in the general case
w = F (T, L) is always a Dyck word, as the wi = F (Ti, Li) are recursively Dyck words, and thus
w = 1p10`0 w1 0`1 . . . 0`d−1 wd 0`d is as well.

To show that this is a bijection, observe that every w ∈ Dyck(p) has a unique decomposition of
the form

w = 1p10`0 w1 0`1 . . . 0`d−1 wd 0`d ,

where ` is a label of degree d and weight p1, and each wi is a Dyck word. Indeed, for all 1 ≤
i ≤ p1, the ith 0 shown in the above decomposition is the first 0 in w of height p1 + 1 − i. Let
1 = k0 < k1 < · · · < kd = r be the indices such that wi ∈ Dyck(p′i) where p′i = (pki−1+1, . . . , pki

).
By induction LT (p′i, e) is in bijective correspondence with Dyck(p′i). Thus trees (T, L) ∈ LT (p, e)
of the form T = (u, T1, . . . , Td) with label L(u) = ` are in bijective correspondence with words of
the form 1pj 0`0 w1 0`1 . . . 0`d−1 wd 0`d ; considering all possible labels ` of weight p1 and arbitrary
degree gives the claim. �

Composing this bijection with the map from Theorem 3.3 gives a map from noncrossing pair-
ings to Dyck paths.

Theorem 3.6. Suppose that p ∈ (Z+)r. If w ∈Wp, then the map P (w, ·) : NC2(w)→ Dyck(p) given by
P (w, π) = F (LT (w, e, π)) is an injection. If p is weakly increasing, then it is a bijection.

Thus Theorem 1.15 gives an enumeration for paths.

Lemma 3.7. If p ∈ (Z+)r is weakly increasing, then |Path(p)| = Pe(p).

Now that we have related Dyck paths to noncrossing pairings, we provide a simple comparison
criterion for the number of paths associated to different vectors.

Lemma 3.8. For all r ≥ 1 and p, p′ ∈ (Z+)r, if p � p′ then

|Path(p)| ≤ |Path(p′)|.
Proof. Since p � p′, the difference D := |p′| − |p| ≥ 0. We define an injection Path(p)→ Path(p′) by
mapping (p, q) ∈ Path(p) to (p′, q′) where q′ = q + (0, . . . , 0, D). Since q � p � p′, we have

i∑
j=1

q′i =
i∑

j=1

qi ≤
i∑

j=1

pi ≤
i∑

j=1

p′i

for all 1 ≤ i < r. By construction |q′| = |p′|, so q′ � p′ and (p′, q′) ∈ Path(p). This map is clearly
injective, so the claimed inequality holds. �

Note if p is weakly increasing, then ϕ(p, p) = Pe(p) by Theorem 1.15, and thus Theorem 3.6 and
Lemmas 3.7 and 3.8 imply a simple comparison criterion for pairings.

Corollary 3.9. If p, p′ ∈ (Z+)r are weakly increasing and p � p′ then ϕ(p, p) ≤ ϕ(p′, p′).

Next we characterize the situations where Corollary 3.9 applies.

Lemma 3.10. If p, p′ ∈ (Z+)r and |p| ≤ |p′| then for some 1 ≤ l ≤ r, Rotl(p) � Rotl(p′).
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Proof. We extend p, p′ cyclically to all i ∈ Z by putting pi = pj iff i ≡ j (mod r). For i ≥ 1 let
hi =

∑i
j=1(p′j − pj). Note hi+r − hi = |p′| − |p| ≥ 0, for all i ≥ 1. Thus there exists 0 ≤ k < r so

that hk = min{hi : i ≥ 1}. Thus hk ≤ hk+i for 1 ≤ i ≤ r, or equivalently,
∑k+i

j=k+1(p′j − pj) ≥ 0 for
1 ≤ i ≤ r. This means that Rotk+1(p) � Rotk+1(p′). �

Let 1 ≤ r ≤ k. The Main Conjecture claims that Maxk,r = ϕ(P, P ) where P is the r-tuple
P = (m − 1, . . . ,m − 1,m . . . ,m) with m = dkr e and |P | = k. The Main Theorem states that
Maxk,r ≤ ϕ(P ′, P ′) where P ′ is the r-tuple (m, . . . ,m). If |p| = k, we relate p to P and P ′ in order
to use the above results.

Lemma 3.11. Suppose 1 ≤ r ≤ k. If p ∈ (Z+)r is weakly increasing and |p| = k and P, P ′ are defined as
in the preceding paragaph. then p � P � P ′.
Proof. It suffices to show p � P ; by definition we have |P | = |p|. Suppose that p 6� P and let j be
the smallest integer 1 ≤ j < r for which

∑j
i=1 pj >

∑j
i=1 Pj . Note that we must have pj > Pj , and

hence pj+1 ≥ pj ≥ Pj + 1 ≥ m ≥ Pi for all i. But then

|p| =
∑
i≤j

pi +
∑
i>j

pi ≥
∑
i≤j

pi + (r − j)pj+1 >
∑
i≤j

Pi +
∑
i>j

Pj = |P |,

a contradiction. �

Proof of Theorems 1.9 and 1.21. To prove the Main Theorem, let p = (p1, . . . , pr) have weight |p| = k.
By construction |p| ≤ |P ′|, and thus by Lemma 3.10 there is a rotation γ such that pγ � P ′γ =
P ′. Thus ϕ(p, q) ≤ ϕ(p, p) = ϕ(pγ , pγ) ≤ ϕ(P ′, P ′); the first inequality is due to Theorem 1.6,
the middle equality is due to the rotational invariance of ϕ, and the last inequality comes from
Corollary 3.9 (it is in this last point that it is essential to use P ′ rather than P , as Corollary 3.9
requires weakly increasing sequences).

As for Theorem 1.21, suppose that the Rearrangement Conjecture is true. Then we may assume
ϕ(p, p) ≤ ϕ(p̃, p̃), where p̃ is the weakly increasing rearrangement of p. But then by the Sym-
metrization Theorem and Lemma 3.11 we have ϕ(p, q) ≤ ϕ(p, p) ≤ ϕ(p̃, p̃) ≤ ϕ(P, P ), and the
Main Conjecture follows.

�

For the next proof we will need the following result on identities involving multivariable poly-
nomials.

Proposition 3.12 (The Combinatorial Nullstellensatz, Theorem 1.2, [1]).
Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree
deg(f) of f is

∑n
i=1 ti, where each ti is a nonnegative integer, and suppose the coefficient of

∏n
i=1 x

ti
i in f is

non-zero. If S1, . . . , Sn are subsets of F with |Si| > ti, then there is an s ∈ S1× · · · ×Sn so that f(s) 6= 0.

Our results give the following interesting polynomial recurrences.

Theorem 3.13. If p = (p1, . . . , pr) ∈ (Z+)r and p′ = (p1, . . . , pi + 1, pi+1 − 1, . . . , pr), then

|Path(p′)| = |Path(p)|+ |Path(p1, . . . , pi−1, pi)| · |Path(pi+1 − 1, pi+2, . . . , pr)|.
Furthermore, if x = (x1, . . . , xr) is an r-tuple of indeterminates and x′ := (x1, . . . , xi + 1, xi+1 −
1, . . . , xr), then

Pe(x′) = Pe(x) + Pe(x1, . . . , xi−1, xi)Pe(xi+1 − 1, xi+2, . . . , xr).

Proof. Note that p � p′. Recall the injective map I : Path(p) → Path(p′) from the proof of Lemma
3.8, and consider any (p′, q′) ∈ X := Path(p′) \ I(Path(p)), i.e. a p′-path that is not the image
of a p-path (p, q). This means that (p, q′) is not a p-path. This can only happen if p1 + · · · + pi =
q′1+· · ·+q′i−1, as every other truncation of p and p′ have the same sum. Thus if a = (p1, . . . , pi−1, pi)
and b = (pi+1 − 1, pi+2, . . . , pr), then (a, (q′1, . . . , q

′
i − 1)) is a a-path and (b, (q′i+1, . . . q

′
r)) is a b-path.

Conversely, any a-path and b-path can be recombined to get (p′, q′) in X . This proves the first
equation.
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By Lemma 3.7 we have the second equation for all x ∈ (Z+)r with x, x′ both weakly increasing.
Since Pe(x) is polynomial with fixed total degree of r − 1, the polynomials are identical. (Apply
the Combinatorial Nullstellensatz with Si = {2ir + 1, 2ir + 2, . . . , 2ir + r}.) �

3.4. The Unimodal Case of the Rearrangment Conjecture.
We conclude this section by proving the Rearrangement Conjecture in the unimodal case. First
note that if a ∈ (Z+)r is unimodal, then any consecutive subsequence of a is also unimodal.

Lemma 3.14. For any 1 ≤ l < k, let a′ be the subsequence that remains when the l − 1 smallest elements
are removed from a. Then a′ is a consecutive subsequence of a and the lth smallest element of a is either the
first element or last element of a′.

Proof of Theorem 1.22. Let T ∈ Tr. By Remark 1.14, mT,e = [x]d, where d is the degree sequence of
T . Given d, the following procedure constructs a T ′ ∈ Tr with mT ′,γ = [x]d. Since |Mγ | = |Me|
and all mT,e are distinct, this shows thatMγ =Me.
Procedure (recall Lemma 3.14):

(1) Create vertex 1 with d1 children. Initialize s = (γ(1), . . . , γ(r)), set i = 2, and remove 1
from s.

(2) If i is the left-most term in s, then label the smallest unlabeled leaf with i. Similarly, if i is
the right-most term in s, label the largest unlabeled leaf with i.

(3) Add di children to vertex i.
(4) If i < r, remove i from s, increment i by 1, and return to step (2).

This procedure is well-defined, as there is always at least one unlabeled leaf for each step i < r.
Indeed, since {1, . . . , i} form the vertices of a proper subtree T0 of T , we have d1 + · · ·+ di ≥ i. By
construction the resulting tree polynomial is clearly as desired, mT ′,γ = mT,γ .

Now suppose γ is not unimodal. Lemma 3.14 implies that there exists an l ≥ 1 such that there
is no consecutive subsequence in (γ(1), . . . , γ(r)) that consists of precisely {l + 1, l + 2, . . . , r}. Let
T be the tree in Tr whose root has l children, and whose largest child having r − l − 1 children of
its own. The degree sequence d of this tree has d1 = l, dl+1 = r − l − 1 and di = 0 for i 6= 1, l + 1.
We claim thatMγ does not contain mT,e(x) = [x]d, which means thatMγ 6=Me.

If there were a tree T ′ ∈ Tr such that mT ′,γ = [x1]l[xl+1]r−l−1, then some vertex v of degree
r − l − 1 in T ′ must have been labeled l + 1 by T ′γ. Since T ′γ is increasing this means all the
vertices in T ′v must be labeled by S := {l + 1, . . . , r}. Since T ′v has at least r − l vertices, all of the
labels in S must have been used to label T ′v. But by Remark 1.14, only sets that that were originally
consecutive in γ′ are ever used to label a subtree, which is a contradiction. �

Remark 3.15. Thus if γ is unimodal or the rotation of a unimodal permutation, then Pγ(x) = Pe(x)
and ϕ(pγ , pγ) = ϕ(p, p), for all weakly increasing p.

4. CONCLUSION

One of the chief difficulties in evaluating ϕ explicitly is that the rotational invariance of Propo-
sition 2.2 is surprisingly strong compared to other, related combinatorial structures. Although the
numbers ϕ(w) are a kind of generalization of a Catalan number (which are known to count unre-
stricted noncrossing pairings), they seemingly stand out when compared to other generalizations
of Catalan structures.

For arbitrary nonnegative integers pi, define the generalized Catalan numbers by

Cr(p1, . . . , pr) :=
∑
T∈Tr

r∏
i=1

(
pi + 1
di(T )

)
,

where di(T ) denotes the degree of the i-th (clockwise) vertex of a plane tree T (compare with
Theorem 1.15 and Lemma 3.4). Note Cr(x) = Pe(x). These polynomial sums are easily seen to
enumerate generalized versions of most of the structures found in [19], including:

• The number of decompositions of a (p1 + · · · + pr + 2)-gon into distinct, (clockwise) con-
secutive (p1 + 2), . . . , (pr + 2)-gons;
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• The number of words 0p11q1 . . . 0pr1q1 such that the cumulative number of 0s is always at
least as large as the cumulative number of 1s;
• The number of lattice points in certain polygonal regions defined by Ambdeberhan and

Stanley [2].
For the above structures, it is not in general true that Cr(p1, . . . , pr) = Cr(p2, . . . , pr, p1), which

is in sharp contrast to our Proposition 2.2. Indeed, an early version of this paper used an injection
from noncrossing pairings on p to generalized Catalan structures enumerated by Cr(p1, . . . , pr)
with the express purpose of breaking this rotational symmetry. The maps that we currently use
in Section 3 are somewhat less directly related to Cr(p1, . . . , pr), but they do lead to much shorter
proofs.
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