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ABSTRACT. Let XN be a symmetric N × N random matrix whose
√
N -scaled entries are uniformly square inte-

grable. We prove that if the entries of XN can be partitioned into independent subsets each of size o(logN), then
the empirical eigenvalue distribution of XN converges weakly to its mean in probability. If the entries are bounded,
the convergence is almost sure; if the entries are Gaussian, we prove almost sure convergence with larger blocks of
size o(N2/ logN). This significantly extends the best previously known results on convergence of eigenvalues for
matrices with correlated entries, where the partition subsets are blocks and of size O(1). We also prove the strongest
known convergence results for eigenvalues of band matrices.

We prove these results developing a new log-Sobolev inequality, generalizing the first author’s introduction of
mollified log-Sobolev inequalities: we show that if Y is a bounded random vector and Z is a standard normal random
vector independent from Y, then the law of Y + tZ satisfies a log-Sobolev inequality for all t > 0, and we give
bounds on the optimal log-Sobolev constant.
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1. INTRODUCTION

Random matrix theory is primarily interested the convergence of statistics associated to the eigenvalues (or
singular values) of N × N matrices whose entries are random variables with a prescribed joint distribution.
The field was begun by Wigner in [37, 38], in which he studied the mean bulk behavior of the eigenvalues
of what is now called a Gaussian Orthogonal Ensemble GOEN . This is the Gaussian case of a more general
class of random matrices now called Wigner ensembles: symmetric random matrixes XN such that the entries
of
√
NXN are i.i.d. random variables (modulo the symmetry constraint) with sufficiently many finite moments.

There are also corresponding complex Hermitian ensembles, non-symmetric / non-Hermitian ensembles, as well
as a parallel world of matrices generalizing the GOEN , defined not via the distribution of entries but rather by
invariance properties of the joint distribution. In this paper, we take Wigner ensembles as the starting point.

Kemp supported in part by NSF CAREER Award DMS-1254807.
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Given a symmetric matrix XN , enumerate its eigenvalues λN1 ≤ · · · ≤ λNN in nondecreasing order. The
empirical spectral distribution (ESD) of XN is the random point measure

µN =
1

N

N∑
j=1

δλNj
. (1.1)

Integrating µN against the indicator function 1B yields the random variable counting the number of eigenvalues
in B (building up the histogram of the eigenvalues of XN ). In general, the random variables

∫
f dµN for test

functions f : R → R are called linear statistics of the eigenvalues. Wigner’s original papers [37, 38] showed
that, for the GOEN , the ESD µN converges weakly in expectation to what is now called Wigner’s semicircle law:
σ(dx) = 1

2π

√
(4− x2)+ dx. To be precise: this means that E(

∫
f dµN ) →

∫
f dσ for each f ∈ Cb(R). This

convergence was later upgraded to weak a.s. convergence. Many more results are known about the fluctuations of
µN , the spacing between eigenvalues, and the distribution and fluctuations of the largest eigenvalue. The reader
may consult the book [1] and its extensive bibliography for more on these endeavors.

There is also a vast literature on band matrices. Originally referring to random matrices with entries that are 0
along many diagonals, these are a wider class of random matrix ensembles generalizing Wigner ensembles, where
the upper-triangular entries are still independent, but need not be identically distributed (so long as they satisfy
some form of uniform regularity). There is a vast literature on band matrices; see, for example, the expansive
paper [2] which uses combinatorial and probabilistic methods to establish that a large class of band matrices have
ESD converging a.s. to the semicircle law, with Gaussian fluctuations of a similar form to Wigner matrices. (Our
Theorem 1.4 below improves on the main result in [2].)

There are comparatively few papers, however, dealing with random matrices with correlated entries. In [34],
Shlyakhtenko realized that the tools of operator-valued free probability could be used to compute the limit in
expectation of certain kinds of block matrices: ensembles XkN possessed of k × k blocks that have a fixed
covariance structure (uniform among the blocks), where the N2 blocks are independent up to symmetry. The
recent papers [10, 11, 3] showed how to explicitly compute the limit ESD for a wide class of such block matrices
with Gaussian entries, and used these results to give applications to quantum information theory. Additionally, in
[33], a class of these block matrices was studied and proved to converge almost surely, with applications given to
signal processing. (The actual ensembles studied in [33, 34, 10, 11, 3] are presented in a different form, with an
overall k×k block structure withN×N blocks all whose entries are independent; this is just an orthonormal basis
change from the description above, and so has the same ESD.) Note that in these block matrices, the limiting ESD
is typically not semicircular. The combinatorial methods used to analyze such ensembles do not easily extend
beyond the case that k is fixed as N →∞.

Our main results, Theorems 1.1 and 1.2, give a significant generalization of ESD convergence for block-type
matrices, both in terms of allowing k to grow with N , and softening the rigid structure of the partition into
independent blocks.

Theorem 1.1. Let XN be an N × N random matrix. Assume that the entries of XN satisfy the following
conditions.

(1) The family {N [XN ]2ij}N∈N,1≤i,j≤N is uniformly integrable.
(2) For each N , there is a set partition ΠN of {(i, j) : 1 ≤ i ≤ j ≤ N} and a constant dN = o(logN) such

that each block of ΠN has size ≤ dN , and the entries [XN ]ij and [XN ]k` are independent if (i, j) and
(k, `) are not in the same block of ΠN .

Then the empirical spectral distribution µN of XN converges weakly in probability to its mean:∫
f dµN − E

(∫
f dµN

)
→P 0, for all f ∈ Lip(R). (1.2)

If we further assume that the family {
√
N |[XN ]ij |}N∈N,1≤i,j≤N is uniformly bounded, then the convergence in

(1.2) is almost sure.
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We use similar techniques to those used in the proof of Theorem 1.1 to prove the following stronger result in
the case of Gaussian entries: under the appropriate uniform integrability conditions, the convergence of the ESD
is almost sure, and guaranteed for blocks of much larger size.

Theorem 1.2. Let XN be an N × N random matrix ensemble whose entries are jointly Gaussian. Assume the
entries of XN satisfy the following conditions.

(1) The second moments {NE([XN ]2ij)}N∈N,1≤i,j≤N are uniformly bounded.
(2) For each N , there is a set partition ΠN of {(i, j) : 1 ≤ i ≤ j ≤ N} and a constant dN = o(N2/ logN)

such that each block of ΠN has size ≤ dN , and the entries [XN ]ij and [XN ]k` are independent if (i, j)
and (k, `) are not in the same block of ΠN .

Then the empirical spectral distribution µN of XN converges weakly almost surely to its mean:∫
f dµN − E

(∫
f dµN

)
→ 0 a.s. for all f ∈ Lip(R). (1.3)

Condition (1) in Theorems 1.1 and 1.2 is analogous to the requirement that the second moments of the entries
of
√
NXN are normalized in Wigner ensembles. Condition (2) generalizes the independent block structure

mentioned above; for example, in the ensembles treated in [10, 11, 3] but with k allowed to grow with N (with
k = o(N2/ logN)), one gets convergence of the ESD weakly almost surely. In particular, Theorem 1.2 extends
the results of those papers even in the case k = O(1), since only convergence in expectation was known before.

Remark 1.3. Note that the conclusion of Theorems 1.1 and 1.2 is that the ESDs of these ensembles concentrate
around their means; it is not true that all these ensembles converge in expectation. Rather, our results are that any
of these ensembles that do converge in expectation also converge in probability, or almost surely, as the case may
be. In Section 2.3, we discuss some examples where these results can be applied.

While we are most interested in ensembles with correlated entries, one of the main achievements of our method
is an improvement on the (first half of the) main result in [2].

Theorem 1.4. Let {ξij : 1 ≤ i ≤ j} be zero mean unit variance i.i.d. random variables. Let g : [0, 1]2 → R+

be a symmetric, continuous function. If [XN ]ij = [XN ]ji = N−1/2g(i/N, j/N)1/2ξij , then the empirical
spectral distribution of XN converges weakly in probability to a probability measure on R. (The limit ESD is the
semicircle law if

∫ 1
0 g(x, y) dy = 1 for each x ∈ [0, 1].) Moreover, if the ξij are bounded random variables, or

if the common law of the entries ξij satisfies a log-Sobolev inequality (cf. (1.4) below), then the convergence is
almost sure.

The ensembles addressed in Theorem 1.4 are the typical formulation of band matrices, although that name
only really applies when the function g has the form g(x, y) = 1|x−y|≤δ for some δ ∈ (0, 1). (In order to satisfy
the stochasticity condition to get the semicircle law in the limit, one must use periodic band matrices, where g is
the indicator of the strip |x−y| ≤ δ on all of R2, projected into [0, 1]2 via the equivalence relation identifying two
points if they differ by an element of Z2. See [17, 18].) The central theorem in [2] is a proof of (the semicircular
case of) Theorem 1.4, assuming that the common law of the entries ξij satisfies a Poincaré inequality (cf. 3.1
below). Our Theorem 1.4 yields the convergence in complete generality, only assuming finite second moments;
moreover, a technical condition on the laws of the entries (similar to the assumption of a Poincaré inequality)
yields almost sure convergence.

Remark 1.5. It should be noted that this is only half of the main result in [2], where the authors also show that
the fluctuations of these ensembles are Gaussian with an explicit covariance determined by the function g. Their
methods are largely combinatorial, while ours are analytic/probabilistic.

Theorems 1.1-1.4 are proved below in Section 2. (In fact, in Section 2.3, we prove the more general Theorem
2.11 of which Theorem 1.2 is a special case.) We prove these results using concentration of measure mediated by
a powerful coercive inequality: the log-Sobolev inequality. A probability measure µ on Rd satisfies a log-Sobolev
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inequality with constant c if

Entµ(f2) ≤ c
∫
|∇f |2 dµ (1.4)

for all sufficiently integrable positive functions f with
∫
f2 dµ = 1; here Entµ(g) =

∫
g log g dµ for a µ-

probability density g. The inequality (1.4) first appeared in [35] (in a slightly different form, written in terms of
g = f2, where the Dirichlet form on the right-hand-side becomes the relative Fisher information of g), in the
context of Gaussian measures. It was later rediscovered by Gross [24] who named it a log-Sobolev inequality,
and used it to prove an important result in constructive quantum field theory. Over the past four decades, it
has played an important role probability theory, functional analysis, and differential geometry; see, for example,
[5, 6, 14, 16, 20, 21, 22, 23, 27, 30, 31, 32, 36, 40, 41, 42]. There is a big industry of literature devoted to
necessary and sufficient conditions for a log-Sobolev inequality to hold; cf. [8, 9, 15, 26, 29].

Many of the above applications rely on uniform concentration of measure bounds that hold for measures satis-
fying a log-Sobolev inequality; one nice form of these concentration inequalities is called a Herbst inequality, cf.
[26], which yields Gaussian concentration of Lipschitz functionals about their mean. Using the Herbst inequality,
Guionnet [25] gave a fundamentally new proof of Wigner’s semicircle law; this proof automatically generalized
to non-Gaussian ensembles whose entries satisfy a log-Sobolev inequality. Motivated in part by this, the second
author of the present paper developed a new approximation scheme, the mollified log-Sobolev inequality, in [43]:
if Y is any bounded random variable and Z is a standard normal random variable independent from Y , then the
law of Y + tZ satisfies a log-Sobolev inequality for all t > 0, with a constant c(t) that is bounded in terms of
an exponential of ‖Y ‖2∞/t. This fact, together with a standard cutoff argument, allowed the second author to
generalize Guionnet’s technique to give a fully general proof of Wigner’s law for all Wigner ensembles.

Independence played a key role in this analysis, due to the fact that log-Sobolev inequalities behave well
under products of measures; cf. Lemma 2.2 below. In the setting of current interest, where we no longer have
independence, we will need a multivariate version of the mollified log-Sobolev inequality, with sufficient growth
bounds on the constant. That is our second main theorem, which is of independent interest.

Theorem 1.6. Let Y be a bounded random vector in Rd, and let Z be a standard centered normal random
vector in Rd (i.e. LawZ(dx) = (2π)−d/2e−|x|

2/2 dx) independent from Y. For 0 < t ≤ ‖|Y|‖2∞, the measure
LawY+tZ satisfies a log-Sobolev inequality, with constant c(t) satisfying

c(t) ≤
(
K1d+K2

‖|Y|‖2∞
t

)
‖|Y|‖2∞ exp

(
4‖|Y|‖2∞

t

)
(1.5)

for some universal constants K1,K2 > 0.

Theorem 1.6 has a slightly complicated history. An early version of the present paper proved a weaker estimate,
that depended exponentially on d. In response, Bardet, Gozlan, Malrieu, and Zitt [12], building on our techniques,
sharpened the inequality to the form (1.5), depending only linearly on d. Our proof uses the Lyapunov approach,
and relies on an estimate for the best constant in the Poincaré inequality, which we were only able to prove with a
dimension-dependent bound in the previous version of this paper. The main contribution to this problem in [12]
was a dimension-independent bound on the Poincaré constant. Below, we cite [12, Theorem 1.2] for the Poincaré
inequality bound, and proceed with our original proof of the bound on the LSI (which is cited and used in the
proof of (1.5) as given in [12, Theorem 1.3]).

Remark 1.7. To further expound on the history of Theorem 1.6: following the second author’s paper [43], in [39]
the authors generalized mollified log-Sobolev inequalites to Rd (and with a class of measures more general than
compactly-supported), using a version of the Lyapunov approach as we do. However, they gave no quantitative
bounds on the log-Sobolev constant, which is crucial to our present analysis.

Remark 1.8. We do not know if the optimal constant grows with dimension. In [12], some evidence is given
to support the conjecture that the optimal constant is independent of dimension. For our present purposes, a
dimension independent bound of this form would not improve our result in Theorem 1.1. It is the exponential
dependence of the constant on ‖|Y|‖∞ that forces the blocks to be of size o(logN); and this dependence is sharp,
as shown below in Example ??.
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The remainder of this paper is organized as follows. In Section 2.1, we discuss how the log-Sobolev inequality
can be used to yield concentration results for eigenvalues of random matrices. Following this, Section 2.2 gives
the proof of Theorem 1.1. Then Section 2.3 proves Theorem 1.2, and a generalization (Theorem 2.11) which
allows more general entries than Gaussians, and applies these results to several random matrix models from
the literature. Section 2.4 then proves Theorem 1.4 as a corollary to Theorems 1.1 and 2.11, and discusses a
generalization of band matrices where these results still apply. Finally, Section 3 is devoted to the proof of
Theorem 1.6.

2. CONCENTRATION RESULTS FOR ENSEMBLES WITH CORRELATED ENTRIES

2.1. Guionnet’s Approach to Wigner’s Law. Let us fix notation as in the introduction: let XN be a symmetric
random N × N matrix ensemble with eigenvalues λN1 ≤ · · · ≤ λNN , and let µN denote the empirical spectral
distribution (ESD) of XN ; cf. (1.1). Wigner’s law [37, 38] states that µN converges weakly a.s. to the semicircle
law σ, in the case that XN is a GOEN . Wigner’s proof proceeded by the method of moments and is funda-
mentally combinatorial. Analytic approaches (involving fixed point equations, complex PDEs, and orthogonal
polynomials) developed over the ensuing decades. An argument based on concentration of measure was provided
by Guionnet in [25, p.70, Thm. 6.6]. The result can be stated thus.

Theorem 2.1. (Guionnet). Let XN be a symmetric random matrix. If the joint law of entries of
√
NXN satisfies

a log-Sobolev inequality with constant c, then for all ε > 0 and all Lipschitz f : R→ R,

P
(∣∣∣∣∫ f dµN − E

(∫
f dµN

)∣∣∣∣ ≥ ε) ≤ 2 exp

(
− N2ε2

c||f ||2Lip

)
.

In fact, in the Wigner ensembe setting, the i.i.d. condition means we really need only assume that the law of
each entry satisfies a log-Sobolev inequality. This is due to the following result often called Segal’s lemma; for a
proof, see [24, p. 1074, Rk. 3.3].

Lemma 2.2 (Segal’s Lemma). Let ν1, ν2 be probability measures on Rd1 and Rd2 , satisfying log-Sobolev in-
equalities with constants c1, c2, respectively. Then the product measure measure ν1 ⊗ ν2 on Rd1+d2 satisfies a
log-Sobolev inequality with constant max{c1, c2}.

Theorem 2.1 explicitly gives weak convergence in probability of µN to its limit mean. Moreover, in the Wigner
ensemble case where the constant c is determined by the common law of the entries and so doesn’t depend on
N , the rate of convergence is fast enough that a standard Borel–Cantelli argument immediately upgrades this to
a.s. convergence. In [43], the second author showed that, under certain integrability conditions, the empirical law
of eigenvalues µN converges weakly in probability to its mean, regardless of whether or not the joint laws of
entries satisfy a log-Sobolev inequality. The idea is to use the mollified log-Sobolev inequality (the d = 1 case
of Theorem 1.6) applied to a cutoff of XN with GOEN noise added in with variance t, and then let t ↓ 0.

For our present purposes, where we no longer assume independence or identical distribution of the entries
of XN , it will not suffice to assume each entry satisfies a (mollified) log-Sobolev inequality, which is why we
state Guionnet’s result as such in Theorem 2.1. Guionnet proved the theorem from the Herbst concentration
inequality [26], which shows that Lipschitz functionals of a random variable whose law satisfies a log-Sobolev
inequality have sub-Gaussian tails (with dimension-independent bounds determined by the Lipschitz norm of the
functional). Theorem 2.1 is then proved by combining this with Lipschitz functional calculus, together with the
following lemma from matrix theory (see [28, p.37, Thm. 1, and p.39, Rk. 2]).

Lemma 2.3. (Hoffman, Wielandt). Let A,B be symmetric N ×N matrices with eigenvalues λA1 ≤ λA2 ≤ . . . ≤
λAN and λB1 ≤ λB2 ≤ . . . ≤ λBN . Then

N∑
j=1

(λAj − λBj )2 ≤ Tr[(A−B)2].
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2.2. The Proof of Theorem 1.1. We now proceed to prove Theorem 1.1, using Theorem 1.6. We first prove
the second statement of the theorem: let XN be the matrix ensemble satisfying conditions (1) and (2) of The-
orem 1.1, together with the assumption that the entries of

√
NXN are bounded by some uniform constant R,

‖
√
N [XN ]ij‖∞ ≤ R for all N and all 1 ≤ i, j ≤ N . (This latter assumption subsumes (1).) Denote the blocks

of the partition in assumption (2) as ΠN = {P1, . . . , Pr}.
Now, let t = tN > 0 (to be chosen later), and let GN be a GOEN (with entries of variance 1

N ) independent
from XN . Set

X̃N = XN + tGN . (2.1)

For 1 ≤ k ≤ r, let Yk denote the random vector in R|Pk| given by the entries [XN ]ij with (i, j) ∈ Pk; similarly,
let Zk be the corresponding entries of GN . Notice that

√
NYk is a bounded random vector: by assumption, all

of its entries have L∞-norm ≤ R, and so ‖|N |Yk|‖2∞ ≤ R|Pk|1/2 ≤ Rd
1/2
N . The vector

√
NZk is a standard

normal random vector in R|Pk|. Thus, by Theorem 1.6, the law of
√
N(Yk + tZk) satisfies a log-Sobolev

inequality with constant

c(t) ≤
(
K1dN +K2

R2dN
t

)
R2dN exp

(
4R2dN
t

)
≤
K3R

4d2N
t

exp

(
4R2dN
t

)
(2.2)

where K3 = max{K1,K2}, and we have assumed that t ≤ 1 and R ≥ 1. By assumption, the random variables
{Yk}rk=1 are independent, as are {Zk}rk=1. Hence {

√
N(Yk + tZk)}rk=1 are independent. Thus, the joint law

of entries of
√
NX̃N is the product measure of the laws of these random variables. As all their laws satisfy

log-Sobolev inequalities with the same constant c(t) in (2.2), Segal’s Lemma 2.2 shows that:

Corollary 2.4. The joint law of entries of
√
NX̃N satisfies a log-Sobolev inequality with constant c(t) of (2.2).

In particular, Guionnet’s Theorem 2.1 shows that the (Lipschitz) linear statistics of the ensemble X̃N are highly
concentrated around their means (for fixed t).

Our goal is now to compare the linear statistics of XN to those of X̃N . As usual, let µN denote the ESD of
XN , and let µ̃N denote the ESD of X̃N . Then, for each ε > 0, and each test function f , we have the following
standard triangle inequality estimate.

∣∣∣∣∫ f dµN − E
(∫

f dµN

)∣∣∣∣ ≤ ∣∣∣∣∫ f dµN −
∫
f dµ̃N

∣∣∣∣ (2.3)

+

∣∣∣∣∫ f dµ̃N − E
(∫

f dµ̃N

)∣∣∣∣ (2.4)

+

∣∣∣∣E(∫ f dµ̃N

)
− E

(∫
f dµN

)∣∣∣∣ . (2.5)

We will now show that, with a judicious choice of t = tN , each of the quantities (2.3)-(2.5) converges to 0 a.s.
We do this in the following three lemmas.

Lemma 2.5. Let t = tN > 0 be a sequence tending to 0. Then for each f ∈ Lip(R),

∣∣∣∣∫ f dµN −
∫
f dµ̃N

∣∣∣∣→ 0 a.s. as N →∞.
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Proof. Let λN1 ≤ λN2 ≤ . . . ≤ λNN and λ̃N1 ≤ λ̃N2 ≤ . . . ≤ λ̃NN be the eigenvalues of XN and X̃N . Then by the
Cauchy-Schwarz inequality and Lemma 2.3,∣∣∣∣∫ f dµN −

∫
f dµ̃N

∣∣∣∣ =
1

N

∣∣∣∣∣∣
N∑
j=1

[f(λNj )− f(λ̃Nj )]

∣∣∣∣∣∣ ≤ 1

N

N∑
i=1

‖f‖Lip
∣∣∣λNi − λ̃Ni ∣∣∣

≤
‖f‖Lip√

N

(
N∑
i=1

(λNi − λ̃Ni )2

)1/2

≤
‖f‖Lip√

N

(
Tr[(XN − X̃N )2]

)1/2
.

Now, for any symmetric N ×N matrix A,
(
1
NTr(A2)

)1/2 is the non-commutative L2-norm of A with respect to
the faithful normal state 1

NTr; it is bounded above by the operator norm ofA. Applying this toA = XN−X̃N =
tNGN , we therefore have∣∣∣∣∫ f dµN −

∫
f dµ̃N

∣∣∣∣ ≤ ‖f‖Lip‖XN − X̃N‖op = tN‖f‖Lip‖GN‖op a.s.

According to [4], the largest eigenvalue ‖GN‖op of the GOEN is a.s≤ 3 for all sufficiently large N . This proves
the result. �

Lemma 2.6. Let f ∈ Lip(R), and suppose tN is chosen such that c(tN ) = o( N2

logN ), where c(t) denote the
log-Sobolev constant in (2.2). Then∣∣∣∣∫ f dµ̃N − E

(∫
f dµ̃N

)∣∣∣∣→ 0 a.s. as N →∞.

Proof. Theorem 2.1 and Corollary 2.4 yield that, for any ε > 0 ans N ∈ N,

P
(∣∣∣∣∫ f dµ̃N − E

(∫
f dµ̃N

)∣∣∣∣ ≥ ε) ≤ 2 exp

(
− N2ε2

c(tN )‖f‖2Lip

)
.

By assumption, there is a sequence sN → 0 so that c(tN ) = N2

logN sN . Thus

exp

(
− N2ε2

c(tN )‖f‖2Lip

)
= exp

(
− ε2

‖f‖2Lip
logN

sN

)
= N

− ε2

‖f‖2
Lip

1
sN .

Since 1
sN
→ ∞, for all sufficiently large N this is ≤ 1

N2 . The result now follows from the Borel–Cantelli
lemma. �

Lemma 2.7. Let t = tN > 0 be a sequence tending to 0. Then for each f ∈ Lip(R),∣∣∣∣E(∫ f dµ̃N

)
− E

(∫
f dµN

)∣∣∣∣→ 0 as N →∞.

Proof. In Lemma 2.5, we showed that
∫
f dµ̃N −

∫
f dµN → 0 a.s. Hence, to show that the expectation goes to

0, it suffices to show that these random variables have finite L1-norm for all largeN . This follows from estimates
like the ones in the proof of Lemma 2.5:

E
(∣∣∣∣∫ f dµ̃N −

∫
f dµN

∣∣∣∣) ≤ E
(
‖f‖Lip√

N

(
Tr[(XN − X̃N )2]

)1/2)
≤
‖f‖Lip√

N

(
E
(

Tr[(XN − X̃N )2]
))1/2

= ‖f‖Lipt1/2N <∞

where we applied Jensen’s inequality in the second step. The result follows. �
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We can now prove the theorem under the boundedness assumption.

Proof of Theorem 1.1 Assuming
√
NXN has entries uniformly bounded by R. In light of Lemma 2.5-2.7, it suf-

fices to show that there is a sequence tN > 0 such that tN → 0 and c(tN ) = o( N2

logN ). For N sufficiently large,
we define

tN :=
5R2dN

log N
K3R2

.

By Assumption (2) of Theorem 1.1, dN = o(logN), and hence tN → 0 as N → ∞. As such, R
2

tN
> 2 for all

large N , and it follows (from elementary calculus) that R
2

tN
d2N ≤ exp(R

2

tN
dN ). Thus, (2.2) yields

c(tN ) ≤ K3R
2 · R

2

tN
d2N exp

(
4R2dN
tN

)
≤ K3R

2 exp

(
5R2dN
tN

)
= N = o

(
N2

logN

)
.

This concludes the proof. �

Remark 2.8. We could have arranged for c(tN ) to be of larger order but still o(N2/ logN), but this would only
have resulted in the ratio dN/tN being a constant factor larger, and thus would still require dN = o(logN) in
order for it to be possible for tN → 0. Moreover, even if the blunt estimate R2

tN
d2N ≤ exp(R

2

tN
dN ) had not been

employed, or even if (2.2) were known to hold without the prefactor (as might be true if the sharp form Theorem
1.6 held with a constant independent of dimension), it would still be impossible to arrange for tN → 0 while
c(tN ) = o( N2

logN ) unless dN = o(logN). That is: the result of Theorem 1.1 cannot be improved using the
approach of this paper.

To conclude the proof, it remains only to remove the boundedness assumption on the entries of
√
NXN (at the

expense of a downgrade from almost sure convergence to convergence in probability). This is where the uniform
integrability comes in, via a standard cutoff argument that we briefly outline. Let ε, η > 0. Let f ∈ Lip(R). By
uniform integrability, there exists some R ≥ 0 such that

E
(
N [XN ]2ij · 1{√N |[XN ]ij |>R}

)
< min(1, η) · ε2/(9||f ||2Lip)

for all i, j,N . Let X̂N be the matrix whose entries are the appropriate cutoffs of XN :

[X̂N ]ij = [XN ]ij · 1{√N |[XN ]ij |≤R}.

Then ‖
√
NX̂ij‖∞ ≤ R for all N, i, j. Let µ̂N denote the ESD of X̂N . The preceding proof shows that

∫
f dµ̂N

converge to its mean almost surely, and hence in probability. We now compare the linear statistics of µN and µ̂N .
This is similar to the preceding analysis. We make the standard ε/3-decomposition:

P
(∣∣∣∣∫ f dµN − E

(∫
f dµN

)∣∣∣∣ ≥ ε) ≤ P
(∣∣∣∣∫ f dµN −

∫
f dµ̂N

∣∣∣∣ ≥ ε

3

)
+ P

(∣∣∣∣∫ f dµ̂N − E
(∫

f dµ̂N

)∣∣∣∣ ≥ ε

3

)
+ P

(∣∣∣∣E(∫ f dµ̂N

)
− E

(∫
f dµN

)∣∣∣∣ ≥ ε

3

)
.

(2.6)

The above proof in the uniform bounded case shows that the second term in (2.6) converges to 0 as N →∞.
The first term on the right hand side of (2.6) is bounded using the same reasoning as done in the proof of Lemma
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2.5:

P
(∣∣∣∣∫ f dµN −

∫
f dµ̂N

∣∣∣∣ ≥ ε

3

)
≤

9‖f‖2Lip
ε2N

∑
1≤i,j≤N

E
(

([XN ]ij − [X̂N ]ij)
2
)

=
9‖f‖2Lip
ε2N

∑
1≤i,j≤N

E
(

[XN ]2ij · 1{√N |[XN ]ij |>R}

)
< η.

Finally, the third term is bounded as in Lemma 2.7:∣∣∣∣E(∫ f dµ̂N

)
− E

(∫
f dµN

)∣∣∣∣ ≤ ‖f‖Lip√
N

(
E
(

Tr[(XN − X̂N )2]
))1/2

=
‖f‖Lip√

N

 ∑
1≤i,j≤N

E
(

[Xn]2ij · 1{√N |[XN ]ij |>R}

)1/2

<
ε

3
,

so P
(∣∣E (∫ f dµ̂N)− E

(∫
f dµN

)∣∣ ≥ ε
3

)
= 0. Therefore

lim sup
N→∞

P
(∣∣∣∣∫ f dµN − E

(∫
f dµN

)∣∣∣∣ ≥ ε) ≤ η.
Since η > 0 was arbitrary, we have P

(∣∣∫ f dµN − E
(∫
f dµN

)∣∣ ≥ ε) → 0 as N → ∞, giving convergence in
probability. This concludes the proof.

Remark 2.9. Instead of doing the Gaussian mollification and then the cutoff argument, we could combine the
two in the hopes of proving almost sure convergence in the general case. The obstruction to this is Lemma 2.5,
where we used the fact (proved in [4]) that the GOEN has no asymptotic outlier eigenvalues above 2: with
probability 1, all eigenvalues are eventually ≤ 3, for example. If we were to combine the cutoff argument with
the mollification argument, in this lemma XN − X̃N would not be tNGN but rather tNGN + (XN − X̂N ); i.e.
Gaussian noise plus a matrix whose entries are of the form [XN ]ij1√N |[XN ]ij |>R. If the entries of XN were
independent, then additional moment growth assumptions would imply the necessary lack of outlier eigenvalues
following [4]; however, in our case where the entries may be correlated, the behavior of the largest eigenvalue is,
at present, unknown.

2.3. Theorem 1.2, a Generalization, and Applications. We begin with a lemma which appeared in the second
author’s paper [44, Prop. 6]. We reproduce the simple proof here, for completeness.

Lemma 2.10. Let X be a random vector in Rd whose law satisfies a log-Sobolev inequality (1.4) with constant
c. Let T : Rd → Rd be a Lipschitz map. Then the law of T (X) satisfies a log-Sobolev inequality with constant
c‖T‖2Lip.

Proof. Let µ denote the law of X. Let f : Rd → R be a locally-Lipschitz non-negative function. Then f ◦ T is
locally-Lipschitz and non-negative. Since µ satisfies the LSI with constant c, it follows that∫

(f ◦ T )2 log
(f ◦ T )2∫
(f ◦ T )2

dµ ≤ c
∫
|∇(f ◦ T )|2 dµ. (2.7)

Since T is Lipschitz, we also have the pointwise estimate

|∇(f ◦ T )| ≤ (|∇f | ◦ T )‖T‖Lip.
By a change of variables, (2.7) therefore shows that∫

f2 log
f2∫

f2 dT∗µ
dT∗µ ≤ c‖T‖2Lip

∫
|∇f |2 dT∗µ.

Thus, the push-forward measure T∗µ satisfies the LSI with constant c‖T‖2Lip. Since T∗µ is the law of T (X), this
concludes the proof. �
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The following theorem covers a wide range of examples of correlated random matrix ensembles. We use the
notation Msym

N to denote the vector space of real N ×N symmetric matrices, equipped with the Hilbert–Schmidt
inner product.

Theorem 2.11. Let {ξij : 1 ≤ i ≤ j} be a triangular array of i.i.d. random variables whose common law satisfies
a log-Sobolev inequality (1.4). Let ΞN be the N × N symmetric random matrix with entries [ΞN ]ij = ξij for
1 ≤ i ≤ j ≤ N . Let TN : Msym

N →Msym
N be a Lipschitz function, with ‖TN‖Lip = o( N√

logN
).

Let XN = TN (N−1/2ΞN ), and let µN denote the ESD of XN . Then µN converges to its mean almost surely:∫
f dµN − E

(∫
f dµN

)
→ 0 a.s. for all f ∈ Lip(R). (2.8)

Proof. Let SN : Msym
N → Msym

N be the conjugate-scaled map SN (A) = N1/2TN (N−1/2A). Then SN is also
Lipschitz with ‖SN‖Lip = ‖TN‖Lip. By assumption, the entries ξij satisfy a LSI with some constant c; by Lemma
2.2, the joint law of ΞN therefore satisfies the LSI with constant c. Hence, by Lemma 2.10, SN (ΞN ) =

√
NXN

satisfies the LSI with constant c‖SN‖2Lip = c‖TN‖2Lip. By Theorem 2.1, it therefore follows that, for any ε > 0

and f ∈ Lip(R),

P
(∣∣∣∣∫ f dµN − E

(∫
f dµN

)∣∣∣∣ ≥ ε) ≤ 2 exp

(
− N2ε2

c‖TN‖2Lip||f ||2Lip

)
.

By assumption, ‖TN‖2Lip = o( N2

logN ). The result now follows exactly as in the proof of Lemma 2.6. �

We now prove Theorem 1.2, essentially as a Corollary to Theorem 2.11 (although we really prove it as a
corollary to the proof of Theorem 2.11, to most easily deduce the optimal result).

Proof of Theorem 1.2. To begin, we clarify what is meant by “jointly Gaussian”. We say a random vector X ∈ Rd
has jointly Gaussian entries if there is an affine map T : Rd → Rd such that X = T (G), where G has i.i.d. normal
entries. A more standard definition of “jointly Gaussian” — that the joint law of the centered entries should have
a density of the form c exp(x · C−1x) for a positive definite matrix C and a normalization constant c — is a
special case: it is easy to check

√
C−1(X) has i.i.d. standard normal entries, and so T =

√
C will suffice.

Let ΠN = {P1, . . . , Pr} denote the partition of {(i, j) : 1 ≤ i ≤ j ≤ N} in the theorem, and for 1 ≤ k ≤ r
let Xk denote the random vector given by the entries of XN with indices in Pk. By assumption, the random
variables X1, . . . ,Xr are independent; it follows that there are affine maps T1, . . . , Tr with Tk : R|Pk| → R|Pk|,
such that N1/2Xk = Tk(Gk), where Gk is a standard Gaussian random vector in R|Pk|. The law of Gk satisfies
a log-Sobolev inequality with constant 1 (cf. [24]), and therefore by Lemma 2.10, the law of N1/2Xk satisfies a
log-Sobolev inequality with constant ‖Tk‖2Lip.

Now, Tk has the form Tk = T̊k + N1/2E(Xk) for some linear map T̊k, and ‖Tk‖Lip = ‖T̊k‖op ≤ ‖T̊k‖HS,
where ‖ · ‖HS is the (un-normalized) Hilbert–Schmidt norm. Thus, we have

‖Tk‖2Lip ≤
|Pk|∑
a,b=1

[T̊k]
2
ab (2.9)

where we use the indices a, b to enumerate the entries of Xk. Now, note that

Var(N1/2[Xk]a) = Var([T̊k(Gk)]a) = Var

(∑
b

[T̊k]ab[Gk]b

)
=
∑
b

[T̊k]
2
ab

because Cov([Gk]b, [Gk]c) = δbc. By assumption, there is a uniform bound R so that Var(N1/2[Xk]a) ≤
NE([Xk]

2
a) ≤ R2 for all k and a. Thus (2.9) yields

‖Tk‖2Lip ≤
|Pk|∑
a=1

Var(N1/2[Xk]a) ≤ R2|Pk| ≤ R2dN .
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We have thus shown that the law of N1/2Xk satisfies a log-Sobolev inequality with constant R2dN , for each
k. Since the random variables Xk are independent, Lemma 2.2 shows that the joint law of entries of N1/2XN

satisfies a log-Sobolev inequality with constant R2dN . Since dN = o( N2

logN ), the almost sure convergence now
follows precisely as in the proof of Theorem 2.11 above. �

Remark 2.12. (1) Theorem 1.2 is really a special case of Theorem 2.11; what the preceding proof essentially
does is show that the affine function which is “block diagonal” combining all the block Tk maps has
Lipschitz norm = o( N√

logN
).

(2) The proof shows that it is really enough to assume, in the statement of Theorem 1.2, that the scaled
variances of the entries are uniformly bounded. However, in any instance we wish to apply the theorem,
we must have the expectations of empirical integrals converging, and hence there is no loss in making
the nominally stronger assumption that the scaled second moments of the entries are uniformly bounded.

2.4. Theorem 1.4 and Generalizations. In this section, we begin by showing how to prove Theorem 1.4 as a
straightforward corollary to Theorems 1.1 and 2.11. To begin, we note that the topic of the paper [34] is the
convergence in expectation of ensembles of this form (and slightly more general forms). In particular, using the
tools of operator-valued free probability, Shlyakhtenko showed that all ensembles of this form have a limiting
ESD, that can be computed (in principle) in terms of the spectral measure of the operator η on L∞[0, 1] defined
by η(f)(x) =

∫ 1
0 f(y)g(x, y)2 dy (embedded into a Fock space type model). The limiting ESD can be computed

exactly in many cases; in particular, if
∫ 1
0 g(x, y) dy = 1 for each x, then the limit law is semicircular; cf. [34,

Remark 3.8]. As such, we concern ourselves here only with the question of upgrading from convergence in
expectation to convergence in probability / almost sure convergence, where appropriate.

Proof of Theorem 1.4. We apply Theorem 1.1 to the ensemble XN . The upper-triangular entries of XN are all
independent, and so condition (2) of Theorem 1.1 (on the size of independent blocks) is automatically satis-
fied. Hence, to conclude convergence of the ESD to its mean in probability, it suffices to show that the family
{N [XN ]2ij}N∈N,1≤i,j≤N is uniformly integrable. Note that

N [XN ]2ij = g(i/N, j/N)ξ2ij .

By assumption g ∈ C([0, 1]2), and so g is bounded. Thus E(N [XN ]2ij) ≤ ‖g‖∞E(ξ2ij) = ‖g‖∞ for all i, j,N
(since the ξij are presumed to be centered with variance 1). Thus, there is a uniform bound on the expectation of
each element in this family of nonnegative random variables, and it follows that the family is uniformly integrable.
Thus, by Theorem 1.1, the ESD of XN converges to its mean in probability.

For the second statement of the theorem: first, if ξij are bounded random variables ≤ R, then the entries√
N |[XN ]ij | ≤ ‖g‖∞R are uniformly bounded, and so almost sure convergence follows from the last statement

of Theorem 1.1. In the case where we assume the law of the ξij satisfies a log-Sobolev inequality, we apply
Theorem 2.11. Note that our ensemble has the form TN (N−1/2ΞN ) = N−1/2TN (ΞN ), where ΞN has entries
ξij and TN is the linear “diagonal” map

[TN (ΞN )]ij = g(i/N, j/N)[ΞN ]ij .

Since the entries ξij are i.i.d. and are assumed to satisfy a log-Sobolev inequality, to establish almost sure
convergence of the ESD, it suffices by Theorem 2.11 to show that ‖TN‖Lip = o( N√

logN
). But since TN is

linear and diagonal, its Lipschitz norm (i.e. operator norm) is simply the maximum modulus of the entries,
‖TN‖op = maxi,j |g(i/N, j/N)| ≤ ‖g‖∞ = O(1) = o( N√

logN
). This concludes the proof. �

3. MOLLIFIED LOG-SOBOLEV INEQUALITIES ON Rd

In this section we will prove Theorem 1.6. For convenience, we restate it below as Theorem 3.1, in measure
theoretic language.
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Theorem 3.1. Let µ be a probability measure on Rd whose support is contained in a ball of radius R, and let γt
be the centered Gaussian of variance t with 0 < t ≤ R2, i.e., γt(x) = (2πt)−d/2 exp(− |x|

2

2t ) dx. Then for some
absolute constant K, the optimal log-Sobolev constant c(t) for the convolution µ ∗ γt satisfies

c(t) ≤ KR2 exp

(
20d+

5R2

t

)
.

K can be taken above to be 289.

Remark 3.2. Theorem 3.1 is slightly more general than Theorem 1.6, since it only requires the support to be
contained in some ball of radius R; by contrast, in Theorem 1.6, R is the radius of a ball centered at 0 containing
suppµ. If we use the theorem in this form, we could actually improve Theorem 1.1 by softening the requirement
that the entires be uniformly square integrable, only requiring their centered versions

√
N([XN ]ij − E([XN ]ij))

to be uniformly square integrable. However, since any ensembles we wish to apply Theorem 1.1 to must converge
in expectation, this does not given any practical improvement.

3.1. The Proof of Theorem 3.1. To prove Theorem 3.1, we use the following theorem (see [19, p.288, Thm.
1.2]):

Theorem 3.3. (Cattiaux, Guillin, Wu). Let µ be a probability measure on Rd with dµ(x) = e−V (x)dx for some
V ∈ C2(Rd). Suppose the following:

(1) There exists a constant K ≤ 0 such that Hess(V ) ≥ KI .
(2) There exists a W ∈ C2(Rd) with W ≥ 1 and constants b, c > 0 such that

tW (x)− 〈∇V,∇W 〉(x) ≤ (b− c|x|2)W (x)

for all x ∈ Rd.
Then µ satisfies a LSI.

In particular, let r0, b′, λ > 0 be such that

tW (x)− 〈∇V,∇W 〉(x) ≤ −λW (x) + b′1Br0

where Br0 denotes the ball centered at 0 of radius r0 (the existence of such r0, b′, λ is implied by Assumption 2).
By [7, p.61, Thm. 1.4], µ satisfies a Poincaré inequality with constant CP ; that is, for every sufficiently smooth g
with

∫
g dµ = 0, ∫

g2dµ ≤ CP
∫
|∇g|2dµ; (3.1)

CP can be taken to be (1 + b′κr0)/λ, where κr0 is the Poincaré constant of µ restricted to Br0 . A bound for κr0
is

κr0 ≤ Dr20
supx∈Br0 p(x)

infx∈Br0 p(x)
,

where p(x) = e−V (x) and D is some absolute constant that can be taken to be 4/π2. Let

A =
2

c

(
1

ε
− K

2

)
+ ε

B =
2

c

(
1

ε
− K

2

)(
b+ c

∫
|x|2dµ(x)

)
,

where ε is an arbitrarily chosen parameter. Then µ satisfies a LSI with constant A+ (B + 2)CP .

We remark that the statement of Theorem 3.3 is given in [19] in the more general context of Riemannian
manifolds. Also, the constants given above are derived in [19] but not presented there; for our purposes we have
collected those constants and presented them here.

With the above, we now prove Theorem 3.1, which we restate here for the reader’s convenience.
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Theorem 3.4. Let µ be a probability measure on Rd whose support is contained in a ball of radius R, and let γt
be the centered Gaussian of variance t with 0 < t ≤ R2, i.e., dγt(x) = (2πt)−n/2 exp(− |x|

2

2t )dx. Then for some
absolute constant K, the optimal log-Sobolev constant c(t) for µ ∗ γt satisfies

c(t) ≤ KR2 exp

(
20n+

5R2

t

)
.

K can be taken above to be 289.

Proof. By translation invariance of LSI, we will assume that µ is supported in BR. We will apply Theorem 3.3
to µt and compute the appropriate bounds and expressions for K, W , b, c, r0, b′, λ, κr0 , CP ,

∫
|x|2dµt(x), A,

and B.
To find K, b, and c, we follow the computations as done in [39, pp. 7-8]. Let V (x) = x2

2t and Vt(x) =
− log(pt(x)), so

dµt(x) = e−Vt(x)dx = d(e−V ∗ µ)(x).

Also let

dµx(z) =
1

pt(x)
e−V (x−z)dµ(z),

so µx is a probability measure for each x ∈ Rd. Then for X ∈ Rd with |X| = 1,

Hess(Vt)(X,X)(x) =

(∫
BR

∇XV (x− z)dµx(z)

)2

−
∫
BR

(
|∇XV (x− z)|2 −Hess(V )(X,X)(x− z)

)
dµx(z)

=
1

t
−

(∫
BR

|∇XV (x− z)|2dµx(z)−
(∫

BR

∇XV (x− z)dµx(z)

)2
)

since Hess(V ) =
1

t
I.

But for any C1 function f ,∫
BR

f2dµx(z)−
(∫

BR

f dµx(z)

)2

=
1

2

∫
BR×BR

(f(z)− f(y))2dµx(z)dµx(y)

≤2R2 sup |∇f |2,

so for f = ∇XV , we get

Hess(Vt)(X,X)(x) ≥ 1

t
− 2R2 sup |∇(∇XV )|2 =

1

t
− 2R2

t2
.

So we take

K =
1

t
− 2R2

t2
.

Note K ≤ 0 since t ≤ R2.
Let

W (x) = exp

(
|x|2

16t

)
.
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Then

tW − 〈∇Vt,∇W 〉
W

(x) =
n

8t
+
|x|2

64t2
− 1

16t

∫
BR

〈x,∇V (x− z)〉dµx(z)

=
n

8t
+
|x|2

64t2
− 1

16t2

∫
BR

(
|x|2 − 〈x, z〉

)
dµx(z)

≤ n
8t
− 3|x|2

64t2
+

1

16t2
sup
z∈BR

〈x, z〉

=
n

8t
− 3|x|2

64t2
+

1

16t2
R|x|.

Using |x| ≤ |x|2/2R+R/2 above, we get

tW − 〈∇Vt,∇W 〉
W

(x) ≤ n

8t
− 3|x|2

64t2
+

1

16t2
R

(
|x|2

2R
+
R

2

)
=
n

8t
+

R2

32t2
− 1

64t2
|x|2,

so we take

b =
n

8t
+

R2

32t2
,

c =
1

64t2
.

Now let

r0 =
√

16nt+ 2R2,

b′ =
1

4t
exp

(
n+

R2

8t
− 1

)
,

λ =
n

8t
.

We claim that

b− c|x|2 ≤ −λ+ b′ exp

(
−|x|

2

16t

)
1Br0

, i.e.,
b+ λ− c|x|2

b′
exp

(
|x|2

16t

)
≤ 1Br0

,

so that

tW (x)− 〈∇V,∇W 〉(x) ≤ −λW (x) + b′1Br0 .

We have

b+ λ− c|x|2

b′
exp

(
|x|2

16t

)
=4t exp

(
−n− R2

8t
+ 1

)(
n

8t
+

R2

32t2
+
n

8t
− |x|

2

64t2

)
exp

(
|x|2

16t

)
=

(
n+

R2

8t
− |x|

2

16t

)
exp

(
−
(
n+

R2

8t
− |x|

2

16t

)
+ 1

)
.

For |x| ≥ r0, the above expression is nonpositive, and for |x| ≤ r0, the above expression is of the form ue−u+1,
which has a maximum value of 1, as desired.

Now we estimate κr0 by estimating supx∈Br0 pt(x) and infx∈Br0 pt(x). For x ∈ Br0 , we have

pt(x) =

∫
BR

(2πt)−n/2 exp

(
−|x− y|

2

2t

)
dµ(y) ≤

∫
BR

(2πt)−n/2dµ(y) = (2πt)−n/2
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and

pt(x) =

∫
BR

(2πt)−n/2 exp

(
−|x− y|

2

2t

)
dµ(y) ≥

∫
BR

(2πt)−n/2 exp

(
−(r0 +R)2

2t

)
dµ(y)

=(2πt)−n/2 exp

(
−(r0 +R)2

2t

)
,

so

κr0 ≤ Dr20
supx∈Br0 p(x)

infx∈Br0 p(x)
≤ Dr20 exp

(
(r0 +R)2

2t

)
.

We then take

CP =
1 + b′κr0

λ

≤8t

n

(
1 +

1

4t
exp

(
n+

R2

8t
− 1

)
·Dr20 exp

(
(r0 +R)2

2t

))
=

8t

n
+
D

e

(
32t+

4R2

n

)
exp

(
n+

R2

8t
+

(
√

16nt+ 2R2 +R)2

2t

)
.

Using
√
a+
√
b ≤

√
2(a+ b) and the assumptions t ≤ R2 and n ≥ 1 above, we get

CP ≤
8R2

1
+
D

e

(
32R2 +

4R2

1

)
exp

(
n+

R2

8t
+

√
2(16nt+ 2R2 +R2)

2

2t

)

=8R2 +
36D

e
R2 exp

(
17n+

25R2

8t

)
≤
(

8 +
36D

e

)
R2 exp

(
17n+

25R2

8t

)
.

Next, we estimate
∫
|x|2dµt(x):∫

Rd
|x|2dµt(x) =

∫
Rd

∫
BR

|x|2(2πt)−n/2 exp

(
−|x− y|

2

2t

)
dµ(y)dx

=(2πt)−n/2
∫
BR

∫
Rd
|x+ y|2 exp

(
−|x|

2

2t

)
dx dµ(y)

by replacing x→ x+ y

=(2πt)−n/2
∫
BR

∫
Rd

(|x|2 + |y|2) exp

(
−|x|

2

2t

)
dx dµ(y)

+ (2πt)−n/2
∫
BR

∫
Rd

2〈x, y〉 exp

(
−|x|

2

2t

)
dx dµ(y).

The second integral in the last expression above equals 0 since the integrand is an odd function of x. So∫
Rd
|x|2dµt(x) =(2πt)−n/2

∫
BR

∫
Rd

(|x|2 + |y|2) exp

(
−|x|

2

2t

)
dx dµ(y)

≤(2πt)−n/2
∫
Rd

∫
BR

(|x|2 +R2) exp

(
−|x|

2

2t

)
dµ(y)dx

=(2πt)−n/2
∫
Rd

(|x|2 +R2) exp

(
−|x|

2

2t

)
dx

=nt+R2,

15



the last integral computed using polar coordinates.
To get expressions for A,B, we choose ε = 16t; then A,B satisfy

A =
2

c

(
1

ε
− K

2

)
+ ε = 128t2

(
1

16t
−
(

1

2t
− R2

t2

))
+ 16t = 128R2 − 40t ≤ 128R2

and

B =
2

c

(
1

ε
− K

2

)(
b+ c

∫
|x|2dµt(x)

)
≤128t2

(
1

16t
−
(

1

2t
− R2

t2

))(
n

8t
+

R2

32t2
+

1

64t2
(
nt+R2

))
=

18nR2

t
+

6R4

t2
− 63n

8
− 21R2

8

≤18nR2

t
+

6R4

t2
− 2.

Putting everything together, we get that the optimal log-Sobolev constant c(t) for µt satisfies

c(t) ≤A+ (B + 2)CP

≤128R2 +

(
18nR2

t
+

6R4

t2
− 2 + 2

)(
8 +

36D

e

)
R2 exp

(
17n+

25R2

8t

)
=128R2 + 12 · R

2

2t

(
3n+

R2

t

)(
8 +

36D

e

)
R2 exp

(
17n+

25R2

8t

)
.

Applying u ≤ eu to two of the terms in the expression above, we get

c(t) ≤128R2 + 12 exp

(
R2

2t

)
exp

(
3n+

R2

t

)(
8 +

36D

e

)
R2 exp

(
17n+

25R2

8t

)
=128R2 +

(
96 +

432D

e

)
R2 exp

(
20n+

37R2

8t

)
≤
(

128 + 96 +
432D

e

)
R2 exp

(
20n+

5R2

t

)
≤289R2 exp

(
20n+

5R2

t

)
.

This concludes the proof of Theorem 3.1. �

3.2. Remarks on the Optimal Log-Sobolev Constant.

Example 3.5.
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