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Abstract— A MIMO downlink system in which data is transmitted to
two users over a common wireless channel is considered. Thaannel is
assumed to be fixed for all transmissions over the period of ierest and
the ratio of anticipated average arrival rates for the two users, also known
as the relative traffic rate, is the system design parameteA packet-based
traffic model is considered where data for each user is queuedt the
transmit end. A queueing analogue for this system leads to aoapled
queueing system for which a simple policy is known to be throghput-
optimal under Markovian assumptions. Since an exact expreson for the

not available. In this correspondence, as a measure of perfoapanc
we prove a limit theorem justifying a diffusion approximation for a

heavily loaded system operating under this policy. In particular, the
diffusion is a two-dimensional semimartingale reflecting Brownian
motion (SRBM) living in the positive two-dimensional quadrant

(Theorem VIII.3).

We are not aware of analysis of other policies that have been shown
to be throughput-optimal for a general convex (rather than a convex
polyhedral) capacity region. However, scheduling policies for certain
heavily loaded wireless systems with convex polyhedral capacity
regions have been studied in [5], [6] (also see references therein)
under restrictive assumptions. In [5], Stolyar considered a genedaliz
switch. He showed that under MaxWeight scheduling and certain
restrictive conditions, including a resource pooling condition, in

performance is not available, as a measure of performance r(i heavy
traffic), a diffusion approximation is established. This difusion process
is a two-dimensional semimartingale reflecting Brownian mton living
in the positive quadrant of two-dimensional space.

heavy traffic there is state space collapse (SSC), the workload process
converges to a one-dimensional Reflecting Brownian Motion (RBM),
and MaxWeight asymptotically minimizes the workload. Shakkotai et
al. [6] study a throughput-optimal scheduling rule, which they call
an exponential scheduling rule, and show that it is asymptotically
pathwise optimal in the sense that there is SSC, the workload process
is asymptotically minimized and converges to a one-dimensional
RBM. In the following, we point out some of the differences between
[. INTRODUCTION our assumptions and those in [5], [6]. The Maxweight policy [5] is

Current cellular systems consider each base station as a sepai§gigned for the case when the capacity region is a convex polyhedron
entity with no cooperation among base stations. Infrastructure cogpdile the policy we consider is designed for more general convex
eration, that is, cooperation among base stations has been propé&#city regions. We elaborate upon this in Section V where we
as a means of achieving higher throughput (see, e.g., [1], [2], [$efine the heavy traffic conditions. Moreover, a complete resource
where the main idea is to consider the cooperating base stationga8/ing (CRP) condition is assumed in [S] which requires that there
one end of a MIMO system and then to use results from informatidh & unique outward pointing normal to the system stability region at
theory for the study of cellular systems. In this correspondence, W€ Point corresponding to the mean arrival rate vector for a critical
consider a two-user MIMO downlink system where data is bufferdg@d; by comparison, we do not assume a CRP condition. The arrival
at the transmit end and the channel is assumed to be fixed for RPCess in [5] is assumed to be an ergodic Markov process while
transmissions over the period of interest (one might view this as oW& assume that the arrival process is a renewal process. In 8], th
period for a quasi-static channel). The two-user MIMO downlink&Pacity region is a convex polyhedron and a CRP condition similar
system can be seen as a model of a cellular system with two us&4S] iS assumed; however, service is given to only one queue at a
and two cooperating base station antennas which might be ti{@e while here we can serve both queues at the same time.
cooperating base stations each with a single antenna or a single-celin® rest of this correspondence is organized as follows. We
cellular system with a multi-antenna base station. It is well know@¥plain the notation used in this correspondence and present some
that in such a system, the sum of the rates at which data can'p@theématical preliminaries in Section Il. We describe the MIMO
served for the two users is greater than the single-user capacity #nlink system of interest in Section Ill and develop a queueing
any user. Thus, one can obtain improved capacity by cooperation@nalogue for it in Section IV. We formally define the heavy traffic

This communication system has a corresponding queueing Syslgpﬁ]ditions in Section V. In Section VI, we define the scaling and
formulation where, even in the simple case of Poisson arrivaRiesent standard functional limit theorems used in proving our main
independently for each user, it is not known how to minimize thgesults. In Section VI, we prove a fluid limit result (Lemma VI1.2)
average delay for a given load. Furthermore, closed-form egjmes fOr Our queueing system. This plays a role in establishing the heavy
for average delay are unavailable for many simple policies; usualljgffic limit theorem through determining the fluid scale service
this means that any meaningful comparison has to be done @#Pcations. We present the main theorem of this correspondence
simulations. However, when the ratio of the average arrival ratéheorem VIII.3) in Section VIl which says that in the heavy traffic
(also known as the relative traffic rate) is specified in advance, th@it, the renormalized queuelength process converges in distribution
maximum possible throughput can be computed and a simple polf®y@ SRBM living in a two-dimensional quadrant. There, we also
can be shown to be throughput-optitainder Markovian assump- diScuss the properties of the limiting process. Finally, we summarize
tions [3]. An exact expression for the performance of this policy igUr conclusions in Section IX.

Index Terms— Coupled queueing systems, diffusion approximation,
heavy traffic, multi-input multi-output (MIMO), semimartin gale reflect-
ing Brownian motion (SRBM).
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The usual Euclidean norm oRY will be denoted by|-|| so that Proof. The proof is given fox € C4 in [8] and alluded to fox € DY .
IX| = (391%¢) Y2 for x € RY9. We denote the inner product @& A complete proof can be found in [9] for example. O
by (-,-), i.e., (xy) = 3%, xyi, for x,y € RY. Let B(RY) denote theo- _ o g o
algebra of Borel subsets @¢. The symbol  denotes the indicator FiX & Positive integerd, 8 € RY, I a d x d symmetric strictly
function of a setq, i.e., 13(x) = 1 if x€ 4 and 13(x) =0 if x¢ 4. posm_v_e definite matrix and a x d _r_natrlx R satisfying the HR

All stochastic processes used in this correspondence will G8ndition. We can use the solvability of the Skorokhod problem
assumed to have paths that are right continuous with finite left limi{g construct a Semlmartlndgale Reflecting Brownian Motion (SRBM)
(rc.l.l). We denote byd? the space of r.c.Ll. functions fror9,e) ~associated with the dat&?,8,",R) as follows. S
into RY and we endow this space with the usual Skorokigd Given a Brownian motionX starting from the origin with drift
topology (see Ethier and Kurtz [7, Chapter 3, Section 5]). We denofgctor 8 and covariance matrix’, consider the _pair of processes
by CY the space of continuous functions frgMe) into RY, also en- (QY) that solve the Skorokhod problem fat with respect toR.
dowed with the Skorokhod;-topology under which convergence of Then, Q is an SRBM associated with the dgfaq,6,r",R) starting
elements inCY is equivalent to uniform convergence on compact timom the origin. HereQ = X +RY where {X(t) —6t, t > 0} is a
intervals. Theo-algebra induced oB¢ (or C%) by the Skorokhod); - continuous martingale (with respect to the filtration generateX)y
topology will be denoted by ®. The abbreviatioru.o.c.will stand and {RY(t) +-6t, t > 0} is a continuous locally bounded variation
for uniformly on compactand will be used to indicate that a sequencBrocess adapted to the filtration generated Xy Hence, Q is a
of functions inDY (or CY) is converging uniformly on compact Semimartingale.
time intervals to a limit inDY (or C9). A d-dimensional process
is a measurable function from a probability space ifth Consider I1l. SYSTEM MODEL
QL,@?,...,Q, each of which is ad-dimensional process (possibly . i ) o .
defined on different probability spaces). The sequefigB}® , is In_ this section we specify the cc_)mmunlcatlon system under con_sld-
said to betight if the probability measures induced by the sequen@erat'on' We con5|d_er a ceI_Iqu';\r_ ereless_ neMork where base stations
{Q"1=_, on (]D)d7 Md) form a tight sequence, i.e., they form a Weakbpooperate over noise-free infinite capacity links. We do not make any

relatively compact sequence in the space of probability measuresdfinction between a single-cell cellular system having multiple base-
(]Dd Md)_ The notation ©" = Q" will mean that “Q" converges in station antennas and the traditional cellular system with cooperating

distribution toQ asn — «o”. The sequence of process¢@"}” , is single-antenna base stations. Here, by cooperation we mean that the
) n= . .. .
called C-tight f it is tight, and if each weak limit point (obtained asPase stations can perform joint beamforming and/or power control
a weak limit along a subsequence) isGfl almost surely. but there is a constraint on the total power that the base stations can
share. We do not make any assumptions about the number of receive

A. Skorokhod Problem antennas per user.

Skorokhod problems are used in the study of approximations OIn this correspondence, we restrict our attention to the case where

certain queueing networks. LBE (resp.CY) denote those functions there are just two mobile stations (also called users) in the footprint
xe DY (xe CY) satisfyingx(0) ;0 + of the cooperating base stations. Then the downlink channel can

_ . d be modeled as a two-user MIMO Broadcast Channel (BC). We
Definition Il.1 (Skorokhod Problem (SP))Fix x€ DY and ad xd

A ) assume that the channel is fixed for all transmissions over the period
matrix R. We_say tha(&y) _solves the Skorokhod problem famwith of interest (some authors refer to this as a quasi-static channel).
respect toR, if zy e DS with

Moreover, we assume that the transmit end (the cooperating base
1) z(t) =x(t) +Ry(t) for all t e Ry, stations) has perfect channel state information (CSI).

2) 2t) € R{ for all t € Ry, Weingarten et al. [11] have shown that for such a system, Dirty
3) fori=12,....d, Paper Coding (DPC), introduced by Costa [12], achieves the capacity.

a) ¥i(0) =0, Furthermore, the capacity region can be computed by using the

b) yi is non-decreasing, duality of the MIMO Multiple Access Channel (MAC) and the MIMO

) Jiow)Z(s)dyi(s) =0. BC [13]. Figure 1 illustrates the capacity region for an example of
The pathx is called the driving path. a two-user MIMO BC with two transmit and two receive antennas.

Harrison and Reiman [8] specified some conditions on the mattfi}ere the BC capacity region is obtained by taking the convex hull of
R under which there is a unique solution of the Skorokhod probletie union over the set of capacity regions of the dual MIMO MACs
for eachx € CY.. In fact these conditions also yield a unique solutioguch that the total MAC power is the same as the power in the BC.
for eachx € DY.. Let ¢} (c5) be the maximum rate at which data can be transmitted

Definition I1.2 (Harrison-Reiman (HR) Condition)A d x d matrix R (in Dits per sec (bps)) to user 1 (2) when the rate of transmission
satisfies the HR condition R= I — Q, wherel is thed x d identity (0 USer 2 (1) is set at zero. [£1,¢c2) > 0 is a point in the capacity
matrix, Q has zeros along the diagonal, all of the entriesQoére region then the rate at which data can be transmitted to user 1 (2),

nonnegative an® has spectral radius strictly less than one. ¢1 (cp), is strictly less thare; (c5). This corresponds to the fact that

When R = | h h the di | and th when the wireless resources are dedicated to a single user, the rate
nen ik =1- Qw ere_Q as zeros on the diagonhal an %t which that user can be served is higher than the rate for that user
entries ofQ are nonnegative, the HR condition is equivalent to th

) . . . i When the resources are shared by the users but this higher rate comes
rgquwement thaR is a .non-smgular M-matrix. Such matrices ar%¢t a cost to the sum of the rates. Indeed, when both users are being
discussed for example in Berman and Plemmons [10, Chapter 6]'serviced, the sum of the rates is strictly greater than that for service
Proposition I1.1. Let d be a positive integer and R be axdl dedicated to a single user, that é&,4- ¢, > cj,c5.

matrix satisfying the HR condition. Then for eack Di, there are For a two-user system the capacity region is a two-dimensional
y,Z€ D‘i such that(z,y) is the solution of the Skorokhod problemclosed convex set iﬁii where the convexity follows because of the
for x with respect to R. Furthermore, the mappifdyg: ]D)i — ]D)id convex hull operation. The capacity region contains the origin and
given by®(x) = (z,y) is continuous wherdzy) is the solution of it has three boundary pieces of which two are along the coordinate

the Skorokhod problem for x. axes while the third boundary piece is in the interioM. We call



f—sopeyix=3. ‘ ‘ (0,t]. (HereE is used to indicate that the arrivals are exogenous.)
4 1 Fori=1,2, Ei(-) is assumed to be a (non-delayed) renewal process
defined from a sequence of strictly positive i.i.d. random variables
{ui(k), k=1,2,...}, where fork=1,2,...,u;j(k) denotes the time

: & sopeyi=1 | between the arrival of th¢k —1)st and thek-th packet to thei-

25 , th queue. Eachy(k), k=1,2,... is assumed to have finite mean
1/A;i € (0,») and finite squared coefficient of variation (variance
divided by the mean squaredyf € [0,»). The packet lengths (in

35 R b

Slope yix = 0.5|

15 4 : bits) for the successive arrivals to queugre given by a sequence of

/ strictly positive i.i.d. random variablesv(k),k=1,2,...} with av-
g i | erage packet length/f; € (0,) and squared coefficient of variation
o5t/ s } B2 € [0,), i =1,2. We assume that all interarrival and service time
JATT : processes are mutually independent. Note that the average bit arrival

0 05 1 15 25 3 35 4

R10ps) rate for useri is by = A/, i = 1,2 and we have lek, = by /b;. For
] ) ] i =1,2, we associate a renewal counting procgég with {vi(k)}g_;
Fig. 1. An example of a capacity region of a 2-user MIMO B_C fonedi such thatS(t) = sup{n > 0 Zn vi(k) <t} for t > 0. We refer to
channel wherd?; andR; are the rates of user 1 and 2, respectively. py k=1 I

the processe&(-) and §(-) as stochastic primitivedor the system

model.

this third boundary theapacity surfaceThe following lemma states

a key property of the capacity surface of the two-user MIMO BC. C. Service Discipline

Lemma lll.1. For any point(x,y) on the capacity surface of a two-

user MIMO BC, the following holds, When service is given to a queue, it goes to the packet at the head

of the line, where it is assumed that packets are queued in the order

1* + X* > 1 (1) of their arrival to the queue. The service rate is a simple function of
G & the number of packets in each of the queues. A (mirc,) indicates
Proof. See Appendix I. O the rates (in bps) of serving the two queues, i@.,is the rate for

queue 1 ana, is the rate for queue 2. Here, given the queuelength

At the transmit end, packets arrive for each user and are buffergd- (g, ), the rates are given b§o1,0,) = A(q) for the functior?
before transmission. The ratio of anticipated average bit arrival ratgs- R2 — R defined by

called relative traffic rate and denoted ky; is specified in advance,
that is, it is expected that, on average, user 2 will hlsvéimes as
much data as user 1. The actual traffic rate will deviate from the

(c1,¢2) if a1 >0,02>0,
average due to stochastic fluctuations. Naturally, when there is no Ag) £ E
(

c;,0) if g1 >0,02=0,
0,c;) if g1 =0,02>0,
0, 0) if g0 =0,00=0.

)
data for one of the users to transmit (the corresponding queue for
that user is empty), the data for the other user should be transmitted
at the maximum possible rate. That is, the data should be transmlt}_(?d . .
. . ere cp and cp are chosen such thdts,cp) lies on the capacity
to user 1 (2) at the rate af; (c5) when only the first (second) user » AR )
. surface andtp/cy = kp. Also, ¢y, G, ¢ andc; satisfy the following
has data to transmit. It has been shown [3] that, under Markovian ... . < . 4
. . : conditions: 0< ¢; < ¢}, 0< ¢z < ¢35, andcy, 5 < ¢+ Co.
assumptions on the system, the policy that transmits at théaa®) . : .
. . . . Our model is a single server, two-class queueing system where
at all other times, wherécy,cy) is the point on the capacity surface

such thaty/c; — ky, is throughput-optimal. Figure 1 illustrates afeWthe two classes correspond to the two users. The following scaling

) ] » property of A(-) is a mathematical statement of the property of
such operation points for sample valueskgf=3,1,0.5. the scheduling policy that the amount of service given to the

queues in any state does not change when all queuelengths are
increased/decreased proportionally.
In this section we develop a queueing analogue for the system

IV. QUEUEING ANALOGUE

2 _
described in Section Ill. To this end, we describe the physic!‘;{?mma IV.1. For any g€ R and x>0, A(xq) = A(q).
structure, the packet arrivals and sizes. Then we formalize the _ o

service discipline and specify the dynamic equations satisfied by #RE0f. The proof follows easily from the definition ok (-). O

queuelength process.

_ D. Queuelength Process
A. Physical Structure

. . . ori=1,2, the length of the-th queue at time is
A queueing system describing our setup has two queues in paralle'I: T 9 4

where each queue buffers packets intended for a given user. We Qi(t) =E(t) - Di(t), ®3)
assume that each of the queues has infinite buffer capacity. The

queues are served by a single server corresponding to the cooperatihere Dj(t) is the number of packet departures from th queue
base station. in (0,t]. Here,Dj(t) is given by

B. Stochastic Primitives Di(t) = S(Ti(t)), (4)

We assume that the system starts empty and that there is a Woyye only needA(-) defined onZ2 for the moment, but we extend the

dimensional packet arrival proceBs= {(Ex(t), Ex(t)), t > 0} where  domain ofA(-) to R2 ‘so that later when we rescale the queuelength process
Ei(t) is the number of packets that have arrived to ittt queue in  A(-) is well-defined for the rescaled process.



whereTij(t), the cumulative amount of service given to quéws to
timet, is given by

t
T = [ Qs
O ; ®)
= Ci/O 1iq;(s>0 vjds+¢ /o Liq(s>0; Q=0 v j#i1ds

V. HEAVY TRAFFIC ASSUMPTIONS
A. Assumptions

We consider the operation of our queueing system in the asymptotic
regime where it is heavily loaded. (Kelly and Laws [14] have arguedd- 2. The solid curve indicates the capacity surface wtiike surface of
that in this regime “important features of good control policies are System stability region is shown by the dashed line.
displayed in sharpest relief”.) For this purpose one may regardemgiv

system as a member of a sequence of systems approaching the heay

traffic limit. To obtain a reasonable approximation, the queueleng‘a%)'a/tS (0,0, (¢1,0), and (0,c;) are included amongst the finitely

process is rescaled using diffusion scaling. This corresponds o operation points.) A representative capacity surface for a two-

viewing the system over long intervals of time of ordér(wherer user _MIMO_ B(.: Is shown in Fig. 2. For this system, thg syst_em
stability region is the closed convex hull of the set of operation points.

will tend to infinity in the asymptotic limit) and regarding a single . . . )

packet as only having a small contribution to the overall congesti(!):éJr exazm‘;'e' '; the %pe?[a“on points a(r@i’.o)’. © CZ)’. ¢ i (c1.¢3).
level, where this is quantified to be of ordeyrl Formally, we Ch = (c1,63), (f: ~ (Cf17ﬁ2)’ and (0,0) als indicated mhFlg. 2, tf;]en
consider a sequence of systems indexed, liyherer tends to infinity the upper surface of the system stability regiah,is shown by the
through a sequence of values (0,). These systems all have thedaShed CUrve.

same basic structure as that described in the last section; however,btt%ega" th%t tt::e ray fffm the OH?LE of _sI(t):plez mterssects the
arrival rates may vary with and for determiningc we assume that oundary ofc, the capacity region, at the poiat= (Cy, Cp). Suppose

an estimate of the rati, € (0,00) of the bit arrival rates is known that C is strictly convex afc, i.e., the capacity surface is not flat at

and is used to determine the capaditfor the whole sequence. We ¢. The following lemma shows that then the poiiust be one of

assume that the interarrival times in the system indexeddrg given the _operatlon points, othemlse the system will _be unstable in heavy
foreachi—1.2 k=12 by traffic. Furthermore, when is amongst the operation points, the CRP

1 condition does does not hold.

ui (k) = ﬁ‘ji(k) 6) Lemma V2. Suppose that the point=€(cy,cy), where the ray from
. ! the origin of slope k& intersects the capacity surface, is an extreme
where theui(k) do not depend om, have mean one and squaredygint of . Then ¢ must be one of the operation points of any policy
coefficient of variationa?. The packet lengthgvi(k)}_1, i = 1.2,  that is stable whenever the arrival rate(i&—1/r)A forall r € (1, ).
do not change with. [The above structure is convenient for aHOWingFurthermore, there is then more than one normaltat ¢, and the

the sequence of systems to approach heavy traffic by simply Chang&ﬁnplete resource pooling condition does not hold.
arrival rates and keeping the underlying sources of variabilitk)

and vi(k) fixed asr varies. This type of set-up has been use®roof. Consider a policy that time shares amongst finitely many
previously by others in treating heavy-traffic limits (see, e.g., Betiperation points not including The average bit arrival rate vector
and Williams [15]). For a first pass, the reader may like to simplgssociated with the average arrival rate(df- 1/r)A for r € (1,),
choose\] = A; for all r.] All processes and parameters that depenaipproaches the poirtt along the ray from the origin of slopk,.

onr will from now have a superscript of DefineAj £ ¢, i=1,2. Sincec is an extreme point o andc is not an operation point,

AssumptionV.1 (Heavy Traffic Assumption)For i = 1,2, there is € IS outsideC. Thus, there is am Such that forr > f, b" is in the

8 € R such that capacity regionC but not in C (as illustrated in Fig. 2). Thus, the
r(Af —Aj) — 6 asr — co. (7) time sharing policy is not stable for aif such thatr > f.

Now, if ¢ is one of the finitely many operation points of a time-
Remark. This assumption does not restrict the direction in Whicgharing policy, since cannot be written as a convex combination
the heavy traffic limit is approached, unlike that in Gans and Vagf the other operating points, there is not a unique normal to the
Ryzin [16]. Here6; could be positive, negative or zero for each poundary ofC at c. This is illustrated in Fig. 2 where! is one of
Thus, each queue may have an arrival rate that is greater thar, eqHa extreme points but there is no unique normattat cl. O
to or less than the rate yielding exact balance.
Here we may regard as the nominal average packet arrival rate '€ analysis performed in [5] depends critically on the (CRP)

used to set the service ratesy, cy) = (b, bp), for the throughput- assumption that there is a unique normaldoat the point where

optimal policy. Ther-th system has a perturbed average packet arriville ray in the direction of the average arrival rate vector intersects
rate A" for which the average bit arrival rate : bl =\ /pi.i = 1,2 C. Except in the special situation wheceis a convex combination
s M i ) at

is close to(c, cy) of two other operation points, this assumption will not be satisfied
’ at ¢ and hence the analysis based on the assumption that the CRP

, . condition holds does not apply.
B. Connection to Complete Resource Pooling (CRP)

To make a connection with the work of Stolyar [5] (and others),
consider the two user queueing system where the server is able to )
time-share amongst finitely many operation points chosen from the Scaling
closure of the capacity surface and the origin. (To allow for viable We first consider a fluid scaled version of the system where fluid
operation when one or both queues are empty, we assume thatgbaling corresponds to viewing the system over long intervals of time

VI. SCALING AND STANDARD LIMIT THEOREMS



of orderr? and simultaneously reducing the contribution of a singl€orollary V1.2 (FLLN). The fluid-scaled processe€'(-),S (-))
packet to the congestion level by a factor offd The behavior of jointly converge in distribution tqA(-),u(-)) as r— oo, i.e.,
solutions of a limiting fluid model will play an important role in —

establishing a limit for the diffusion scaled system where diffusion (E (.)3(.)) = (A(),u()) as r— . (14)
scaling corresponds to looking over time intervals of ordébut Remark. The weak-convergence q@(.)j(.)) to a continuous

only diminishing packet contributions to the congestion measures Bipcess implies C-tightness of the sequeftE (-),S ()}
a factor of ¥r. We define the following fluid and diffusion scaled

processes. Proof. Proposition VI.1 implies that
1) Fluid Scaling: Fluid (or functional law of large numbers) 1. 1
scaling is indicated by placing a bar over a process. iFerl, 2, (FE (')7F5r(')) = (0,0) asr — oo. (15)

t > 0 andr > 0 define
The desired result follows from this and the fact thédt— A; as

T 22T (%), QI £ 2Q(r™), ®) r—o by (7)fori=12. 0
Ef(t) 2r2E[(r%), S(t)2r 25 (r%). 9)

There are in fact two kinds of fluid scaling. In addition to that
indicated above, one could simply accelerate time layd scale the
process by* (in place ofr and %, respectively). Here we shall only
need the first form of fluid scaling described above. PR =

2) Diffusion Scaling: Diffusion (or functional central limit theo- Q1) =E(t) S (T (1) (16)
rem) scaling is indicated by placing a hat over a processi Fat, 2 We next consider the behavior f (-), the fluid-scaled version of
andr > 0, define T():

Ar e A Qir(th) - 1 ra
A=~ t>0 (10) (1) / A(Q(s))ds t>0. a7
0

VIl. FLUID MODEL

Applying fluid scaling to the dynamic equation (3) satisfied by the
queuelength process for the system indexed,lwe obtain for > 0,
i=12,t>0,

2

as the diffusion scaled version Q¥ (-). To apply diffusion scaling to By the change of variables="$, for t > 0, (17) becomes
the primitive stochastic processES, S, we must center them before re? -7

i i i — > i t 20r(r2 t
scaling. Accordingly, foi = 1,2,t >0 andr > 0, we define T :/ A (r Q gr §)) d§=/ A(Q'(9)ds (18)
é_f (t) a Eir(th) _)\{‘th (11) 0 r 0 -
P r where the second equality follows from the definition@f(-) and
and the scaling property of\(-) (see Lemma IV.1). The following lemma
e o S(r2) —urt follows from (18) and the fact that;(-) is bounded byc* which is
St =——"—. (12) ) i
r less thanc; +¢p, fori=1,2.

Lemma VII.1. For each r> 0, almost surelyT'(-) is uniformly

B. Functional Limit Theorems for Stochastic Primitives . ) i . - .
] ) ] o Lipschitz continuous with Lipschitz constant less than-c;.
We will use the following functional central limit theorem (FCLT)
for the stochastic primitives in the sequel. Remark. This lemma is used to prove the C-tightness of the fluid-

b N Vi1 (FCLT. The diffusi led scaled stochastic processes.
t . . . .
TPpostion ( ) e cdrusion scaled Processes o a continuous function : [0,0) — R, we say that € (0,)

= o .. . . . .
(E'().8 () jointly converge in-distribution to (Be("),Bs(")) is aregular pointfor x if x is differentiable att. If x is absolutely

asr—m 1e., continuous, almost everye (0,) is a regular point anc can be
(Er(-),g(-)) = (Bg(+),Bs(+)) as r— oo, (13) recovered from its almost everywhere (a.e.) defined derivative -

where B:(-) and Bg(-) are independent two-dimensional driftless x(t):x(O)-}-/tX(s)ds, t>0. (19)
Brownian motions starting from the origin with diagonal covariance 0

matrices e £ diag(\10%,A\203) and I's £ diag( 3, 12B3), respec- A (uniformly) Lipschitz continuous function : [0,0) — R is abso-
tively. lutely continuous.

Remark.As there is a single source of variability (not dependingpn Lemma VII.2. The sequence of proceEseﬂE(.Lg(,),
for each off], §, i = 1,2, only the finiteness of the second momentsf’(.)@'(.))} converges in distribution tc(E(-),S(-),T(-),Q(-)) as
of Ui(k) andvi(k) is required for the FCLT. Furthermore, since a — o where

Brownian motion is a continuous process, the weak-convergence — _ _ _

of (Er(')gﬁ',)) to a Brownian motion implies C-tightness of the E()=A(), S()=wu(), Q()=0, T()=c(), (20
sequence(E'().5 ()} and dt) 2 (cit,cot), t > 0.

Proof. By results of Iglehart and Whitt [17], functional central limitproo¢ From the uniform Lipschitz continuity of{fr(-)} estab-

. =1 P :
theorems for the renewal counting proces&eé) andS (-) can be jighed in Lemma VILL, it follows that{T'(-)} is C-tight. Since,
inferred from those for the partial sums fiff (k) }i_y and{Vvi(K 1, (E7(.)} and {S(.)} are also C-tight (see the remarks follow-
respectively. Functional central limit theorems for the latter foIIovyng Corollary VI.2), using (16) together with the random time
from Theorem 3.1 of Prokhorov [18]. change theorem of Billingsley [19, p. 151], we conclude that the

=T =T r ; :
As a corollary, we have the following functional law of Iargese_queﬂce{LE ().S().T'(-,Q'(-))} is C-tight as well. Suppose

numbers (FLLN) for the stochastic primitives. From now for eacﬁE(j)»S(')vT(')vQ(')) is & weak limit point of this sequence. By in-
t >0, letA(t) = At and p(t) = pt. voking the Skorokhod representation theorem (see, e.g., [7, &meor

3.1.8, p. 102]), we may assume without loss of generality that for



a subsequencér} of {r}, {(E™(-),S*(), T™(-),Q%() },, and
T(-) are defined on a common probablllty space such that

=E*(t) - §4T™(t)) fort > 0,i=1,2 (21)
and almost surely als — oo,
(E™(),S*(), T™(),Q%()) = (A, (), T(),Q()) uoc. (22)

where almost surelf; (t) = At — i Ti (t ) t>0,i=12. The limit

T(-) inherits the Lipschitz property o{T )} almost surely. Fix
such thafT (-,
we suppress explicit indication of the dependencewprbut w is
fixed throughout. Let > 0 be a regular point fof;, i = 1,2, thenQ
is differentiable at and

dQi(t) _, _, 9%

ot et 12 (23)
We consider the following cases f@(t): _
Case |: Qi(t) =0 for i =1,2. Fixi. SinceQ;(-) > 0, Qi(t) =0 and

t > 0 is a regular point fol andQ, it follows from a simple analysis

argument thatlQ;(t)/dt = 0. Then,

9T
0=A . (24)
which implies that _
ati(t) A _
T Gi. (25)

Case IIl: Qj(t) >0for i=1,2. Let 0O< u < v < o be such that € (u,v)
and fori = 1,2, Qi(s) > 0 for all se [u,v]. Then, by the uniform
convergence oR'(-) to Q(-) on [u,v], we have for all sufficiently
larger, fori=1,2, Q,( s) >0 for all s€ [u,v]. So for alls>t in
[u,v] we have

(9T = Jim 719~ T (1) = jim | [*A (@) 7
. ‘ (26)
= rlmo Ut cidz} =ci(s—t),
where we have used the fact thag(q) = ¢, i =1,2 whenqg >

0. Dividing by (s—t) and taking the limit ass —t, we obtain
dTi(t)/dt =c; for i = 1,2. Note that this implies thadQ;(t)/dt=0
fori=1,2, by (23) and sincej = picj. _ _

Case ll: There is i € {1,2} such that Q;(t) > 0 and Qj(t) =0 for

j #1. Since forj #1i, Qj(-) >0, QJ( )=0andt > 0 is a regular point,
it follows that dQj(t)/dt = 0 which implies thadT,( )/dt=c;. Let
0<u<v< o be such that € (u,v) andQj(s) > 0 for all se [u,V].
Then, for all sufficiently large, Q[ (s) > 0 for all se [u,v], which
implies by the definition of\; (Q"(-)) that

G(s—t) <T () =T (t) <ci(s—t) foralls>tin[uVv. (27)
Letting r — o yields
Gi(s—t) <Ti(s)—Ti(t) <c(s—t), forall s>tin [uV]. (28)

Dividing by (s—t) and letting s — t, we conclude thatc; <
dTi(t)/dt < ¢f. Thus from (23), sincé = ¢,

dQi(t)/dt < 0. (29)
Combining cases (I)-(lll) we see that at each regular point0
for T(),
d —
1 (G0+@0) 2| @0

Since 6{(0) + (5%(0) =0 and Ql(-) + Q2(~) > 0, it follows that
Q4(t) + Q5(t) =0 for all t > 0. Hence,Qu(t) = Q(t) = 0 for all
t > 0 and case (I) implies thaf(t) = ¢; at each regular poirtt> 0

dQl( ) sz( )

+Qu(t) =2 <0. (30)

w) is uniformly Lipschitz continuous. In the following,

for i = 1,2. Such regular points occur almost everywhere anfl
can be recovered from its a.e. defined derivative to gi(e) = cit
forallt>0,i=12.

Finally, since (E(-),S(~),T(-),(5(-)) was an arbitrary weak
limit point and is unlque (as shown above),

{(Ef t_) §1 Ti(t),Q (1))} converges in distribution to
(E(+),S(-),T(-),Q(:)) as described by (20). O
VIIl. D IFFUSION APPROXIMATION

A. Pre-limit process

From (3), (4), (8), (11) and (12), the diffusion scaled queuelength

process can be written far=1,2,t >0, as

Q)= (B () +A/Tt) — (§(T'@©) +urT (1) (31)
= E[()-§(T'®)+rNt—pT (1))
Expanding the last term in (31), we have
251 2T
At W () = R
=N P2 T ds— T A(Q(9)ds

r (32)

Considering four different types of states for the queuelength vector

Q" and substituting the corresponding values fpfQ' (-)) from (2),
we can rewrite (32) as

rt

- 1
r()\{t_p,-'rif(t)):()\i’—)\i)rtJrF (N —lGi) A L{g(s)=01ds

rt
+ (A — WG )/0 L1900 (99=0,j 1} 98

rt r’t
A /0 Ha9=00;9>0j#} 95+ A /O 1{Q§(S)—0Vj}ds]

(33)
Define fort > 0,
Ay a1 th d
U= /0 Haw=00;9>0j}98 (34)

t
- r/o Lig(9=00,9>0j4}ds =12
2t

. 1 gr t
r A _ ~
Z'(t) = F/O 1{er(s>:0 v j}dS— I’/O 1{QE(S):0 v j}dS (35)

Then, using the fact thak;
obtain fori=1,2,t >0,

= Mici and combining (31)—(35), we

Q1) =X 1) +A0] (O + N —weHU[ O +MZ'(1).  (36)
wherej=i+1 (mod 2 and
X (t) = B/ (t) = S (T (&) + AT —Ai)rt. @7

This can be expressed in vector form far 0 as

Jo=xw+, M o M 0w 70 e

Define thereflection matrix Ras

1 ?\1;\“101
yay
RZ {AZ% ; } (39)
A1
and fori € {1,2}, j #i andt > 0, define

N ~ c'C; ~
YI‘ é)\ r i~ ZI’ . A
0N (00 el 0] @

it follows that



Then, (38) can be written as Proof. Recall the results on the Skorokhod prc2>blem sAtgtgcri |Anr Sec-
~r o ~r tion Il-A. For eachr > 0, X' () has paths inD{ and Q ,X .Y
QM) =X()+RV (), t=>0. (41) satlsfy (41). By deflnltlonQ (-) has paths in]lgi. Furthermore,
Note thatcic, +cy¢5 — ¢;c; > O (from Lemma Ill.1) and?’,i=1,2, &s. Y'(0) =0, ¥'(-) is nonnegative, non-decreasing, continu-
can increase only when the correspond(@jg= 0. ous and fori = 1,2, () increases only wherQ{(-) = 0, i.e

We next state and prove the C-tightness of the sequence Jafw) @ (9)dY¥{ (s) = 0. Thus, a.s.,(Q"(),Y'(-)) is a solution of
processes{x ()} which will be used in proving the C- tlghtness ofthe Skorokhod problem forX' (-) with respect toR Smce R
the sequence of diffusion-scaled queuelength proce{sis_e(s)} satisfies the HR condition, by Proposmon 1. 1.Q ()Y ( ) =
o(X'(-)) a.s. where the mapplng> D2 — D4 is continuous. By
Lemma VIIL.1, the sequencéX'(-)} converges in distribution as
r — o to a Brownian motion with drift6 and covariance matrix
I that starts from the origin. Then by the continuous mapping
theorem, <Qr(-)75(r(~),\?r(‘) } converges in distribution as— co
Proof. Let Br( t) =r(A"—A)t, t > 0. By combining Proposition VI.1, tg (Q(.).‘x(.)’\?(.)) where (Q(), \?(.)) = ®(X) is a.s. the unique
Lemma VII.2 andAAssumpthn V.1, we have that the sequence &blution of the Skorokhod problem f&(-) with respect tR. HereQ
processei(E (~)7Sr(~),fr(-),9r(-) } converges in distribution to is a representation of the SRBM associated with the (&fa 6,I",R)
(Be(+),Bs(-),c(+),8(-)) whereBg(-) andBs(-) are independent two- that starts from the origin. O
dimensional driftless Brownian motions starting from the origin with
covariance matriceEg andl's respectivelyc(t) = ct, 8(t) =6t for  C. Properties of the Limit Process
allt>0.

Then from (37), using the random time change lemdi&,(-)}
converges in distribution to a two-dimensional Brownian motion wit
diagonal covariance matrix di@kn0? + pyc1f3,A203 + [CoP3) =
diag\1(0Z + B2),A2(03 + B3)) (since Aj = W for i = 1,2), drift
vector (61, 02) and starting point0,0). O

Lemma VIIL.1. The sequenc{gx (-)} converges in distribution to a
Brownian motion with diagonal covariance matiix2 diag(A1 (0 +
B2),A2(a3+P3)) and drift vector® £ (84,6,), that starts from the
origin.

The SRBM structure of) enables us to use results from the theory
of SRBMs to state some properties of the limit of the diffusion-scaled
Hueuelength processes.

1) Time Spent at the OriginAn important quantity for a queueing
system is the time that the system is idle. It can be shown that almost
surerQ spends zero Lebesgue time at the origin. Stated formally,

Proposition VIII.4. Aimost surely, the Lebesgue measure of the time

spent byQ at (0,0) is zero.
In this subsection, we discuss the properties of the reflection matrix

Rand use these properties to state and prove the limit theorem, whitipof. Varadhan and Williams [20] have shown that wttes 0 and

B. Limit Theorem

is the main result of this correspondence. the covariance matrix is the identity matrix, the associated SRBM
Define spends zero Lebesgue time at the origin almost surely. By a scaling
N 0 F‘lc’)i\*h of the coordinates, we may conclude that the SRBM with dift 0
Q=1-R= 2G5 —A2 02 (42) and a diagonal covariance matrix, spends zero Lebesgue time at the
M origin almost surely. Note that with the scaling, we end up applying a

wherel is the 2x 2 identity matrix. Fori = 1,2, ¢ —A; > 0, since  similarity transformation to th& matrix which does not alter the fact
lc = Ai andc < ¢. Thus all of the entries o are nonnegative. that the HR condition is satisfied. Then, by a Girsanov transformation
We next show that the matriR satisfies the HR condition described(see [21, §9.4]) to change the drift of the driving Brownian motion,
in Section II-A. it follows that the Lebesgue measure of the time spenQbat the

. . . . origin is zero almost surely. O
Lemma VIII.2. The reflection matrix R satisfies the HR condition.

2) Stationary Distribution: Harrison and Williams [22] have
Proof. SinceQ has zeros on the diagonal and all of its entries arghown that there is a stationary distribution for the SRBM if and
nonnegative, it suffices to show th@thas spectral radius strictly Iessomy if R-10 < 0 where the inequality is understood to hold com-

than 1. The eigenvalues @ are the solutions of the equation ponent by component. As an illustration, a situation in which this
5 (1€ — A1) (H2C5 — A2) condition is satisfied is depicted in Figure 3 with= (—1,0) and
- =0 (43) 1 -y G A
AiAz R= v 1 } wherey; = B5—"% andy, = “2% 2. For two-

Using Aj = cjl, i = 1,2, and the fact that] > ¢;, C; > Cp, we have

- n Q>
x_j:\/(cl—l) (2—1). (44) )
C1 c /T P

Thus the spectral radius @ is strictly less than 1 iffc] —c1)(c5 — W
C2) < €1Cp. By assumptiongg + ¢ > ¢, ¢5. Thus 0< (¢ —¢1) < G2
and 0< (c5—¢p) < ¢1. So(cj —c1)(cs—C2) < ¢1¢2 and the spectral
radius ofQ is strictly less than one. Thigsatisfies the HR condition.
O

We next state and prove the main result of this correspondence. (oN

Theorem VI” 3 (Main Theorem) The diffusion-scaled queuelengthFlg 3. Directions of reflection and drift for an example of aREBV with
processQ’ () converges in distribution to an SRBM, i. & =>Qas vy =M M, Vo= uzcz , and® = (~1,0).
r — o, whereQ is an SRBM associated with the da(ﬁ@i,e,F,R)

that starts from the origin. dimensional SRBMs, Avram et al. [23] studied a variational problem
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