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Abstract— A MIMO downlink system in which data is transmitted to
two users over a common wireless channel is considered. The channel is
assumed to be fixed for all transmissions over the period of interest and
the ratio of anticipated average arrival rates for the two users, also known
as the relative traffic rate, is the system design parameter.A packet-based
traffic model is considered where data for each user is queuedat the
transmit end. A queueing analogue for this system leads to a coupled
queueing system for which a simple policy is known to be throughput-
optimal under Markovian assumptions. Since an exact expression for the
performance is not available, as a measure of performance (in heavy
traffic), a diffusion approximation is established. This diffusion process
is a two-dimensional semimartingale reflecting Brownian motion living
in the positive quadrant of two-dimensional space.

Index Terms— Coupled queueing systems, diffusion approximation,
heavy traffic, multi-input multi-output (MIMO), semimartin gale reflect-
ing Brownian motion (SRBM).

I. I NTRODUCTION

Current cellular systems consider each base station as a separate
entity with no cooperation among base stations. Infrastructure coop-
eration, that is, cooperation among base stations has been proposed
as a means of achieving higher throughput (see, e.g., [1], [2], [3])
where the main idea is to consider the cooperating base stations as
one end of a MIMO system and then to use results from information
theory for the study of cellular systems. In this correspondence, we
consider a two-user MIMO downlink system where data is buffered
at the transmit end and the channel is assumed to be fixed for all
transmissions over the period of interest (one might view this as one
period for a quasi-static channel). The two-user MIMO downlink
system can be seen as a model of a cellular system with two users
and two cooperating base station antennas which might be two
cooperating base stations each with a single antenna or a single-cell
cellular system with a multi-antenna base station. It is well known
that in such a system, the sum of the rates at which data can be
served for the two users is greater than the single-user capacity for
any user. Thus, one can obtain improved capacity by cooperation.

This communication system has a corresponding queueing system
formulation where, even in the simple case of Poisson arrivals,
independently for each user, it is not known how to minimize the
average delay for a given load. Furthermore, closed-form expressions
for average delay are unavailable for many simple policies; usually,
this means that any meaningful comparison has to be done via
simulations. However, when the ratio of the average arrival rates
(also known as the relative traffic rate) is specified in advance, the
maximum possible throughput can be computed and a simple policy
can be shown to be throughput-optimal1 under Markovian assump-
tions [3]. An exact expression for the performance of this policy is
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1For a Markovian system, throughput-optimal means the long run average
departure rate exists and equals the long run average arrival rate whenever
the nominal load lies inside the capacity region, cf. [4, p. 26].

not available. In this correspondence, as a measure of performance,
we prove a limit theorem justifying a diffusion approximation for a
heavily loaded system operating under this policy. In particular, the
diffusion is a two-dimensional semimartingale reflecting Brownian
motion (SRBM) living in the positive two-dimensional quadrant
(Theorem VIII.3).

We are not aware of analysis of other policies that have been shown
to be throughput-optimal for a general convex (rather than a convex
polyhedral) capacity region. However, scheduling policies for certain
heavily loaded wireless systems with convex polyhedral capacity
regions have been studied in [5], [6] (also see references therein)
under restrictive assumptions. In [5], Stolyar considered a generalized
switch. He showed that under MaxWeight scheduling and certain
restrictive conditions, including a resource pooling condition, in
heavy traffic there is state space collapse (SSC), the workload process
converges to a one-dimensional Reflecting Brownian Motion (RBM),
and MaxWeight asymptotically minimizes the workload. Shakkotai et
al. [6] study a throughput-optimal scheduling rule, which they call
an exponential scheduling rule, and show that it is asymptotically
pathwise optimal in the sense that there is SSC, the workload process
is asymptotically minimized and converges to a one-dimensional
RBM. In the following, we point out some of the differences between
our assumptions and those in [5], [6]. The Maxweight policy [5] is
designed for the case when the capacity region is a convex polyhedron
while the policy we consider is designed for more general convex
capacity regions. We elaborate upon this in Section V where we
define the heavy traffic conditions. Moreover, a complete resource
pooling (CRP) condition is assumed in [5] which requires that there
is a unique outward pointing normal to the system stability region at
the point corresponding to the mean arrival rate vector for a critical
load; by comparison, we do not assume a CRP condition. The arrival
process in [5] is assumed to be an ergodic Markov process while
we assume that the arrival process is a renewal process. In [6], the
capacity region is a convex polyhedron and a CRP condition similar
to [5] is assumed; however, service is given to only one queue at a
time while here we can serve both queues at the same time.

The rest of this correspondence is organized as follows. We
explain the notation used in this correspondence and present some
mathematical preliminaries in Section II. We describe the MIMO
downlink system of interest in Section III and develop a queueing
analogue for it in Section IV. We formally define the heavy traffic
conditions in Section V. In Section VI, we define the scaling and
present standard functional limit theorems used in proving our main
results. In Section VII, we prove a fluid limit result (Lemma VII.2)
for our queueing system. This plays a role in establishing the heavy
traffic limit theorem through determining the fluid scale service
allocations. We present the main theorem of this correspondence
(Theorem VIII.3) in Section VIII which says that in the heavy traffic
limit, the renormalized queuelength process converges in distribution
to a SRBM living in a two-dimensional quadrant. There, we also
discuss the properties of the limiting process. Finally, we summarize
our conclusions in Section IX.

II. NOTATION AND PRELIMINARIES

We will use the following notation throughout the correspondence.
Let Z denote the set of all integers,Z+ the set of all non-negative
integers,R denote the set of real numbers, andR+ denote the non-
negative half-line, which is also denoted by[0,∞). For d ≥ 1, R

d

will denote d-dimensional Euclidean space and the positive orthant
in this space will be denoted byRd

+ = {x ∈ R
d : xi ≥ 0 for i =

1,2, . . . ,d}. All vectors and matrices are assumed to have real valued
entries. Vectors will be denoted by lower case bold symbols and
matrices by upper case bold symbols. Let 0= (0,0, . . . ,0) ∈ R

d
+.
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The usual Euclidean norm onRd will be denoted by‖·‖ so that

‖x‖ =
(

∑d
i=1x2

i

)1/2
for x∈ R

d. We denote the inner product onRd

by 〈·, ·〉, i.e.,〈x,y〉= ∑d
i=1xiyi , for x,y∈R

d. LetB(Rd) denote theσ-
algebra of Borel subsets ofR

d. The symbol 1A denotes the indicator
function of a setA , i.e., 1A (x) = 1 if x∈ A and 1A (x) = 0 if x /∈ A .

All stochastic processes used in this correspondence will be
assumed to have paths that are right continuous with finite left limits
(r.c.l.l.). We denote byDd the space of r.c.l.l. functions from[0,∞)
into R

d and we endow this space with the usual SkorokhodJ1-
topology (see Ethier and Kurtz [7, Chapter 3, Section 5]). We denote
by C

d the space of continuous functions from[0,∞) into R
d, also en-

dowed with the SkorokhodJ1-topology under which convergence of
elements inCd is equivalent to uniform convergence on compact time
intervals. Theσ-algebra induced onDd (or C

d) by the SkorokhodJ1-
topology will be denoted byM d. The abbreviationu.o.c.will stand
for uniformly on compactsand will be used to indicate that a sequence
of functions in D

d (or C
d) is converging uniformly on compact

time intervals to a limit inD
d (or C

d). A d-dimensional process
is a measurable function from a probability space intoD

d. Consider
Q1,Q2, . . . ,Q, each of which is ad-dimensional process (possibly
defined on different probability spaces). The sequence{Qn}∞

n=1 is
said to betight if the probability measures induced by the sequence
{Qn}∞

n=1 on (Dd,M d) form a tight sequence, i.e., they form a weakly
relatively compact sequence in the space of probability measures on
(Dd,M d). The notation “Qn ⇒ Q” will mean that “Qn converges in
distribution toQ asn→ ∞”. The sequence of processes{Qn}∞

n=1 is
calledC-tight if it is tight, and if each weak limit point (obtained as
a weak limit along a subsequence) is inC

d almost surely.

A. Skorokhod Problem

Skorokhod problems are used in the study of approximations to
certain queueing networks. LetD

d
+ (resp.Cd

+) denote those functions
x∈ D

d (x∈ C
d) satisfyingx(0) ≥ 0.

Definition II.1 (Skorokhod Problem (SP)). Fix x∈ D
d
+ and ad×d

matrix R. We say that(z,y) solves the Skorokhod problem forx with
respect toR, if z,y∈ D

d
+ with

1) z(t) = x(t)+Ry(t) for all t ∈ R+,
2) z(t) ∈ R

d
+ for all t ∈ R+,

3) for i = 1,2, . . . ,d,
a) yi(0) = 0,
b) yi is non-decreasing,
c)

R

(0,∞) zi(s)dyi(s) = 0.
The pathx is called the driving path.

Harrison and Reiman [8] specified some conditions on the matrix
R under which there is a unique solution of the Skorokhod problem
for eachx∈C

d
+. In fact these conditions also yield a unique solution

for eachx∈ D
d
+.

Definition II.2 (Harrison-Reiman (HR) Condition). A d×d matrix R
satisfies the HR condition ifR= I −Q, whereI is thed×d identity
matrix, Q has zeros along the diagonal, all of the entries ofQ are
nonnegative andQ has spectral radius strictly less than one.

When R = I − Q where Q has zeros on the diagonal and the
entries ofQ are nonnegative, the HR condition is equivalent to the
requirement thatR is a non-singular M-matrix. Such matrices are
discussed for example in Berman and Plemmons [10, Chapter 6].

Proposition II.1. Let d be a positive integer and R be a d× d
matrix satisfying the HR condition. Then for each x∈ D

d
+, there are

y,z∈ D
d
+ such that(z,y) is the solution of the Skorokhod problem

for x with respect to R. Furthermore, the mappingΦ : D
d
+ → D

2d
+

given byΦ(x) = (z,y) is continuous where(z,y) is the solution of
the Skorokhod problem for x.

Proof. The proof is given forx∈C
d
+ in [8] and alluded to forx∈D

d
+.

A complete proof can be found in [9] for example.

Fix a positive integerd, θ ∈ R
d, Γ a d× d symmetric strictly

positive definite matrix and ad × d matrix R satisfying the HR
condition. We can use the solvability of the Skorokhod problem
to construct a Semimartingale Reflecting Brownian Motion (SRBM)
associated with the data(Rd

+,θ,Γ,R) as follows.
Given a Brownian motionX starting from the origin with drift

vector θ and covariance matrixΓ, consider the pair of processes
(Q,Y) that solve the Skorokhod problem forX with respect toR.
Then,Q is an SRBM associated with the data(Rd

+,θ,Γ,R) starting
from the origin. HereQ = X + RY where {X(t)− θt, t ≥ 0} is a
continuous martingale (with respect to the filtration generated byX)
and {RY(t) + θt, t ≥ 0} is a continuous locally bounded variation
process adapted to the filtration generated byX. Hence, Q is a
semimartingale.

III. SYSTEM MODEL

In this section we specify the communication system under consid-
eration. We consider a cellular wireless network where base stations
cooperate over noise-free infinite capacity links. We do not make any
distinction between a single-cell cellular system having multiple base-
station antennas and the traditional cellular system with cooperating
single-antenna base stations. Here, by cooperation we mean that the
base stations can perform joint beamforming and/or power control
but there is a constraint on the total power that the base stations can
share. We do not make any assumptions about the number of receive
antennas per user.

In this correspondence, we restrict our attention to the case where
there are just two mobile stations (also called users) in the footprint
of the cooperating base stations. Then the downlink channel can
be modeled as a two-user MIMO Broadcast Channel (BC). We
assume that the channel is fixed for all transmissions over the period
of interest (some authors refer to this as a quasi-static channel).
Moreover, we assume that the transmit end (the cooperating base
stations) has perfect channel state information (CSI).

Weingarten et al. [11] have shown that for such a system, Dirty
Paper Coding (DPC), introduced by Costa [12], achieves the capacity.
Furthermore, the capacity region can be computed by using the
duality of the MIMO Multiple Access Channel (MAC) and the MIMO
BC [13]. Figure 1 illustrates the capacity region for an example of
a two-user MIMO BC with two transmit and two receive antennas.
Here the BC capacity region is obtained by taking the convex hull of
the union over the set of capacity regions of the dual MIMO MACs
such that the total MAC power is the same as the power in the BC.

Let c∗1 (c∗2) be the maximum rate at which data can be transmitted
(in bits per sec (bps)) to user 1 (2) when the rate of transmission
to user 2 (1) is set at zero. If(c1,c2) > 0 is a point in the capacity
region then the rate at which data can be transmitted to user 1 (2),
c1 (c2), is strictly less thanc∗1 (c∗2). This corresponds to the fact that
when the wireless resources are dedicated to a single user, the rate
at which that user can be served is higher than the rate for that user
when the resources are shared by the users but this higher rate comes
at a cost to the sum of the rates. Indeed, when both users are being
serviced, the sum of the rates is strictly greater than that for service
dedicated to a single user, that is,c1 +c2 > c∗1,c

∗
2.

For a two-user system the capacity region is a two-dimensional
closed convex set inR2

+ where the convexity follows because of the
convex hull operation. The capacity region contains the origin and
it has three boundary pieces of which two are along the coordinate
axes while the third boundary piece is in the interior ofR

2
+. We call
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Fig. 1. An example of a capacity region of a 2-user MIMO BC for a fixed
channel whereR1 andR2 are the rates of user 1 and 2, respectively.

this third boundary thecapacity surface. The following lemma states
a key property of the capacity surface of the two-user MIMO BC.

Lemma III.1. For any point(x,y) on the capacity surface of a two-
user MIMO BC, the following holds,

x
c∗1

+
y
c∗2

> 1. (1)

Proof. See Appendix I.

At the transmit end, packets arrive for each user and are buffered
before transmission. The ratio of anticipated average bit arrival rates,
called relative traffic rate and denoted byk2, is specified in advance,
that is, it is expected that, on average, user 2 will havek2 times as
much data as user 1. The actual traffic rate will deviate from the
average due to stochastic fluctuations. Naturally, when there is no
data for one of the users to transmit (the corresponding queue for
that user is empty), the data for the other user should be transmitted
at the maximum possible rate. That is, the data should be transmitted
to user 1 (2) at the rate ofc∗1 (c∗2) when only the first (second) user
has data to transmit. It has been shown [3] that, under Markovian
assumptions on the system, the policy that transmits at the rate(c1,c2)
at all other times, where(c1,c2) is the point on the capacity surface
such thatc2/c1 = k2, is throughput-optimal. Figure 1 illustrates a few
such operation points for sample values ofk2 = 3,1,0.5.

IV. QUEUEING ANALOGUE

In this section we develop a queueing analogue for the system
described in Section III. To this end, we describe the physical
structure, the packet arrivals and sizes. Then we formalize the
service discipline and specify the dynamic equations satisfied by the
queuelength process.

A. Physical Structure

A queueing system describing our setup has two queues in parallel
where each queue buffers packets intended for a given user. We
assume that each of the queues has infinite buffer capacity. The
queues are served by a single server corresponding to the cooperating
base station.

B. Stochastic Primitives

We assume that the system starts empty and that there is a two-
dimensional packet arrival processE = {(E1(t),E2(t)), t ≥ 0} where
Ei(t) is the number of packets that have arrived to thei-th queue in

(0, t]. (Here E is used to indicate that the arrivals are exogenous.)
For i = 1,2, Ei(·) is assumed to be a (non-delayed) renewal process
defined from a sequence of strictly positive i.i.d. random variables
{ui(k), k = 1,2, . . .}, where fork = 1,2, . . . ,ui(k) denotes the time
between the arrival of the(k− 1)st and thek-th packet to thei-
th queue. Eachui(k), k = 1,2, . . . is assumed to have finite mean
1/λi ∈ (0,∞) and finite squared coefficient of variation (variance
divided by the mean squared)α2

i ∈ [0,∞). The packet lengths (in
bits) for the successive arrivals to queuei are given by a sequence of
strictly positive i.i.d. random variables{vi(k),k = 1,2, . . .} with av-
erage packet length 1/µi ∈ (0,∞) and squared coefficient of variation
β2

i ∈ [0,∞), i = 1,2. We assume that all interarrival and service time
processes are mutually independent. Note that the average bit arrival
rate for useri is bi = λi/µi , i = 1,2 and we have letk2 = b2/b1. For
i = 1,2, we associate a renewal counting processSi(·) with {vi(k)}∞

k=1
such thatSi(t) = sup{n ≥ 0 : ∑n

k=1vi(k) ≤ t} for t ≥ 0. We refer to
the processesE(·) and S(·) as stochastic primitivesfor the system
model.

C. Service Discipline

When service is given to a queue, it goes to the packet at the head
of the line, where it is assumed that packets are queued in the order
of their arrival to the queue. The service rate is a simple function of
the number of packets in each of the queues. A pair(σ1,σ2) indicates
the rates (in bps) of serving the two queues, i.e.,σ1 is the rate for
queue 1 andσ2 is the rate for queue 2. Here, given the queuelength
q = (q1,q2), the rates are given by(σ1,σ2) = Λ(q) for the function2

Λ : R
2
+ → R

2
+ defined by

Λ(q) ,



















(c1,c2) if q1 > 0,q2 > 0,

(c∗1,0) if q1 > 0,q2 = 0,

(0,c∗2) if q1 = 0,q2 > 0,

(0,0) if q1 = 0,q2 = 0.

(2)

Here c1 and c2 are chosen such that(c1,c2) lies on the capacity
surface andc2/c1 = k2. Also, c1, c2, c∗1 andc∗2 satisfy the following
conditions: 0< c1 < c∗1, 0< c2 < c∗2, andc∗1,c

∗
2 < c1 +c2.

Our model is a single server, two-class queueing system where
the two classes correspond to the two users. The following scaling
property of Λ(·) is a mathematical statement of the property of
the scheduling policy that the amount of service given to the
queues in any state does not change when all queuelengths are
increased/decreased proportionally.

Lemma IV.1. For any q∈ R
2
+ and x> 0, Λ(xq) = Λ(q).

Proof. The proof follows easily from the definition ofΛ(·).

D. Queuelength Process

For i = 1,2, the length of thei-th queue at timet is

Qi(t) = Ei(t)−Di(t), (3)

whereDi(t) is the number of packet departures from thei-th queue
in (0, t]. Here,Di(t) is given by

Di(t) = Si(Ti(t)), (4)

2We only needΛ(·) defined onZ
2
+ for the moment, but we extend the

domain ofΛ(·) to R
2
+ so that later when we rescale the queuelength process

Λ(·) is well-defined for the rescaled process.
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whereTi(t), the cumulative amount of service given to queuei up to
time t, is given by

Ti(t) =
Z t

0
Λi(Q(s))ds

= ci

Z t

0
1{Q j (s)>0 ∀ j} ds+c∗i

Z t

0
1{Qi(s)>0; Q j=0 ∀ j 6=i} ds.

(5)

V. HEAVY TRAFFIC ASSUMPTIONS

A. Assumptions

We consider the operation of our queueing system in the asymptotic
regime where it is heavily loaded. (Kelly and Laws [14] have argued
that in this regime “important features of good control policies are
displayed in sharpest relief”.) For this purpose one may regard a given
system as a member of a sequence of systems approaching the heavy
traffic limit. To obtain a reasonable approximation, the queuelength
process is rescaled using diffusion scaling. This corresponds to
viewing the system over long intervals of time of orderr2 (wherer
will tend to infinity in the asymptotic limit) and regarding a single
packet as only having a small contribution to the overall congestion
level, where this is quantified to be of order 1/r. Formally, we
consider a sequence of systems indexed byr, wherer tends to infinity
through a sequence of values in(0,∞). These systems all have the
same basic structure as that described in the last section; however, the
arrival rates may vary withr and for determiningc we assume that
an estimate of the ratiok2 ∈ (0,∞) of the bit arrival rates is known
and is used to determine the capacityc for the whole sequence. We
assume that the interarrival times in the system indexed byr are given
for eachi = 1,2, k = 1,2, . . . , by

ur
i (k) =

1
λr

i
ǔi(k) (6)

where the ˇui(k) do not depend onr, have mean one and squared
coefficient of variationα2

i . The packet lengths{vi(k)}∞
k=1, i = 1,2,

do not change withr. [The above structure is convenient for allowing
the sequence of systems to approach heavy traffic by simply changing
arrival rates and keeping the underlying sources of variability ˇui(k)
and vi(k) fixed as r varies. This type of set-up has been used
previously by others in treating heavy-traffic limits (see, e.g., Bell
and Williams [15]). For a first pass, the reader may like to simply
chooseλr

i = λi for all r.] All processes and parameters that depend
on r will from now have a superscript ofr. Defineλi , µici , i = 1,2.

AssumptionV.1 (Heavy Traffic Assumption). For i = 1,2, there is
θi ∈ R such that

r(λr
i −λi) → θi as r → ∞. (7)

Remark. This assumption does not restrict the direction in which
the heavy traffic limit is approached, unlike that in Gans and Van
Ryzin [16]. Hereθi could be positive, negative or zero for eachi.
Thus, each queue may have an arrival rate that is greater than, equal
to or less than the rate yielding exact balance.

Here we may regardλ as the nominal average packet arrival rate
used to set the service rates,(c1,c2) = (b1,b2), for the throughput-
optimal policy. Ther-th system has a perturbed average packet arrival
rate λr for which the average bit arrival ratebr : br

i = λr
i /µi , i = 1,2,

is close to(c1,c2).

B. Connection to Complete Resource Pooling (CRP)

To make a connection with the work of Stolyar [5] (and others),
consider the two user queueing system where the server is able to
time-share amongst finitely many operation points chosen from the
closure of the capacity surface and the origin. (To allow for viable
operation when one or both queues are empty, we assume that the

c
∗

1

c
∗

2
c

1

c
3

c
2

c

Fig. 2. The solid curve indicates the capacity surface whilethe surface of
the system stability region is shown by the dashed line.

points (0,0), (c∗1,0), and (0,c∗2) are included amongst the finitely
many operation points.) A representative capacity surface for a two-
user MIMO BC is shown in Fig. 2. For this system, the system
stability region is the closed convex hull of the set of operation points.
For example, if the operation points are(c∗1,0), (0,c∗2), c1 = (c1

1,c
1
2),

c2 = (c2
1,c

2
2), c3 = (c3

1,c
3
2), and (0,0) as indicated in Fig. 2, then

the upper surface of the system stability region,C̃ , is shown by the
dashed curve.

Recall that the ray from the origin of slopek2 intersects the
boundary ofC , the capacity region, at the pointc= (c1,c2). Suppose
that C is strictly convex atc, i.e., the capacity surface is not flat at
c. The following lemma shows that then the pointc must be one of
the operation points, otherwise the system will be unstable in heavy
traffic. Furthermore, whenc is amongst the operation points, the CRP
condition does does not hold.

Lemma V.2. Suppose that the point c= (c1,c2), where the ray from
the origin of slope k2 intersects the capacity surface, is an extreme
point ofC . Then c must be one of the operation points of any policy
that is stable whenever the arrival rate is(1−1/r)λ for all r ∈ (1,∞).
Furthermore, there is then more than one normal toC̃ at c, and the
complete resource pooling condition does not hold.

Proof. Consider a policy that time shares amongst finitely many
operation points not includingc. The average bit arrival rate vectorbr

associated with the average arrival rate of(1−1/r)λ for r ∈ (1,∞),
approaches the pointc along the ray from the origin of slopek2.
Since c is an extreme point ofC and c is not an operation point,
c is outsideC̃ . Thus, there is an ˆr such that forr > r̂, br is in the
capacity regionC but not in C̃ (as illustrated in Fig. 2). Thus, the
time sharing policy is not stable for allbr such thatr > r̂.

Now, if c is one of the finitely many operation points of a time-
sharing policy, sincec cannot be written as a convex combination
of the other operating points, there is not a unique normal to the
boundary ofC̃ at c. This is illustrated in Fig. 2 wherec1 is one of
the extreme points but there is no unique normal toC̃ at c1.

The analysis performed in [5] depends critically on the (CRP)
assumption that there is a unique normal toC̃ at the point where
the ray in the direction of the average arrival rate vector intersects
C̃ . Except in the special situation wherec is a convex combination
of two other operation points, this assumption will not be satisfied
at c and hence the analysis based on the assumption that the CRP
condition holds does not apply.

VI. SCALING AND STANDARD L IMIT THEOREMS

A. Scaling

We first consider a fluid scaled version of the system where fluid
scaling corresponds to viewing the system over long intervals of time



5

of order r2 and simultaneously reducing the contribution of a single
packet to the congestion level by a factor of 1/r2. The behavior of
solutions of a limiting fluid model will play an important role in
establishing a limit for the diffusion scaled system where diffusion
scaling corresponds to looking over time intervals of orderr2 but
only diminishing packet contributions to the congestion measures by
a factor of 1/r. We define the following fluid and diffusion scaled
processes.

1) Fluid Scaling: Fluid (or functional law of large numbers)
scaling is indicated by placing a bar over a process. Fori = 1,2,
t ≥ 0 andr > 0 define

T̄r
i (t) , r−2Tr

i (r2t), Q̄r
i (t) , r−2Qr

i (r
2t), (8)

Ēr
i (t) , r−2Er

i (r
2t), S̄r

i (t) , r−2Sr
i (r

2t). (9)

There are in fact two kinds of fluid scaling. In addition to that
indicated above, one could simply accelerate time byr and scale the
process by1

r (in place ofr2 and 1
r2 , respectively). Here we shall only

need the first form of fluid scaling described above.
2) Diffusion Scaling:Diffusion (or functional central limit theo-

rem) scaling is indicated by placing a hat over a process. Fori = 1,2
and r > 0, define

Q̂r
i (t) ,

Qr
i (r

2t)

r
, t ≥ 0, (10)

as the diffusion scaled version ofQr
i (·). To apply diffusion scaling to

the primitive stochastic processesEr , S, we must center them before
scaling. Accordingly, fori = 1,2, t ≥ 0 andr > 0, we define

Êr
i (t) ,

Er
i (r

2t)−λr
i r

2t

r
(11)

and

Ŝr
i (t) ,

Si(r2t)−µir2t
r

. (12)

B. Functional Limit Theorems for Stochastic Primitives

We will use the following functional central limit theorem (FCLT)
for the stochastic primitives in the sequel.

Proposition VI.1 (FCLT). The diffusion scaled processes
(Ê

r
(·), Ŝ

r
(·)) jointly converge in distribution to (BE(·),BS(·))

as r→ ∞, i.e.,

(Ê
r
(·), Ŝ

r
(·)) ⇒ (BE(·),BS(·)) as r→ ∞, (13)

where BE(·) and BS(·) are independent two-dimensional driftless
Brownian motions starting from the origin with diagonal covariance
matricesΓE , diag(λ1α2

1,λ2α2
2) and ΓS , diag(µ1β2

1,µ2β2
2), respec-

tively.

Remark.As there is a single source of variability (not depending onr)
for each ofEr

i , Si , i = 1,2, only the finiteness of the second moments
of ǔi(k) and vi(k) is required for the FCLT. Furthermore, since a
Brownian motion is a continuous process, the weak-convergence
of (Ê

r
(·), Ŝ

r
(·)) to a Brownian motion implies C-tightness of the

sequence{(Ê
r
(·), Ŝ

r
(·))}.

Proof. By results of Iglehart and Whitt [17], functional central limit
theorems for the renewal counting processesÊ

r
(·) and Ŝ

r
(·) can be

inferred from those for the partial sums of{ur
i (k)}

∞
k=1 and{vi(k)}∞

k=1,
respectively. Functional central limit theorems for the latter follow
from Theorem 3.1 of Prokhorov [18].

As a corollary, we have the following functional law of large
numbers (FLLN) for the stochastic primitives. From now for each
t ≥ 0, let λ(t) = λt andµ(t) = µt.

Corollary VI.2 (FLLN). The fluid-scaled processes(Ēr(·), S̄r
(·))

jointly converge in distribution to(λ(·),µ(·)) as r→ ∞, i.e.,
(

Ēr(·), S̄r
(·)

)

⇒ (λ(·),µ(·)) as r→ ∞. (14)

Remark. The weak-convergence of(Ēr(·), S̄r(·)) to a continuous
process implies C-tightness of the sequence{(Ēr(·), S̄r(·))}.

Proof. Proposition VI.1 implies that
(

1
r

Ê
r
(·),

1
r

Ŝ
r
(·)

)

⇒ (0,0) as r → ∞. (15)

The desired result follows from this and the fact thatλr
i → λi as

r → ∞ by (7) for i = 1,2.

VII. FLUID MODEL

Applying fluid scaling to the dynamic equation (3) satisfied by the
queuelength process for the system indexed byr, we obtain forr > 0,
i = 1,2, t ≥ 0,

Q̄r
i (t) = Ēr

i (t)− S̄r
i (T̄

r
i (t)). (16)

We next consider the behavior of̄Tr(·), the fluid-scaled version of
Tr (·):

T̄r(t) =
1
r2

Z r2t

0
Λ(Qr (s))ds, t ≥ 0. (17)

By the change of variables ˜s= s
r2 , for t ≥ 0, (17) becomes

T̄r (t) =
Z t

0
Λ

(

r2Qr(r2s̃)

r2

)

ds̃=
Z t

0
Λ

(

Q̄r
(s̃)

)

ds̃. (18)

where the second equality follows from the definition ofQ̄r
(·) and

the scaling property ofΛ(·) (see Lemma IV.1). The following lemma
follows from (18) and the fact thatΛi(·) is bounded byc∗i which is
less thanc1 +c2, for i = 1,2.

Lemma VII.1. For each r> 0, almost surelyT̄r (·) is uniformly
Lipschitz continuous with Lipschitz constant less than c1 +c2.

Remark. This lemma is used to prove the C-tightness of the fluid-
scaled stochastic processes.

For a continuous functionx : [0,∞) → R, we say thatt ∈ (0,∞)
is a regular point for x if x is differentiable att. If x is absolutely
continuous, almost everyt ∈ (0,∞) is a regular point andx can be
recovered from its almost everywhere (a.e.) defined derivative ˙x:

x(t) = x(0)+
Z t

0
ẋ(s)ds, t ≥ 0. (19)

A (uniformly) Lipschitz continuous functionx : [0,∞) → R is abso-
lutely continuous.

Lemma VII.2. The sequence of processes
{

(Ēr(·), S̄r
(·),

T̄r (·),Q̄r
(·))

}

converges in distribution to
(

Ē(·), S̄(·), T̄(·),Q̄(·)
)

as
r → ∞ where

Ē(·) = λ(·), S̄(·) = µ(·), Q̄(·) = 0, T̄(·) = c(·), (20)

and c(t) , (c1t,c2t), t ≥ 0.

Proof. From the uniform Lipschitz continuity of{T̄r (·)} estab-
lished in Lemma VII.1, it follows that{T̄r (·)} is C-tight. Since,
{Ēr (·)} and {S̄r

(·)} are also C-tight (see the remarks follow-
ing Corollary VI.2), using (16) together with the random time
change theorem of Billingsley [19, p. 151], we conclude that the
sequence

{

(Ēr(·), S̄r
(·), T̄r(·),Q̄r

(·))
}

is C-tight as well. Suppose
(

Ē(·), S̄(·), T̄(·),Q̄(·)
)

is a weak limit point of this sequence. By in-
voking the Skorokhod representation theorem (see, e.g., [7, Theorem
3.1.8, p. 102]), we may assume without loss of generality that for
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a subsequence{rk} of {r},
{(

Ērk(·), S̄rk(·), T̄rk(·),Q̄rk(·)
)}∞

k=1 and
T̄(·) are defined on a common probability space such that

Q̄rk
i (t) = Ērk

i (t)− S̄rk
i (T̄rk

i (t)) for t ≥ 0, i = 1,2 (21)

and almost surely ask→ ∞,
(

Ērk(·), S̄rk(·), T̄rk(·),Q̄rk(·)
)

→
(

λ(·),µ(·), T̄(·),Q̄(·)
)

u.o.c. (22)

where almost surelyQ̄i(t) = λit −µi T̄i(t), t ≥ 0, i = 1,2. The limit
T̄(·) inherits the Lipschitz property of

{

T̄r (·)
}

almost surely. Fixω
such thatT̄(·,ω) is uniformly Lipschitz continuous. In the following,
we suppress explicit indication of the dependence onω, but ω is
fixed throughout. Lett > 0 be a regular point for̄Ti , i = 1,2, thenQ̄
is differentiable att and

dQ̄i(t)
dt

= λi −µi
dT̄i(t)

dt
, i = 1,2. (23)

We consider the following cases for̄Qi(t):
Case I: Q̄i(t) = 0 for i = 1,2. Fix i. SinceQ̄i(·) ≥ 0, Q̄i(t) = 0 and
t > 0 is a regular point for̄T andQ̄, it follows from a simple analysis
argument thatdQ̄i(t)/dt = 0. Then,

0 = λi −µi
dT̄i(t)

dt
, (24)

which implies that
dT̄i(t)

dt
=

λi

µi
= ci . (25)

Case II: Q̄i(t)> 0 for i = 1,2. Let 0≤u< v< ∞ be such thatt ∈ (u,v)
and for i = 1,2, Q̄i(s) > 0 for all s∈ [u,v]. Then, by the uniform
convergence of̄Qr

(·) to Q̄(·) on [u,v], we have for all sufficiently
large r, for i = 1,2, Q̄r

i (s) > 0 for all s∈ [u,v]. So for all s> t in
[u,v] we have

T̄i(s)− T̄i(t) = lim
r→∞

[T̄r
i (s)− T̄r

i (t)] = lim
r→∞

[

Z s

t
Λi

(

Q̄r
i (z)

)

dz

]

= lim
r→∞

[

Z s

t
ci dz

]

= ci(s− t),
(26)

where we have used the fact thatΛi(q) = ci , i = 1,2 when q >
0. Dividing by (s− t) and taking the limit ass → t, we obtain
dT̄i(t)/dt = ci for i = 1,2. Note that this implies thatdQ̄i(t)/dt = 0
for i = 1,2, by (23) and sinceλi = µici .
Case III: There is i ∈ {1,2} such that Q̄i(t) > 0 and Q̄ j (t) = 0 for
j 6= i. Since for j 6= i, Q̄ j (·)≥ 0, Q̄ j (t) = 0 andt > 0 is a regular point,
it follows that dQ̄ j (t)/dt = 0 which implies thatdT̄j (t)/dt = c j . Let
0≤ u < v < ∞ be such thatt ∈ (u,v) and Q̄i(s) > 0 for all s∈ [u,v].
Then, for all sufficiently larger, Q̄r

i (s) > 0 for all s∈ [u,v], which
implies by the definition ofΛi(Q̄r(·)) that

ci(s− t) ≤ T̄r
i (s)− T̄r

i (t) ≤ c∗i (s− t) for all s> t in [u,v]. (27)

Letting r → ∞ yields

ci(s− t) ≤ T̄i(s)− T̄i(t) ≤ c∗i (s− t), for all s> t in [u,v]. (28)

Dividing by (s− t) and letting s → t, we conclude thatci ≤
dT̄i(t)/dt ≤ c∗i . Thus from (23), sinceλi = µici ,

dQ̄i(t)/dt ≤ 0. (29)

Combining cases (I)–(III) we see that at each regular pointt > 0
for T̄(·),

d
dt

(

Q̄2
1(t)+ Q̄2

2(t)
)

= 2

[

Q̄1(t)
dQ̄1(t)

dt
+ Q̄2(t)

dQ̄2(t)
dt

]

≤ 0. (30)

Since Q̄2
1(0) + Q̄2

2(0) = 0 and Q̄2
1(·) + Q̄2

2(·) ≥ 0, it follows that
Q̄2

1(t) + Q̄2
2(t) = 0 for all t ≥ 0. Hence,Q̄1(t) = Q̄2(t) = 0 for all

t ≥ 0 and case (I) implies that̄̇Ti(t) = ci at each regular pointt > 0

for i = 1,2. Such regular pointst occur almost everywhere and̄Ti

can be recovered from its a.e. defined derivative to giveT̄i(t) = cit
for all t ≥ 0, i = 1,2.

Finally, since
(

Ē(·), S̄(·), T̄(·),Q̄(·)
)

was an arbitrary weak
limit point and is unique (as shown above), it follows that
{(

Ēr
i (t), S̄

r
i (t), T̄

r
i (t),Q̄

r
i (t)

)}

converges in distribution to
(Ē(·), S̄(·), T̄(·),Q̄(·)) as described by (20).

VIII. D IFFUSION APPROXIMATION

A. Pre-limit process

From (3), (4), (8), (11) and (12), the diffusion scaled queuelength
process can be written fori = 1,2, t ≥ 0, as

Q̂r
i (t) = (Êr

i (t)+λr
i rt )− (Ŝr

i (T̄
r
i (t))+µirT̄

r
i (t))

= Êr
i (t)− Ŝr

i (T̄
r
i (t))+ r(λr

i t −µi T̄
r
i (t)).

(31)

Expanding the last term in (31), we have

r(λr
i t −µi T̄

r
i (t)) =

r2λr
i t −µir2T̄r

i (t)

r

=

(

λr
i −λi

)

r2t +λi
R r2t

0 ds−µi
R r2t

0 Λi(Qr(s))ds

r
.

(32)

Considering four different types of states for the queuelength vector
Qr and substituting the corresponding values forΛi(Qr (·)) from (2),
we can rewrite (32) as

r(λr
i t −µi T̄

r
i (t)) = (λr

i −λi) rt +
1
r

[

(λi −µici)
Z r2t

0
1{Qr (s)>0}ds

+ (λi −µic
∗
i )

Z r2t

0
1{Qr

i (s)>0;Qr
j (s)=0, j 6=i}ds

+λi

Z r2t

0
1{Qr

i (s)=0;Qr
j (s)>0, j 6=i}ds+ λi

Z r2t

0
1{Qr

j (s)=0 ∀ j}ds

]

.

(33)

Define for t ≥ 0,

Û r
i (t) ,

1
r

Z r2t

0
1{Qr

i (s)=0;Qr
j (s)>0, j 6=i}ds

= r
Z t

0
1{Q̂r

i (s)=0;Q̂r
j (s)>0, j 6=i}ds, i = 1,2,

(34)

Ẑr(t) ,
1
r

Z r2t

0
1{Qr

j (s)=0 ∀ j}ds= r
Z t

0
1{Q̂r

j (s)=0 ∀ j}ds. (35)

Then, using the fact thatλi = µici and combining (31)–(35), we
obtain for i = 1,2, t ≥ 0,

Q̂r
i (t) = X̂r

i (t)+λiÛ
r
i (t)+(λi −µic

∗
i )Û

r
j (t)+λi Ẑ

r(t), (36)

where j = i +1 (mod 2) and

X̂r
i (t) = Êr

i (t)− Ŝr
i (T̄

r
i (t))+(λr

i −λi)rt . (37)

This can be expressed in vector form fort ≥ 0 as

Q̂
r
(t) = X̂

r
(t)+

[

λ1 λ1−µ1c∗1
λ2−µ2c∗2 λ2

]

Û
r
(t)+

[

λ1
λ2

]

Ẑr(t). (38)

Define thereflection matrix Ras

R,

[

1 λ1−µ1c∗1
λ2

λ2−µ2c∗2
λ1

1

]

(39)

and for i ∈ {1,2}, j 6= i and t ≥ 0, define

Ŷr
i (t) , λi

(

Û r
i (t)+

c∗i c j

c∗1c2 +c1c∗2−c∗1c∗2
Ẑr(t).

)

(40)
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Then, (38) can be written as

Q̂
r
(t) = X̂

r
(t)+RŶ

r
(t), t ≥ 0. (41)

Note thatc∗1c2+c1c∗2−c∗1c∗2 > 0 (from Lemma III.1) and̂Yr
i , i = 1,2,

can increase only when the correspondingQ̂r
i = 0.

We next state and prove the C-tightness of the sequence of
processes{X̂

r
(·)} which will be used in proving the C-tightness of

the sequence of diffusion-scaled queuelength processes{Q̂
r
(·)}.

Lemma VIII.1. The sequence{X̂
r
(·)} converges in distribution to a

Brownian motion with diagonal covariance matrixΓ , diag(λ1(α2
1+

β2
1),λ2(α2

2 + β2
2)) and drift vectorθ , (θ1,θ2), that starts from the

origin.

Proof. Let θ̂r
(t) = r(λr −λ)t, t ≥ 0. By combining Proposition VI.1,

Lemma VII.2 and Assumption V.1, we have that the sequence of
processes

{(

Ê
r
(·), Ŝ

r
(·), T̄r (·), θ̂r

(·)
)}

converges in distribution to

(BE(·),BS(·),c(·),θ(·)) whereBE(·) andBS(·) are independent two-
dimensional driftless Brownian motions starting from the origin with
covariance matricesΓE and ΓS respectively,c(t) = ct, θ(t) = θt for
all t ≥ 0.

Then from (37), using the random time change lemma,{X̂
r
(·)}

converges in distribution to a two-dimensional Brownian motion with
diagonal covariance matrix diag(λ1α2

1 + µ1c1β2
1,λ2α2

2 + µ2c2β2
2) =

diag(λ1(α2
1 + β2

1),λ2(α2
2 + β2

2)) (since λi = µici for i = 1,2), drift
vector (θ1,θ2) and starting point(0,0).

B. Limit Theorem

In this subsection, we discuss the properties of the reflection matrix
R and use these properties to state and prove the limit theorem, which
is the main result of this correspondence.

Define

Q , I −R=

[

0 µ1c∗1−λ1

λ2
µ2c∗2−λ2

λ1
0

]

(42)

whereI is the 2×2 identity matrix. Fori = 1,2, µic∗i −λi > 0, since
µici = λi and ci < c∗i . Thus all of the entries ofQ are nonnegative.
We next show that the matrixR satisfies the HR condition described
in Section II-A.

Lemma VIII.2. The reflection matrix R satisfies the HR condition.

Proof. SinceQ has zeros on the diagonal and all of its entries are
nonnegative, it suffices to show thatQ has spectral radius strictly less
than 1. The eigenvalues ofQ are the solutions of the equation

x2−
(µ1c∗1−λ1)(µ2c∗2−λ2)

λ1λ2
= 0. (43)

Using λi = ciµi , i = 1,2, and the fact thatc∗1 > c1, c∗2 > c2, we have

x = ±

√

(

c∗1
c1

−1

)(

c∗2
c2

−1

)

. (44)

Thus the spectral radius ofQ is strictly less than 1 iff(c∗1−c1)(c∗2−
c2) < c1c2. By assumption,c1 +c2 > c∗1,c

∗
2. Thus 0< (c∗1−c1) < c2

and 0< (c∗2−c2) < c1. So (c∗1−c1)(c∗2−c2) < c1c2 and the spectral
radius ofQ is strictly less than one. ThusRsatisfies the HR condition.

We next state and prove the main result of this correspondence.

Theorem VIII.3 (Main Theorem). The diffusion-scaled queuelength
processQ̂

r
(·) converges in distribution to an SRBM, i.e.,Q̂

r
⇒ Q̂ as

r → ∞, whereQ̂ is an SRBM associated with the data(R2
+,θ,Γ,R)

that starts from the origin.

Proof. Recall the results on the Skorokhod problem stated in Sec-
tion II-A. For each r > 0, X̂

r
(·) has paths inD

2
+ and Q̂

r
, X̂

r
,Ŷ

r

satisfy (41). By definition,Q̂
r
(·) has paths inR

2
+. Furthermore,

a.s., Ŷ
r
(0) = 0, Ŷ

r
(·) is nonnegative, non-decreasing, continu-

ous and for i = 1,2, Ŷr
i (·) increases only whenQ̂r

i (·) = 0, i.e.,
R

(0,∞) Q̂
r
i (s)dŶ

r
i (s) = 0. Thus, a.s.,(Q̂

r
(·),Ŷ

r
(·)) is a solution of

the Skorokhod problem forX̂
r
(·) with respect to R. Since R

satisfies the HR condition, by Proposition II.1,(Q̂
r
(·),Ŷ

r
(·)) =

Φ(X̂
r
(·)) a.s. where the mappingΦ : D

2
+ → D

4
+ is continuous. By

Lemma VIII.1, the sequence{X̂
r
(·)} converges in distribution as

r → ∞ to a Brownian motion with driftθ and covariance matrix
Γ that starts from the origin. Then by the continuous mapping
theorem,

{(

Q̂
r
(·), X̂

r
(·),Ŷ

r
(·)

)}

converges in distribution asr → ∞
to

(

Q̂(·), X̂(·),Ŷ(·)
)

where (Q̂(·),Ŷ(·)) = Φ(X̂) is a.s. the unique
solution of the Skorokhod problem for̂X(·) with respect toR. HereQ̂
is a representation of the SRBM associated with the data(R2

+,θ,Γ,R)
that starts from the origin.

C. Properties of the Limit Process

The SRBM structure of̂Q enables us to use results from the theory
of SRBMs to state some properties of the limit of the diffusion-scaled
queuelength processes.

1) Time Spent at the Origin:An important quantity for a queueing
system is the time that the system is idle. It can be shown that almost
surely Q̂ spends zero Lebesgue time at the origin. Stated formally,

Proposition VIII.4. Almost surely, the Lebesgue measure of the time
spent byQ̂ at (0,0) is zero.

Proof. Varadhan and Williams [20] have shown that whenθ = 0 and
the covariance matrix is the identity matrix, the associated SRBM
spends zero Lebesgue time at the origin almost surely. By a scaling
of the coordinates, we may conclude that the SRBM with driftθ = 0
and a diagonal covariance matrix, spends zero Lebesgue time at the
origin almost surely. Note that with the scaling, we end up applying a
similarity transformation to theR matrix which does not alter the fact
that the HR condition is satisfied. Then, by a Girsanov transformation
(see [21, §9.4]) to change the drift of the driving Brownian motion,
it follows that the Lebesgue measure of the time spent byQ̂ at the
origin is zero almost surely.

2) Stationary Distribution: Harrison and Williams [22] have
shown that there is a stationary distribution for the SRBM if and
only if R−1θ < 0 where the inequality is understood to hold com-
ponent by component. As an illustration, a situation in which this
condition is satisfied is depicted in Figure 3 withθ = (−1,0) and

R =

[

1 −γ1
−γ2 1

]

where γ1 =
µ1c∗1−λ1

λ2
and γ2 =

µ2c∗2−λ2

λ1
. For two-

γ1

1

Q̂1

γ2

Q̂2

θ
1

Fig. 3. Directions of reflection and drift for an example of an SRBM with
γ1 =

µ1c∗1−λ1
λ2

, γ2 =
µ2c∗2−λ2

λ1
, andθ = (−1,0).

dimensional SRBMs, Avram et al. [23] studied a variational problem
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(VP) arising from the study of SRBMs. The optimal value of the
VP describes the tail behavior of the stationary distribution and the
corresponding optimal paths characterize how certain rare events
are most likely to occur. Dai and Harrison [24] have identified a
numerical procedure for computing quantities associated with the
stationary distribution for a class of SRBMs. This can be used to
numerically approximate the mean of the stationary distribution of
the SRBM that is a diffusion approximation of our system.

IX. CONCLUDING REMARKS

In this correspondence, we studied the performance of a two-
user MIMO downlink system in heavy traffic. For this coupled
queueing system, we considered a simple throughput-optimal policy
which, given the ratio of the bit arrival rates, depends only upon
the empty/non-empty state of the queues. Since an exact expression
for performance is not available, we have established a diffusion
approximation as a measure of performance. The diffusion process
is a two-dimensional SRBM that starts from the origin and lives in
the positive orthant of two-dimensional space.

An interesting question is how does this policy compare to other
policies which use more information about the system such as
MaxWeight [5]? Another question that might be asked is whether
or not the stationary distribution of the SRBM is the limit of the
stationary distribution of the original queueing system.

APPENDIX I
PROOF OFLEMMA III.1

Proof. As stated earlier, the capacity region is a convex set inR
2
+,

it contains the origin and it has the line segments(0,0) to (c∗1,0)
and(0,0) to (0,c∗2) along the two coordinate axes as two boundaries.
Since the line segment{(x,y)∈R

2
+ : x

c∗1
+ y

c∗2
= 1} lies in the capacity

region (by convexity), the capacity surface must lie “along or above”
this line segment and so for any point on the capacity surface we
have

x
c∗1

+
y
c∗2

≥ 1. (45)

From (45) and the convexity of the capacity region, if there is a point
on the capacity surface where (1) holds, it holds for every point on
the capacity surface. We next show that there is at least one point on
the capacity surface where (1) holds.

The sum-rate capacity of the MIMO BC is defined as the maximum
of the sum of a pair of rates that can be transmitted. (See Viswanath
et al. [25] for details.) If the sum-rate capacity of the MIMO BC
is strictly greater than the single-user capacities,c∗1 andc∗2, then (1)
holds at the point(s) achieving sum-rate capacity. This follows by
noting that if only equality held in (45), at a point where sum-rate
capacity is achieved, the maximum sum rate would be achieved with
one ofx or y equal to zero (i.e., at an end-point of the line segment
{(x,y) ∈ R

2
+ : x/c∗1 + y/c∗2 = 1}) but then the sum-rate equalsc∗1 or

c∗2, a contradiction. From [25, Theorem 3], the sum-rate capacity of
MIMO BC is the Sato upper bound [26] which is greater than the
single-user capacities. Thus, there is a point on the capacity surface
where (1) holds, and the lemma follows.
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