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ELLIPTIC EQUATIONS WITH SINGULAR BMO COEFFICIENTS

IN REIFENBERG DOMAINS

KO WOON UM

Abstract. W 1,p estimate for the solutions of elliptic equations whose co-
efficient matrix can have large jump along the boundary of subdomains is
obtained. The principal coefficients are supposed to be in the John-Nirenberg
space with small BMO seminorms. The domain and subdomains are Reifen-

berg flat domains and moreover, it has been shown that the estimates are
uniform with respect to the distance between the subdomains.

1. Introduction

We consider the following Dirichlet problem for the divergence form elliptic equation

(1)

{

−(aijuxj)xi = −div(A(x)∇u(x)) = divf = (f i)xi in Ω

u = 0 on ∂Ω

where Ω is an open and bounded subset of Rn. Throughout this paper we assume

that the n × n matrix A =
∑i=K

i=0 AiχΩi is defined on R
n where Ω1, . . . ,ΩK are

open subsets of Ω with flat boundary (see definition 1.2), Ω0 := Ω \ ∪i=K
i=1 Ωi and

Ai’s for i = 0, . . . ,K are in the John-Nirenberg space BMO [17] of the functions of
bounded mean oscillation with small BMO seminorms.

This problem arises from the underground water flow through composite media
with closely spaced interfacial boundaries, by which the coefficient matrix A has
discontinuity across the boundaries of subdomains. There have been many results to
prove C1,α regularity for a weak solution in [24], [23] and [2] by Y. Li, L. Nirenberg,
M. Vogelius, F. Almgren and L. Wang. In this paper, I proved W 1,p regularity for
Elliptic Dirichlet problem with singular coefficient matrix A under some necessary
conditions.

Definition 1.1. (Small BMO seminorm Assumption) We say that the matrix A
of coefficients is (δ, R)− vanishing in Ω if

sup
0<r≤R

sup
x∈Rn

√

1

|Br|

∫

Br(x)∩Ω

|A(y)− ĀBr(x)∩Ω|2dy ≤ δ.

Definition 1.2. (Reifenberg Flat Domain Assumption) We say that a domain Ω
is (δ, R)-Reifenberg flat if for every x ∈ ∂Ω and every r ∈ (0, R], there exists or-
thonormal coordinate system (y1, . . . , yn) with origin at x so that in that coordinate
system

Br(0) ∩ {yn > rδ} ⊂ Ω,

Br(0) ∩ {yn < −rδ} ⊂ Ωc.
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From this definition, we can see that if a domain Ω is (δ, R) − Reifenberg flat,
then for any x ∈ ∂Ω and every r ∈ (0, R], there exists an (n− 1)-dimensional plane
P(x, r) such that

1

r
D[∂Ω ∩Br(x),P(x, r) ∩Br(x)] ≤ δ,

where D denotes the Hausdorff distance; namely,

D[A,B] = sup{dist(a,B) : a ∈ A} + sup{dist(b, A) : b ∈ B}.

We will getW 1,p estimate for the classical weak solution of a divergence form elliptic
equation (1). The following is the definition for a weak solution.

Definition 1.3. Let 1 < p, q < ∞, 1
p + 1

q = 1. Then a weak solution of (1) is a

function u ∈ W 1,p
0 (Ω) such that
∫

Ω

A∇u∇ϕdx = −
∫

Ω

f∇ϕdx ∀ϕ ∈ W 1,q
0 (Ω).

The following is the main result of this thesis.

Theorem 1.4. Let p be a real number 1 < p < ∞. Then there is a small δ =
δ(Λ, p, n,R) > 0 so that for all Ω = ∪i=K

i=0 Ωi where Ω0 := Ω \ ∪i=k
i=1Ω

i and Ω and
disjoint subdomains Ωi’s for i = 1, . . . ,K are (δ, R)-Reifenberg flat, for all A =
∑i=K

i=0 AiχΩi where Ai’s are (δ, R)-vanishing in Ωi and uniformly elliptic for i =
0, . . . ,K, and for all f with f ∈ Lp(Ω,Rn), the Dirichlet problem (1) has a unique
weak solution with the estimate

(2)

∫

Ω

|∇u|pdx ≤ C

∫

Ω

|f |pdx,

where the constant C is independent of u and f .

Let us just mention here that the constant C above does not depend on the distance
between the subdomains, which allows the domains to touch each other.

Before our work, in the parabolic case, Fred Almgren and Lihe Wang proved the
C1,α estimates for heat flows across an interface under reasonable further assump-
tion on A in [2]. If u is a weak solution of

(3)

{

B(x)ut = div(A(x)∇u) + divF in Ω

u = 0 on ∂Ω

where B(x) and A(x) have singularity along the Hölder continuous boundaries
of subdomains, they proved |∇u(x, s) − ∇u(y, s)| ≤ C|x − y|α and |∇u(y, s) −
∇u(y, t)| ≤ C|s− t|α2 .

In the elliptic case, in [24], Y. Li and M. Vogelius considered an elliptic equation

(4) div(A∇u) = h+ div(g)

on a bounded domain D which has a finite number of disjoint subdomains Dm

with C1,α boundary and allowed the matrix A to have discontinuity across the
boundaries. They proved a C1,α regularity for the solution under reasonable Hölder
continuity assumptions on A, h and gi. Later in [23], Y. Li and L. Nirenberg
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extended the result in [24] to general second order elliptic systems with piecewise
smooth coefficients, which arises in elasticity.

In chapter 2, we state preliminary notations, definitions and assumptions through-
out this paper. Mathematical background and main tools are given in chapter 3.
In the first section of chapter 4, we discuss the interior W 1,p regularity for a weak
solution of (1) and in the second section, a global W 1,p regularity is derived.

2. Definitions and Notations

2.1. Geometric Notation.

(1) A typical point in R
n is x = (x′, xn). A typical point in R

n × R is
(x, t) = (x′, xn, t).

(2) R
n
+ = {x ∈ R

n;xn > 0} and R
n
− = {x ∈ R

n;xn < 0}.

(3) Br = {x ∈ R
n : |x| < r} is an open ball in R

n centered at 0 and ra-
dius r > 0, Br(x) = Br + x, B+

r = Br ∩ {xn > 0}, B+
r (x) = B+

r + x,
Tr = Br ∩ {xn = 0}, and Tr(x) = Tr + x.

(4) Ωr = Ω ∩Br, Ωr(x) = Ω ∩Br(x).

(5) ∂Ωr is the boundary of Ωr, ∂wΩr = ∂Ω ∩ Br is the wiggled part of ∂Ωr,
and ∂cΩr = ∂Ωr\∂wΩr is the curved part of ∂Ωr.

(6) Pδ
i (y) is the (n − 1) dimensional plane which is translated hyperplane at

y ∈ ∂Ωi by δ along the normal direction toward Ωi.

2.2. Matrix of Coefficients.

Definition 2.1. We say that A is uniformly elliptic if there exists a positive
constant Λ such that

Λ−1|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 a.e. x ∈ R
n, ∀ξ ∈ R

n.

(1) We write A = (aij) to mean an n× n matrix with the (i, j)-th entry aij .

(2) |A| =
√

(A : A) =
√

∑n
i,j=1 a

2
ij and ‖A‖∞ = supy |A(y)|.

(3)

ĀΩ =
1

|Ω|

∫

Ω

A(x)dx

is the average of A over Ω.

(4) A is supposed to be A =
∑K

i=0 A
iχΩi where Ai’s are assumed to be uni-

formly elliptic and (δ, R)− vanishing on Ωi for any i = 0, . . . ,K.

(5) ÃBr
:=
∑K

i=0 Ā
i
Ωi

r
χΩi

r
.
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2.3. Notation for Derivatives.

(1) ∇u = (ux1 , . . . , uxn) is the gradient of u.
(2) Multiindex Notation:

(a) A vector of the form α = (α1, . . . , αn), where each component αi is a
nonnegative integer, is called a multiindex of order

|α| = α1 + · · ·+ αn.

(b) Given a multiindex α = (α1, . . . , αn), define

Dαu(x) :=
∂|α|u(x)

∂xα1
1 · · ·∂xαn

n
= ∂α1

x1
· · ·∂αn

xn
u.

(3)

div(f) =
n
∑

i=1

(f i(x))xi

is the divergence of f = (f1, . . . , fn).

2.4. Notation for estimates. We employ the letter C to denote a universal con-
stant usually depending on the dimension, ellipticity and the geometric quantities
of Ω.

2.5. Notation for Function and Function Spaces.

(1) If f : Ω → R
n, we write f(x) = (f1(x), . . . , fn(x)) for x ∈ Ω.

(2)

f̄Ω =
1

|Ω|

∫

Ω

|f(x)|dx

is the average of f over Ω.
(3) C∞

0 (Ω) = {u ∈ C∞(Ω) : u has compact support in Ω}.

(4) Lp(Ω) = {u : ‖u‖Lp(Ω) < ∞}, where ‖u‖Lp(Ω) =

(
∫

Ω

|u|pdx
)

1
p

for any

1 ≤ p < ∞.
(5) L∞(Ω) = {u : ‖u‖L∞(Ω) < ∞}, where ‖u‖L∞(Ω) = ess supΩ |u|.
(6) Let u and v be two locally integrable functions. Then we say that v is the

ith weak derivative of u if for any ϕ ∈ C∞
0 (Ω),

∫

Ω

u
∂ϕ

∂xi
dx = −

∫

Ω

vϕdx.

We denote by ∂u
∂xi

the ith weak derivative of u. Then we say that u is in

the space W 1,p(Ω) if u has weak derivatives ∂u
∂xi

∈ Lp(Ω) and u ∈ Lp(Ω).

W 1,p is a Banach space equiped with the norm

(

‖u‖pLp(Ω) +
∑

i

‖ ∂u

∂xi
‖pLp(Ω)

)
1
p

.

In the case p = 2, H1 = W 1,2 is a Hilbert space. We say u ∈ W 1,p
0 (Ω) if

Eu ∈ W 1,p(Rn), where Eu is the 0-extension of u to R
n.
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3. Preliminary tools and mathematical background

In this chaper we recall standard facts from measure theory and functional analysis
which will be needed in the sequel. We will present the proof for less familiar facts.

3.1. The Hardy-Littlewood Maximal Function and RelatedMathematical

Background.

Lemma 3.1. [4] Suppose that f is a nonnegative measurable function in a bounded
domain Ω. Let θ > 0 and m > 1 be constants. Then for 0 < p < ∞,

f ∈ Lp(Ω) iff S =
∑

k≥1

mkp|{x ∈ Ω : f(x) > θmk}| < ∞

and
1

C
S ≤ ‖f‖pLp(Ω) ≤ C(|Ω|+ S),

where C > 0 is a constant depending only on θ,m and p.

One of our main tools will be the Hardy-Littlewood maximal function. The maximal
function controls the local behavior of a function in an analytical way.

Definition 3.2. For a locally integrable function f on R
n. Let

(Mf)(x) = sup
r>0

1

|Br(x)|

∫

Br(x)

|f(y)|dy

be the Hardy-Littlewood maximal function of f . We also define

MΩf = M(χΩf)

if f is not defined outside Ω.

The basic theorem for the Hardy-Littlewood maximal function is the following:

Theorem 3.3. [27] We have

(a) If f ∈ Lp(Rn) with p > 1, then Mf ∈ Lp(Rn). Moreover,

‖Mf‖Lp(Rn) ≤ C‖f‖Lp(Rn).

(b) If f ∈ L1(Rn), then

|{x ∈ R
n : (Mf)(x) > λ}| ≤ C

λ
‖f‖L1(Rn).

Here C depends only on p and the dimension n. (a) is called a strong p-p estimate
and (b) is called a weak 1-1 estimate. This theorem says that the measure of
{x : |Mf(x)| > δ} decays roughly as the measure of {x : |f(x)| > δ} does. Since the
value of Lp function at a particular point does not make good sense in a qualitative
way even though the point is a Lebesgue point, we will employ the Hardy-Littlewood
maximal function, which makes sense at a certain point. Let us also remark that the
maximal funciton is invariant with respect to scaling. Hence |{x : |Mf(x)| > δ}| is
more stable and geometric object.
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3.2. Vitali Covering Lemma. Another main tool is the Vitali covering lemma:

Lemma 3.4. [27] Let E be a measurable set. Suppose that a class of balls Bα

covers E:

E ⊂
⋃

α

Bα.

Suppose the radius of Bα is bounded from above. Then there exist disjoint {Bαi}∞i=1 ⊂
{Bα}α such that

E ⊂
⋃

i

5Bαi ,

where 5Bαi is the ball with five times the radius of Bαi and the same center. Con-
sequently, we have

|E| ≤ 5n
∑

i

|Bαi |.

For the discussion of interior W 1,p regularity, we will use the modified version of
the Vitali covering lemma:

Lemma 3.5. [28] Assume that C and D are measurable sets, C ⊂ D ⊂ B1, and
that there exists an ε > 0, such that

|C| < ε|B1|,
and for all x ∈ B1 and for all r ∈ (0, 1] with |C ∩Br(x)| ≥ ε|Br(x)|,

Br(x) ∩B1 ⊂ D.

Then

|C| ≤ 10nε|D|.

We will use another version of the Vitali covering lemma for the global estimate on
a (δ, 1)− Reinfenberg flat domain.

Lemma 3.6. [3] Assume that C and D are measurable sets. C ⊂ D ⊂ Ω with Ω
(δ, 1)- Reifenberg flat, and that there exists an ε > 0 such that

(5) |C| < ε|B1|
and for all x ∈ B1 and for all r ∈ (0, 1] with |C ∩Br(x)| ≥ ε|Br(x)|,
(6) Br(x) ∩Ω ⊂ D.

Then

|C| ≤ (
10

1− δ
)nε|D|.

Proof. From (5), there exists a small rx > 0 such that

(7) |C ∩Brx(x)| = ε|Brx(x)|, |C ∩Br(x)| ≤ ε|Br(x)|, ∀r ∈ (rx, 1].

Since {C ∩ Brx(x) : x ∈ C} is a covering of C with rx ≤ 1, by the Vitali covering
lemma, there exists a disjoint {C ∩Bri(xi) : xi ∈ C}∞i=1 such that

(8) C ⊂
⋃

i

B5ri(xi), |C| ≤ 5n
∑

i

|Bri(xi)|.
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Then, by (7), we see that

(9) |C ∩B5ri(xi)| < ε|B5ri(xi)| = 5nε|Bri(xi)| = 5n|C ∩Bri(xi)|.

Now we claim that

(10) sup
0<r≤1

sup
x∈Ω

|Br(x)|
|Br(x) ∩ Ω| ≤ (

2

1− δ
)n.

To do this, choose any r ∈ (0, 1] and any x ∈ Ω. The case dist(x, ∂Ω) ≥ r follows
form the fact Br(x) ⊂ Ω. So suppose that dist(x, ∂Ω) < r. Then there exists a
y ∈ ∂Ω so that

(11) dist(x, ∂Ω) = dist(x, y) < r.

Since ∂Ω is (δ, 1)-Reifenberg flat, without loss of generality we may assume

Br(x) ∩ {xn > δ} ⊂ Br(x) ∩ Ω ⊂ Br(x) ∩ {xn > −δ}
in some appropriate coordinate system in which y = 0. then from the geometry and
an easy computation, we see that

|Br(x)|
|Br(x) ∩ Ω| ≤

|Br(x)|
|Br(x) ∩ {xn > δ}| ≤ (

2

1− δ
)n,

which shows (10).

Finally, by (6), (9), and (10), we get

|C| = |
⋃

i

(B5ri(xi) ∩ C)|

≤
∑

i

|B5ri(xi) ∩ C|

< ε
∑

i

|B5ri(xi)|

= 5nε
∑

i

|Bri(xi)|

≤ 5nε(
2

1− δ
)n
∑

i

|Bri(xi) ∩ Ω|

= ε(
10

1− δ
)n|
⋃

i

(Bri(xi) ∩ Ω)|

≤ ε(
10

1− δ
)n|D|,

which completes the proof. �

4. Regularity for Elliptic Equations

4.1. Interior Estimates. In this section we investigate the interiorW 1,p estimates
for a solution of

(12) − div(A(x)∇u) = divf in Ω.

Our assumption is that Ω is bounded open set in R
n and the coefficient matrix

A =
∑i=K

i=0 AiχΩi is defined on R
n where Ω1, . . . ,ΩK are open subsets of Ω with
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flat boundary (see definition 1.2), Ω0 := Ω \ ∪i=K
i=1 Ωi and Ai’s for i = 0, . . . ,K are

uniformly elliptic and also (δ, R)-vanishing on Ωi with small BMO seminorms for
i = 0, . . . ,K.

W 1,p estimate without discontinuity in A was done by S. Byun and L. Wang in
[3]. Here we consider the case that A has discontinuity along the boundary of
subdomains Ωi’s in Ω for i = 1, . . . ,K.

The main result of this section is the following:

Theorem 4.1. There is a constant N1 so that for any ε > 0, there exists a small

δ = δ(ε) > 0 such that for all f ∈ L2(B4;R
n) and for all A =

∑i=K
i=0 AiχΩi

where Ai’s are uniformly elliptic and (δ, 4)-vanishing for i = 0, . . . ,Kand Ωi’s for
i = 1, . . . ,K and Ω are (δ, 9)-flat, if u is a weak solution of −div(A∇u) = divf in
Ω ⊃ B4 and if

|{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩Br| ≥ ε|Br| for all r ∈ (0, 1],

then
Br ⊂ {x ∈ Ω : M(|∇u|2)(x) > 1} ∪ {x ∈ Ω : M(|f |2)(x) > δ2}.

Definition 4.2. We say that u ∈ H1(BR) (R > 0) is a weak solution of (12) if
∫

BR

A∇u∇ϕdx = −
∫

BR

f∇ϕdx for ∀ϕ ∈ H1
0 (BR).

Lemma 4.3. [3]Assume that u is a weak solution of (12) in B2. Then

(13)

∫

B2

ϕ2|∇u|2dx ≤ C(

∫

B2

ϕ2|f |2dx+
∫

B2

|∇ϕ|2|u|2dx) for any ϕ ∈ C∞
0 (B2).

We want to control the gradient of the weak solution of (12) using the gradient of
the weak solution of the related homogenous equation. The following lemma shows
that one can bound the gradient of homogenous solution by L2-norm.

Lemma 4.4. If v is a weak solution of div(Ā∇v(x)) = 0 in B1 for a piecewise
constant matrix Ā = Ā1χB1∩{xn>a} + Ā0χB1∩{xn<a} for any a ∈ (−1, 1), then

‖∇v‖L∞(B 1
2
) ≤ C‖v‖L2(B1).

Proof. First assume a = 0. Let Dh
i v(x) =

v(x+hei)−v(x)
h , for h > 0, i = 1, . . . , n− 1.

Since the jump of the coefficient matrix Ā occurs across {xn = 0},
div(Ā∇Dh

i v(x)) = 0

for sufficiently small h > 0. Also
∫

B 1
2
+1

4

|∇Dh
i v(x)|2dx ≤ C

∫

B 1
2
+ 1

4
+ 1

8

|Dh
i v(x)|2dx(14)

≤ C

∫

B 1
2
+ 1

4
+ 1

8
+ 1

16

|∇v(x)|2dx(15)

≤ C

∫

B1

|v(x)|2dx(16)

for 0 < h < 1
16 . Here we used the Lemma 4.3 for the first and the third inequality.

So vxi ∈ H1(B 3
4
) for i = 1, . . . , n− 1. Similarly, we can apply this method to vxi ,
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i.e. using Dh
j vxi(x) for i, j = 1, . . . , n−1. So vxixj ∈ H1(B 1

2+
1
8
) for i = 1, . . . , n−1.

Let S = [n2 ] + 3. For any tangential vector α = (α1, . . . , αn−1, 0) such that |α| ≤ S,
we can iterate |α| times and get

Dαv(x) ∈ H1(B 1
2+

1

2S+1
).

Since div(Ā∇Dαv(x)) = 0, we can use the De Giorgi-Nash theorem to say that
Dαv is Hölder continuous. So there is a constant C such that

‖Dαv‖L∞(B 1
2
+ 1

2S+2
) ≤ C‖Dαv‖L2(B 1

2
+ 1

2S+1
)(17)

≤ C‖v‖L2(B1).(18)

Now consider the vertical direction. Define

g(x1, x2, . . . , xn) := v(x1, . . . , xn−1, 0) in B+
1
2+

1

2S+1

.

We can see that gxn = 0 and also by (17),






Dαg = Dαv ∈ H1(B+
1
2+

1

2S+1

)

‖Dαg‖L∞(B 1
2
+ 1

2S+2
) = ‖Dαv‖L∞(B 1

2
+ 1

2S+2
) ≤ C‖v‖L2(B1)

for α = (α1, . . . , αn−1, 0) such that |α| ≤ S. Let

ṽ(x1, . . . , xn) := v(x1, . . . , xn)− g(x1, . . . , xn).

Note that ṽ ∈ H1(B+
1
2+

1

2S+1

) and ṽ|xn=0 = 0. Since div(Ā∇(ṽ + g)) = 0,

div(Ā∇ṽ) = −div(Ā∇g)

= −
n
∑

i=1

(

n
∑

j=1

āijgxi)xj

= −
n−1
∑

i=1

(

n−1
∑

j=1

āijgxi)xj ∈ HS−1(B+
1
2

) = H [n2 ]+1(B+
1
2

)

Furthermore, by Theorem 5 in Section 6.3 and the Trace Theorem, see Section 5.5
in [11], also by Lemma 4.3,

(19) ‖ṽ‖HS−1(B+
1
2

) ≤ C(‖v‖L2(B1) + ‖ṽ‖L2(B 1
2
)) ≤ C‖v‖L2(B1),

We can combine (19) and Sobolev inequality to get

‖ṽ‖
CS−[n

2
]−2,γ(B+

1
2

)
≤ C‖ṽ‖HS−1(B+

1
2

) ≤ C‖v‖L2(B1).

Thus ṽ is C1,γ Hölder continuous. Finally we can say that |∇ṽ| is bounded in B+
1
2

.

Similarly |∇ṽ| is also bounded in B−
1
2

. So |∇ṽ| = |∇v − ∇g̃| is bounded in B 1
2
.

Thus

(20) ‖∇v‖L∞(B 1
2
) ≤ C‖v‖L2(B1).

Assume |a| > 3
4 . Then Ā has no discontinuity in B 3

4
. So there is a constant C such

that

(21) ‖∇v‖L∞(B 1
2
) ≤ C‖v‖L2(B 3

4
) ≤ C‖v‖L2(B1).
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Assume 0 < |a| < 3
4 . Say L := {x ∈ R

n : xn = a}.
For any x ∈ B 3

4
∩L, B 1

4
(x) ⊂ B1. By above case for a = 0, there exists a constant

C such that

‖∇v‖L∞({x∈B 1
2
:dist(x,L)<1

8 })
≤ sup

x∈B 3
4
∩L

‖∇v‖L∞(B 1
8
(x))(22)

≤ C‖v‖L2(B 1
4
(x)) ≤ C‖v‖L2(B1).(23)

For any x ∈ {x ∈ B 1
2
: dist(x, L) ≥ 1

8}, B 1
8
(x) ⊂ B1 and Ā has no discontinuity in

B 1
8
(x). So there exists a constant C such that

(24) sup
{x∈B 1

2
:dist(x,L)≥ 1

8}

‖∇v‖L∞(B 1
16

(x)) ≤ C‖v‖L2(B 1
8
(x)) ≤ C‖v‖L2(B1).

By taking the maximum C in (20), (21), (22) and (24), we are done. �

Lemma 4.5. For any ε > 0, there is a small δ = δ(ε) > 0 such that for any weak
solution u of (12) in B2 where for any l,m = 0 . . .K and any |a| < 2 ,

(25) B2 ∩ {xn > a+ δ} ⊂ Ωl
2 ⊂ B2 ∩ {xn > a− δ}

(26) B2 ∩ {xn < a− δ} ⊂ Ωm
2 ⊂ B2 ∩ {xn < a+ δ}

and

(27)
1

|B2|

∫

B2

|∇u|2dx ≤ 1,

(28)
1

|B2|

∫

B2

(|f |2 + |A− ÃB2 |2)dx ≤ δ2,

where ÃB2 =
∑

iA
i
Ωi

2
χΩi

2
, there exists a piecewise constant matrix Ãb

B2 as Ãb
B2 =

Al
Ωl

2
χB2∩{xn>a} +Am

Ωm
2
χB2∩{xn<a} and for a corresponding weak solution v of

(29) − div(Ãb
B2∇v) = 0 in B2

such that
∫

B2

|u− v|2dx ≤ ε2.

Proof. If not, there exists ε0 > 0, {Ak} = {∑K
i=0 A

i
kχΩi,k}, {uk}, {fk}, {Ωl,k

2 } and
{(Ωm,k)2} for some l,m = 0 . . .K and some |a| < 2 such that uk is a weak solution
of

(30) − div(Ak∇uk) = divfk in B2

with

B2 ∩ {xn > a+
1

k
} ⊂ (Ωl,k)2 ⊂ B2 ∩ {xn > a− 1

k
}

B2 ∩ {xn < a− 1

k
} ⊂ (Ωm,k)2 ⊂ B2 ∩ {xn < a+

1

k
}

but

(31)

∫

B2

|uk − vk|2dx > ε20
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for any weak solution vk of

(32) − div(Ãb
kB2

∇vk) = 0 in B2

where Ãb
kB2

= Al
k(Ωl,k)2

χB2∩{xn>a} +Am
k (Ωm,k)2

χB2∩{xn<a}.

By (27), {uk − ukB2
}∞k=1 is bounded in H1(B2), and so {uk − ukB2

} has a subse-
quence, which we denote as {uk − uk}, such that

(33) uk − uk ⇀ u0 in H1(B2), uk − uk → u0 in L2(B2).

Since Ãb
kB2

is bounded in L∞, there is a subsequence {Ãb
k} such that

(34) ‖Ãb
k −A0‖∞ → 0 as k → ∞,

for some piecewise constant matrix A0. Since Ãb
k − ÃkB2

→ 0 in L2(B2) and

ÃkB2
−Ak → 0 in L2(B2). Thus Ak → A0 in L2(B2).

Next we will show that u0 is a weak solution of

(35) − div(A0∇u0) = 0 in B2

To do this, fix any ϕ ∈ H1
0 (B2). Then by (30),

(36)

∫

B2

Ak∇uk∇ϕdx = −
∫

B2

fk∇ϕdx.

Since ∇uk ⇀ ∇u0 and Ak → A0 in L2(B2), Ak∇uk ⇀ A0∇u0 in L2(B2). Then
by letting k → ∞,

(37)

∫

B2

A0∇u0∇ϕdx = 0.

This shows (35). Note that

−div(Ãb
k∇u0) = −div((Ãb

k −A0)∇u0)− div(A0∇u0)

= −div((Ãb
k −A0)∇u0)

in B2. Let hk be the weak solution of

(38)

{

−div(Ãb
k∇hk) = div((Ãb

k −A0)∇u0) in B2

hk = 0 on ∂B2

Then u0 − hk is a weak solution of

(39) div((Ãb
k∇(u0 − hk)) = 0 in B2.

Furthermore, by (38),

‖hk‖L2(B2) ≤ C‖∇hk‖L2(B2) ≤ C‖(Ãb
k −A0)∇u0‖L2(B2)

≤ C‖(Ãb
k −A0)‖L∞‖∇u0‖L2(B2)

≤ C‖(Ãb
k −A0)‖L∞(B2).
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So now

‖uk − (u0 + ūk − hk)‖L2(B2) ≤ ‖uk − ūk − u0‖L2(B2) + ‖hk‖L2(B2)

≤ ‖uk − ūk − u0‖L2(B2) + C‖(Ãb
k −A0)‖L∞(B2).

This estimate, (33) and (34) imply that

‖uk − (u0 + ūk − hk)‖L2(B2) → 0 as k → ∞.

But this is a contradiction to (31) by (38).

�

Corollary 4.6. For any ε > 0, there is a small δ = δ(ε) > 0 such that for any
weak solution u of (12) in B2 where for any l,m = 0 . . .K and any |a| < 2 ,

(40) B2 ∩ {xn > a+ δ} ⊂ Ωl
2 ⊂ B2 ∩ {xn > a− δ}

(41) B2 ∩ {xn < a− δ} ⊂ Ωm
2 ⊂ B2 ∩ {xn < a+ δ}

and

(42)
1

|B2|

∫

B2

|∇u|2dx ≤ 1,

(43)
1

|B2|

∫

B2

(|f |2 + |A− ÃB2 |2)dx ≤ δ2,

where ÃB2 =
∑

iA
i
Ωi

2
χΩi

2
, there exists a piecewise constant matrix Ãb

B2 as Ãb
B2 =

Al
Ωl

2
χB2∩{xn>a} +Am

Ωm
2
χB2∩{xn<a} and for a corresponding weak solution v of

(44) − div(Ãb
B2∇v) = 0 in B2

such that
∫

B 4
3

|∇(u − v)|2dx ≤ ε2.

Proof. By the Lemma 4.5, for any η > 0, there exists δ = δ(η) > 0, a piecewise

constant matrix Ãb
B2 = Al

Ωl
2
χB2∩{xn>a} +Am

Ωm
2
χB2∩{xn<a} and a corresponding

weak solution v of −div(Ãb
B2∇v) = 0 in B2 such that

∫

B2

|u− v|2dx ≤ η2.

First we see that u− v ∈ H1(B2) is a weak solution of

(45) − div(A∇(u − v)) = div(f + (A− Ãb
B2)∇v) in B2
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Now, by (13),

∫

B 4
3

|∇(u− v)|2 ≤ C(

∫

B 3
2

|f + (A− Ãb
B2)∇v|2 + |u− v|2dx)

(46)

≤ C(

∫

B 3
2

|f |2dx+

∫

B 3
2

|(A− Ãb
B2)∇v|2dx+

∫

B 3
2

|u− v|2dx)(47)

≤ C(

∫

B2

|f |2 +
∫

B2

|A− Ãb
B2 |2dx+

∫

B2

|u− v|2dx)(48)

Here we used the fact that v is lipschitz, which we showed in Lemma 4.4, and (42).
Also,

∫

B2

|f |2 + |A− Ãb
B2 |2dx ≤ 2

∫

B2

(|f |2 + |A− ÃB2 |2) + |ÃB2 − Ãb
B2 |2(49)

≤ 2(|B2|δ2 + C(Λ)δ)(50)

≤ Cδ for a small δ.(51)

So ‖∇(u−v)‖2L2(B2)
≤ C(δ+η2) = ε2 by taking η and δ satisfying the last identity.

This completes our proof. �

We can control the measure of the set where |∇u| is quite big as the following
lemma.

Lemma 4.7. (cf. [3]) There is a constant N1 > 0 so that for any ε > 0, there

exists a small δ = δ(ε) > 0 such that for all A with A =
∑K

i=0 A
iχΩi , where

Ai’s are uniformly elliptic and (δ, 4)-vanishing on Ωi for i = 0 . . .K and for any
l,m = 0 . . .K and any |a| < 4 in appropriate coordinate system

(52) B4 ∩ {xn > a+ δ} ⊂ Ωl
4 ⊂ B4 ∩ {xn > a− δ}

(53) B4 ∩ {xn < a− δ} ⊂ Ωm
4 ⊂ B4 ∩ {xn < a+ δ},

and if u is a weak solution of −div(A∇u) = divf in Ω ⊃ B4 and if

(54) {x ∈ B1 : M(|∇u|2) ≤ 1} ∩ {x ∈ B1 : M(|f |2) ≤ δ2} 6= ∅,
then

(55) |{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩B1| < ε|B1|.

Proof. By (54), there is a point x0 ∈ B1 such that for all r > 0,

(56)
1

|Br|

∫

Br(x0)∩Ω

|∇u|2dx ≤ 1,
1

|Br|

∫

Br(x0)∩Ω

|f |2dx ≤ δ2.

Since B2(0) ⊂ B3(x0), we have by (56),

(57)
1

|B2|

∫

B2

|f |2dx ≤ |B3|
|B2|

1

|B3|

∫

B3(x0)

|f |2dx ≤ (
3

2
)nδ2.

Similarly, we see that

(58)
1

|B2|

∫

B2

|∇u|2dx ≤ (
3

2
)n.
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In view of (57) and (58), and from the assumption on A, we can apply Corollary
4.6 with u replaced by (23 )

nu and f replaced by (23 )
nf , respectively, to find that for

any η > 0, there exists a small δ(η) and a corresponding weak solution v of

(59) − div(Ãb
B2∇v) = 0

in B2 such that

(60)

∫

B 4
3

|∇(u − v)|2dx ≤ η2,

provided that

(61)
1

|B2|

∫

B2

(|f |2 + |A− ÃB2 |2)dx ≤ δ2.

By the interiorW 1,∞ regularity that we proved in Lemma 4.4, we can find a constant
N0 such that

(62) ‖∇v‖L∞(B 3
2
) ≤ N0.

Now we will show that

(63) {x ∈ B1 : M|∇u|2 > N2
1 } ⊂ {x ∈ B1 : MB2 |∇(u − v)|2 > N2

0 }
for N2

1 := max{5n, 4N2
0 }. To do this, suppose that

(64) x1 ∈ {x ∈ B1 : MB2(|∇(u − v)|)2(x) ≤ N2
0 }.

For r ≤ 1
2 , Br(x1) ⊂ B 3

2
, and by (62) and (64), we have

(65)
1

|Br|

∫

Br(x1)

|∇u|2dx ≤ 2

|Br|

∫

B 3
2

(|∇(u− v)|2 + |∇v|2) ≤ 4N2
0 .

For r > 1
2 , Br(x1) ⊂ B5r(x0), and by (56), we have

(66)
1

|Br|

∫

Br(x1)

|∇u|2dx ≤ 5n

|B5r|

∫

B5r(x0)∩Ω

|∇u|2dx ≤ 5n.

Then (65) and (66) show

(67) x1 ∈ {x ∈ B1 : M(|∇u|)2 ≤ N2
1 }.

Thus assertion (63) follows from (64) and (67).

By (63), weak 1-1 estimates and (60), we obtain

|{x ∈ B1 : M(|∇u|)2 > N2
1 }| ≤ |{x ∈ B1 : MB2(|∇(u− v)|)2 > N2

0 }|

≤ C

N2
0

∫

B 4
3

|∇(u− v)|2dx

≤ C

N2
0

η2 = ε|B1|,

by taking small η satisfying the last identity above. Now Corollary 4.6 gives the
desired δ. �
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Corollary 4.8. There is a constant N1 > 0 so that for any ε, r ∈ (0, 1], there

exists a small δ = δ(ε) > 0 such that for all A with A =
∑K

i=0 A
iχΩi , where

Ai’s are uniformly elliptic and (δ, 4)-vanishing on Ωi for i = 0 . . .K and for any
l,m = 0 . . .K and any |a| < 4r in appropriate coordinate system

(68) B4r ∩ {xn > a+ δr} ⊂ Ωl
4r ⊂ B4r ∩ {xn > a− δr}

(69) B4r ∩ {xn < a− δr} ⊂ Ωm
4r ⊂ B4r ∩ {xn < a+ δr}

and if u is a weak solution of −div(A∇u) = divf in Ω ⊃ B4r and if

(70) {x ∈ Br : M(|∇u|2) ≤ 1} ∩ {x ∈ Br : M(|f |2) ≤ δ2} 6= ∅,
then

(71) |{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩Br| < ε|Br|.

Proof. The proof is given by Lemma 4.7 and a scaling argument. �

To use the modified vitali covering lemma, we need to show Theorem 4.1 holds for
any ball Br(x) for r ∈ (0, 1] and x ∈ Ω. If Br(x) intersects with only one subdomain
Ωl then the proof of Theorem 4.1 comes directly from Lemma 4.8 for l = m. If
Br(x) intersects with two subdomains Ωl and Ω0, then the proof of Theorem 4.1
also comes directly from Lemma 4.8 for m = 0.

Then next natural question would be how many subdomains can intersect with
Br(x) for r ∈ (0, 1] and x ∈ Ω when ∂Ωi’s are flat enough. Next lemma will be
used to show that a ball can intersect with at most three subdomains.

Lemma 4.9. Hi’s for i = 1, . . . ,K are half spaces. If {Hi ∩ B2}i are disjoint.
Then at most two half spaces can intersect with B1.

Proof. Assume there are three half spaces, say H1, H2 and H3 such that B2 ∩Hi’s
are disjoint and Hi ∩ B1 6= ∅ for i = 1, 2, 3. Let pi ∈ Hi ∩ B1 for i = 1, 2, 3.. Note
that since half spaces are disjoint in B2 these points are not collinear. Let T be
the two dimensional plane containing p1, p2, p3. For j = 1, 2 let Dj = T ∩Bj which
are indeed two dimensional balls. Let rj = radius of Dj for j = 1, 2. Note that
r2 ≥ 2r1.

Let hi := T ∩Hi and li := T ∩ ∂Hi = ∂hi. We have

(1) pi ∈ li ∩ D1 for i = 1, 2, 3
(2) hi ∩ D2’s are disjoint for i = 1, 2, 3.

Pushing li’s into hi by δi > 0, we may assume that li’s are tangent to the D1 and
pi ∈ ∂D1 for i = 1, 2, 3. Let also Ai and Bi be the points where li intersects ∂D2

for i = 1, 2, 3. Let hi ∩ ∂D2 =
⌢

AiBi.

Note that
⌢

AiBi for i = 1, 2, 3. are disjoint on ∂D2. Since r2 ≥ 2r1 and li’s are
tangent to D1,

(72)
length of

⌢

AiBi

length of ∂D2
≥ 1

3
, for i = 1, 2, 3.
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The above is a strict inequality if r2 > 2r1, which is a contradiction to the fact that
⌢

AiBi’s are disjoint on ∂D2. If r2 = 2r1, (72) is an equality. In this case li’s end
points meet each other. So we cannot push li outward from hi which means δi = 0
for i = 1, 2, 3. �

So now we consider the case that a ball intersect with three subdomains Ωl, Ω0 and
Ωm for any l,m = 1 . . .K. To prove Theorem 4.1 for this case, our goal is to show
Lemma 4.7 holds for this case as well. Roughly there can be two different cases;
The first case is when Ωl and Ωm are quite close and the second case is when Ωl

and Ωm are not so close.

Lemma 4.10. There exists a constant N1 > 0 so that for any ε > 0, there exists
a small δ = δ(ε) > 0 and for all Ω ⊃ B4 and subdomain Ωi for all i = 1, . . . ,K and
Ω are (δ, 9)-flat and for all A where Ai’s are uniformly elliptic and (δ, 9) vanishing
on Ωi, and if u is a weak solution of −div(A∇u) = divf in Ω ⊃ B4 and if

(73) {x ∈ B1 : M(|∇u|2) ≤ 1} ∩ {x ∈ B1 : M(|f |2) ≤ δ2} 6= ∅,
then

(74) |{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩B1| < ε|B1|.

Proof. If B4 intersects with two subdomains, then we are done by Lemma 4.7.

Suppose B4 intersects with three subdomains, say Ωl,Ω0 and Ωm. First assume
that dist(Ωl,Ωm) < γ in B1 for some small γ > 0. Since dist(Ωl,Ωm) < γ in B1,
there exist pl ∈ ∂Ωl ∩ B1 and pm ∈ ∂Ωm ∩ B1 such that dist(pl, pm) < γ. Also
assume that Ωl,Ωm are (δ, 9)-Reifenberg flat for a δ with γ < δ << 1. So for each
pi, i = l,m, there exist (n− 1) dimensional hyper plane Pi such that

(75) D[∂Ωi ∩B9(pi),Pi ∩B9(pi)] ≤ 9δ, for i = l,m

where D denotes the Hausdorff distance. In other words, the boundary of Ωi is
squeezed between Pi and P9δ

i which is the translation of Pi by 9δ in the normal
direction of Pi inward Ωi for i = l,m. We can choose a coordinate system such
that the normal direction of P9δ

l is the xn axis. Let us say yi is the intersection
point between P9δ

i and vertical line of P9δ
i passing through pi for i = l,m. Then

the distance between ym and P9δ
l is less than γ + 18δ < 19δ by (75). Since P9δ

l ∩
P9δ
m ∩B4 = ∅, on P9δ

m

|∂xn

∂xi
| < γ + 18δ

3− γ − 18δ
<

19δ

3− 19δ
< 7δ for any γ < δ << 1, and i = 1, . . . n− 1.

So maxy∈P9δ
m ∩B4

dist(y,P9δ
l ∩B4) < Cδ + γ where C depends on the dimension n.

The above is nothing but harnack inequality. Since distance function between P9δ
l

and P9δ
m in B4 is nonnegative harmonic, we can apply Harnack Inequality.

(76)

max
y∈P9δ

m ∩B1

dist(P9δ
l , y) < C1 min

y∈P9δ
m ∩B1

dist(P9δ
l , y) < Cdist(yl, ym) = C(19δ + γ)

where C depends on the dimension n.
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Since the Hausdorff distance between P9δ
l ,P9δ

m is less than C(δ+ γ), we can choose
small δ0 and γ0 such that C(δ0 + γ0) is less than δ in Lemma 4.7. By Lemma 4.7,
we can conclude.

Now suppose dist(∂Ωl, ∂Ωm) > γ0 in B1 for above γ0. If y ∈ S1 = {x ∈ B1| x ∈
∂Ωl∩∂Ωm }, then Bγ0(y) has only two subdomains. From (73), there exists x0 ∈ B1

such that

M(|∇u|2)(x0) ≤ 1 and M(|f |2)(x0) ≤ δ2.

For any y ∈ S1, by weak 1-1 estimate in Theorem 3.3,

|{x ∈ B γ0
4
(y) : M(|∇u|2)(x) > λ1}| ≤

C

λ1

∫

B2(x0)

|∇u|2dx

≤ C

λ1
|B2(x0)| <

1

2
|B γ0

4
(y)|

when λ1 > C23n+1

γn
0

. Similarly for this λ1,

|{x ∈ B γ0
4
(y) : M(|f |2)(x) > δ2λ1}| ≤

C

δ2λ1

∫

B2(x0)

|f |2dx

≤ C

δ2λ1
|B2(x0)| <

1

2
|B γ0

4
(y)|.

From above two inequalities, one can find a xy ∈ B γ0
4
(y) such that

M(|∇u|2)(xy) ≤ λ1 and M(|f |2)(xy) ≤ δ2λ1.

By Lemma 4.8, there is a constant N1 so that for any ε > 0

(77) |{x ∈ Ω : M(|∇u|2)(x) > λ1N
2
1 } ∩B γ0

4
(y)| < ε|B γ0

4
(y)|.

If y ∈ S2 = {x ∈ B1| mini=l,m dist(x, ∂Ωi) > γ0

4×5 }, B γ0
20
(y) ⊂ Ωi for i = 0, l,m.

Similarly as above, there is a xy ∈ B γ0
80
(y) such that

M(|∇u|2)(xy) ≤ λ2 and M(|f |2)(xy) ≤ δ2λ2.

when λ2 > C25n+15n

γn
0

. By Lemma 4.8, there is a constant N1 so that for any ε > 0

(78) |{x ∈ Ω : M(|∇u|2)(x) > λ2N
2
1 } ∩B γ0

80
(y)| < ε|B γ0

80
(y)|.

So U = {Br(y)| r = γ0

4×5 , y ∈ S1 } ∪ {Br(y)| r = γ0

80×5 , y ∈ S2 } covers B1. Then by

Vitali Covering Lemma, there exist disjoint balls {Bri(yi)}∞i=1 ⊂ U ⊂ B2 such that
B1 ⊂ ∪iB5ri(yi). Let N1 to be max(

√
λ1N1,

√
λ2N1). Then by (77) and (78),
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|{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩B1|

<
∑

i

|{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩B5ri(yi)|

< ε
∑

i

|B5ri(yi)| < ε5n
∑

i

|Bri(yi)|

< ε5n|B2| < ε(10)n|B1|.

Since Ωi’s for i = 0, . . . , n are (δ, 9)-flat, B4 does not intersect more than three
subdomains. To see that, assume that B4 intersects with Ω0,Ω1,Ω2,Ω3. For any
pi ∈ ∂Ωi ∩ B4, for i = 1, 2, 3, there exists a hyperplane Pi such that ∂Ωi ∩ B9 is
between Pi and P9δ

i where P9δ
i is translation of Pi into Ωi in the normal direction

by 9δ since Ωi’s for i = 0, . . . , n are (δ, 9)-flat. Then for any δ < 1
18 , on the plane

T containing p1, p2, p3, Hi for i = 1, 2, 3 intersect with B 9
2
but they are disjoint in

B9, which is a contradiction to Lemma 4.9.

�

The proof of Theorem 4.1 The proof follows from Lemma 4.10 and scaling
argument.

The following is an interior regularity theorem.

Theorem 4.11. Let p be a real number with 1 < p < ∞. There is a small
δ = δ(λ, p, n,R) so that for all Ω = ∪K

i=0Ω
i where Ω0 := Ω \ ∪K

i=1Ω
i and Ωi’s for

i = 1, . . . ,K and Ω are (δ, 9)-flat and A =
∑i=K

i=0 AiχΩi where Ai’s are uniformly
elliptic and (δ, 9)-vanishing on Ωi and for all f ∈ Lp(B4;R

n) , if u is a weak
solution of the elliptic PDE (1) in B4, then u belong to W 1,p(B1) with the estimate

‖∇u‖Lp(B1) ≤ C(‖u‖Lp(B4) + ‖f‖Lp(B4)),

where the constant C is independent of u and f .

Proof. The proof follows from the global regularity theory in the next section with
u replaced by φu for an appropriately chosen cutoff function φ. �

Remark 4.12. We can change the ball B4 in Theorem 4.11 to any ball BR for
R > 1.

4.2. Global Estimates.

Definition 4.13. We say that u ∈ H1
0 (Ω) is a weak solution of (1) if

(79) −
∫

Ω

A∇u∇ϕdx =

∫

Ω

f∇ϕdx ∀ϕ ∈ H1
0 (Ω).

In this section our interest is the following case.

ΩR ⊃ TR with D(ΩR, TR) small,

where D denotes the Hausdorff distance. We consider weak solution of
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(80)

{

−div(A(x)∇u(x)) = divf in ΩR

u = 0 on ∂wΩR

Here the n × n coefficient matrix A is A =
∑i=K

i=0 AiχΩi where Ω0 := Ω \ ∪i=k
i=1Ω

i

and Ai’s for i = 0, · · · ,K are in the John-Nirenberg space BMO [17] of the func-
tions of bounded mean oscillation with small BMO seminorms and Ω and Ωi’s are
Reifenberg flat domains for i = 1 . . .K.

Definition 4.14. u ∈ H1(ΩR) is a weak solution of (80) in ΩR if
∫

ΩR

A∇u∇ϕdx = −
∫

ΩR

f∇ϕdx for any ϕ ∈ H1
0 (ΩR)

and u’s 0-extension is in H1(BR).

In ([3]), the following Lemmas were proven for A without discontinuity.

Lemma 4.15. [3] There is a constant N1 > 0 so that for any ε > 0, there exists a
small δ = δ(ε) > 0 with A uniformly elliptic and (δ, 4)-vanishing, and if u ∈ H1

0 (Ω)
is a weak solution of (80) with B+

4 ⊂ Ω4 ⊂ B4 ∩ {xn > −δ} and

(81) {x ∈ Ω1 : M(|∇u|2) ≤ 1} ∩ {x ∈ Ω1 : M(|f |2) ≤ δ2} 6= ∅,
then

(82) |{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩B1| < ε|B1|.

Corollary 4.16. [3] There is a constant N1 > 0 so that for any ε, r > 0, there
exists a small δ = δ(ε) > 0 with A uniformly elliptic and (δ, 4r)-vanishing, and if
u ∈ H1

0 (Ω) is a weak solution of (80) with B+
4r ⊂ Ω4r ⊂ B4r ∩ {xn > −δr} and

(83) {x ∈ Ωr : M(|∇u|2) ≤ 1} ∩ {x ∈ Ωr : M(|f |2) ≤ δ2} 6= ∅,
then

(84) |{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩Br| < ε|Br|.

Now we consider how to control the measure of the set where |∇u| is big for the
case that A has big discontinuity along the subdomains.

Lemma 4.17. There is a constant N1 > 0 so that for any ε > 0, there exists a
small δ = δ(ε) > 0 with Ai’s are uniformly elliptic and (δ, 9)-vanishing on Ωi for
i = 0 . . .K and Ω and Ωi’s are (δ, 9)-flat for i = 1 . . .K, and if u ∈ H1

0 (Ω) is a
weak solution of (80) with B+

4 ⊂ Ω4 ⊂ B4 ∩ {xn > −4δ} and

(85) {x ∈ Ω1 : M(|∇u|2) ≤ 1} ∩ {x ∈ Ω1 : M(|f |2) ≤ δ2} 6= ∅,
then

(86) |{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩B1| < ε|B1|.

Proof. If B4 intersects with only Ω0, then this lemma is nothing but what Lemma
4.15 says. Note that B4 cannot intersect with more than two subdomains by the
same argument in the proof of Lemma 4.10. (considering Ωc as (δ, 9)-flat for any
sufficiently small δ). Assume that B4 intersects with Ω0 and Ωl for any l = 1 . . .K.
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First suppose dist(∂Ωl, ∂Ω) < γ in B4 for some γ > 0. Then there exist pl ∈
∂Ωl ∩ B4 and p ∈ ∂Ω ∩ B4 such that dist(p, pl) < γ. Since Ωl are (δ, 9)-flat,
P9δ
l (pl)∩B4 ⊂ Ωl where Pδ

l (pl) is the (n−1) dimensional plane which is translated
hyperplane at pl by δ along the normal direction toward Ωl. Let us say yl is the
intersection point between P9δ

l and vertical line of P9δ
l passing through pl. Then

the dist(yl, {x ∈ B4 : xn = −4δ}) < 9δ+γ+4δ = 13δ+γ. Note that P9δ
l ∩B4 ⊂ Ωl.

Since distance function between P9δ
l ∩B4 and {x ∈ B4 : xn = −4δ} is nonnegative

harmonic, we can apply Harnack Inequality.

max
y∈P9δ

l ∩B4

dist(y, {x ∈ B4 : xn = −4δ})

≤ C min
y∈P9δ

l ∩B4

dist(y, {x ∈ B4 : xn = −4δ})

≤ Cdist(yl, {x ∈ B4 : xn = −4δ})
= C(13δ + γ)

where C depends on the dimension n. One can choose small γ0 and δ0 so that
C(13δ0 + γ0) < δ for δ in Lemma 4.15. We conclude by Lemma 4.15.

Now suppose dist(∂Ωl, ∂Ω) ≥ γ0 in B4 for the γ0 above. For any y ∈ S1 = {x ∈
B1| x ∈ ∂Ωl }, Bγ0(y) has two subdomains and Bγ0(y) ∩ ∂Ω = ∅. From (85), there
exists x0 ∈ Ω1 such that

M(|∇u|2)(x0) ≤ 1 and M(|f |2)(x0) ≤ δ2.

As we showed in the proof of Lemma 4.10, there is a constant N1 so that for any
ε > 0, there exists δ > 0 so that

(87) |{x ∈ Ω : M(|∇u|2)(x) > λ1N
2
1 } ∩B γ0

4
(y)| < ε|B γ0

4
(y)|.

where λ1 > C23n+1

γn
0

. Also for any y ∈ S2 = {x ∈ B1| x ∈ ∂Ω }, B+
γ0

⊂ Ω0 ⊂
Bγ0 ∩ {xn > −γ0δ} in appropriate coordinate system. By applying Corollary 4.16,
there is a constant N1 so that for any ε > 0, there exists δ > 0 so that

(88) |{x ∈ Ω : M(|∇u|2)(x) > λ1N
2
1 } ∩B γ0

4
(y)| < ε|B γ0

4
(y)|.

For any y ∈ T = {x ∈ B1| min(dist(x, ∂Ωl), dist(x, ∂Ω)) > γ0

4×5 }, B γ0
20
(y) ⊂ Ωi for

i = 0, l. Then by Lemma 4.7 there is a constant N1 so that for any ε > 0, there
exists δ > 0 so that

(89) |{x ∈ Ω : M(|∇u|2)(x) > λ2N
2
1 } ∩B γ0

20×4
(y)| < ε|B γ0

80
(y)|

where λ2 > C25n+15n

γn
0

.
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Since B ⊂ U := {Br(y)| r < γ0

4×5 , y ∈ S1∪S2 }∪{Br(y)| r < γ0

80×5 , y ∈ T }, by Vitali
Covering Lemma, there are disjoint set {Bri(yi)}∞i=1 ⊂ U ⊂ B2 s.t. B1 ⊂ ∪iB5ri(yi)

|{x ∈ Ω :M(|∇u|2)(x) > N2
1 } ∩B1|

<
∑

i

|{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩B5ri(yi)|

< ε
∑

i

|B5ri(yi)| < ε5n
∑

i

|Bri(yi)|

< ε5n|B2| < ε(10)n|B1|.

Here we used (87), (88) and (89). �

Corollary 4.18. There is a constant N1 > 0 so that for any ε > 0, there exists
a small δ = δ(ε) > 0 with Ai’s are uniformly elliptic and (δ, 9)-vanishing on Ωi for
i = 0 . . .K and Ω and Ωi’s are (δ, 9)-flat for i = 1 . . .K, and if u ∈ H1

0 (Ω) is a
weak solution of (80) with B+

4r ⊂ Ω4r ⊂ B4r ∩ {xn > −4δr} and

(90) {x ∈ Ωr : M(|∇u|2) ≤ 1} ∩ {x ∈ Ωr : M(|f |2) ≤ δ2} 6= ∅,
then

(91) |{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩Br| < ε|Br|.

Proof. Then proof is given by Lemma 4.17 and scaling argument. �

The following lemma shows that same result of Lemma 4.17 holds for any ball
intersecting with Ω.

Lemma 4.19. There is a constant N1 > 0 so that for any ε > 0 and 0 < r < 1,
there exists a small δ = δ(ε) > 0 for all Ω = ∪K

i=0Ω
i where Ω0 := Ω \ ∪K

i=1Ω
i

and Ω and disjoint subdomains Ωi’s for i = 1, . . . ,K are (δ, 45)-flat and for any

A =
∑i=K

i=0 AiχΩi where Ai’s are uniformly elliptic and (δ, 45)-vanishing on Ωi,
and if u ∈ H1

0 (Ω) is the weak solution of −div(A∇u) = divf in Ω ⊃ B4r and if the
following property holds:

(92) {x ∈ Ωr : M(|∇u|2) ≤ 1} ∩ {x ∈ Ωr : M(|f |2) ≤ δ2} 6= ∅,
then

(93) |{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩Br| < ε|Br|.

Proof. If B4r ∩ ∂Ω = ∅, then by an interior estimate 4.1 we can conclude. Assume
that B4r ∩ ∂Ω 6= ∅. Note that Br ⊂ B5r(y) for some y ∈ ∂Ω. By (92), there exists
x0 ∈ Br ⊂ B5r(y) such that M(|∇u|2)(x0) ≤ 1 and M(|f |2)(x0) ≤ δ2. Since Ω is
(δ, 45)-Reifenberg flat, we have, in appropriate coordinate system,

B+
20r ⊂ Ω20r ⊂ B20r ∩ {xn > −20δr}.

Here we use the corollary 4.18 to the ball B5r(y) with ε replaced by ε
5n . Then

|{x ∈ Ω : M(|∇u|2)(x) > N2
1 } ∩Br| < |{x ∈ Ω : M(|∇u|2)(x) > N2

1 } ∩B5r(y)|
<

ε

5n
|B5r| = ε|Br|.

�
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Corollary 4.20. (cf.[3]) Suppose that u ∈ H1
0 (Ω) is the weak solution of −div(A∇u) =

divf in Ω. Assume Ω = ∪K
i=0Ω

i where Ω0 := Ω \ ∪K
i=1Ω

i and Ωi’s for i = 1, . . . ,K

and Ω are (δ, 45)-flat and A =
∑i=K

i=0 AiχΩi where Ai’s are uniformly elliptic and
(δ, 45)-vanishing in Ωi. Assume that

(94) |{x ∈ Ω : M(|∇u|2) > N2
1 }| < ε|B1|.

Let k be a positive integer and set ε1 = ( 10
1−δ )

nε. Then we have

|{x ∈ Ω : M(|∇u|2) > N2k
1 }|

(95)

≤
k
∑

i=1

εi1|{x ∈ Ω : M(|f |2) > δ2N
2(k−i)
1 |+ εki |{x ∈ Ω : M(|∇u|)2(x) > 1}|.(96)

Proof. We prove by induction on k. For the case k = 1, set

C = {x ∈ Ω : M(|∇u|2)(x) > N2
1 }

and

D = {x ∈ Ω : M(|f |2)(x) > δ2} ∪ {x ∈ Ω : M(|∇u|2)(x) > 1}.

Since Ω is (δ, 45)-Reifenberg flat, Ω is (δ, 1)-Reifenberg flat. Then in view of (94),
Lemma 4.19 and Theorem 3.6, we see |C| ≤ ε1|D|, and so our conclusion is valid
for k = 1.

Assume that the conclusion is valid for some positive integer k ≥ 2. Set u1 = u/N1

and corresponding f1 = f/N1. Then u1 is the weak solution of

(97)

{

−div(A∇u1) = divf1 in Ω

u1 = 0 on ∂Ω

and the following inequality holds:

|{x ∈ Ω : M(|∇u1|2)(x) > N2
1 }| < ε|B1|.

By the induction assumption and from a simple calculation, we deduce the following
estimates:

|{x ∈ Ω : M(|∇u|2)(x) > N
2(k+1)
1 }|

= |{x ∈ Ω : M(|∇u1|2)(x) > N2k
1 }|

≤
k
∑

i=1

εi1|{x ∈ Ω : M(|f1|2)(x) > δ2N
2(k−i)
1 }|

+ εk1 |{x ∈ Ω : M(|∇u1|2)(x) > 1}|

≤
k+1
∑

i=1

εi1|{x ∈ Ω : M(|f |2)(x) > δ2N
2(k+1−i)
1 }|

+ εk+1
1 |{x ∈ Ω : M(|∇u|2)(x) > 1}|.

This estimate in turn completes the induction on k. �
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Finally we are ready to prove the main theorem.

Theorem 4.21. Let p be a real number 1 < p < ∞. Then there is a small δ =
δ(Λ, p, n,R) > 0 so that for all Ω = ∪i=K

i=0 Ωi where Ω0 := Ω \ ∪i=k
i=1Ω

i and Ω and
disjoint subdomains Ωi’s for i = 1, . . . ,K are (δ, R)-Reifenberg flat, for all A =
∑i=K

i=0 AiχΩi where Ai’s are (δ, R)-vanishing in Ωi and uniformly elliptic for i =
0, . . . ,K, and for all f with f ∈ Lp(Ω,Rn), the Dirichlet problem (1) has a unique
weak solution with the estimate

(98)

∫

Ω

|∇u|pdx ≤ C

∫

Ω

|f |pdx,

where the constant C is independent of u and f .

Proof. First we will consider the case p > 2. The case p = 2 is classical and the
case 1 < p < 2 will be proved using duality. Without loss of generality, we assume
that

(99) ‖f‖Lp(Ω) is small enough

and

|{x ∈ Ω : M(|∇u|2) > N2
1 }| < ε|B1|

by multiplying the PDE (1) by a small constant depending on ‖f‖L2(Ω) and ‖∇u‖L2(Ω).

Since f ∈ Lp(Ω),M(|f |2) ∈ Lp/2(Ω) by strong p-p estimates. In view of Lemma
3.1, there is a constant C depending only on δ, p, and N1 such that

(100)

∞
∑

k=0

Npk
1 |{x ∈ Ω : M(|f |2)(x) > δ2N2k

1 } ≤ C‖M(|f |2)‖p/2
Lp/2(Ω)

.

Then this esitmate, strong p-p estimates, and (99) imply

(101)

∞
∑

k=0

Npk
1 |{x ∈ Ω : M(|f |2)(x) > δ2N2k

1 } ≤ 1.

Now we will claim that M(|∇u|2) ∈ Lp/2 by using Lemma 3.1 when f = M(|∇u|2)
and m = N2

1 . Let us compute

∞
∑

k=0

Npk
1 |{x ∈ Ω : M(|∇u|2)(x) > N2k

1 }|

≤
∞
∑

k=1

Npk
1

(

k
∑

i=1

εi1|{x ∈ Ω : M(|f |2)(x) > δ2N
2(k−i)
1 }|+ εk1 |{x ∈ Ω : M(|∇u|2)(x) > 1}|

)

=

∞
∑

i=1

(Np
1 ε1)

i

(

∞
∑

k=i

N
p(k−i)
1 |{x ∈ Ω : M(|f |2)(x) > δ2N

2(k−i)
1 }|

)

+

∞
∑

k=1

(Np
1 ε1)

k|{x ∈ Ω : M(|∇u|2)(x) > 1}|

≤ C

∞
∑

k=1

(Np
1 ε1)

k < +∞,
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where we used Corollary 4.20 and (101). Also we can choose ε1 so that Np
1 ε1 < 1

since N1 is a universal constant depending on the dimension and ellipticity. So we
can take ε, and find the corresponding δ > 0, also ε1. By this estimate and Lemma
3.1, M(|∇u|2) ∈ Lp/2(Ω). Thus ∇u ∈ Lp(Ω).

Now suppose that 1 < p < 2. For any g ∈ Lq(Ω,Rn) and AT , a transpose matrix
of A, consider the following equation.

(102)

{

−div(AT (x)∇v(x)) = divg in Ω

v = 0 on ∂Ω

Then
∫

Ω

f∇vdx = −
∫

Ω

divfvdx =

∫

Ω

div(A∇u)vdx

= −
∫

Ω

(A∇u)(∇v)dx = −
∫

Ω

∇u(AT∇v)dx

=

∫

Ω

udiv(AT∇v)dx =

∫

Ω

u(−divg)dx =

∫

Ω

∇ugdx.

By above, note that ‖∇v‖Lq ≤ C‖g‖Lq ,

‖∇u‖Lp(Ω) = sup
06=g∈Lq(Ω)

|
∫

Ω

∇ug|

‖g‖Lq(Ω)
≤

|
∫

Ω

∇vf |

‖g‖Lq(Ω)

≤ ‖∇v‖Lq‖f‖Lp

‖g‖Lq

≤ C‖f‖Lp ,

which completes the proof. �
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