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APPENDIX A: OPTIMIZATION ALGORITHMS

A.l. Low-dimensional setting. Solving the smoothed estimating equations (3) and (4)
are equivalent to minimizing the convex loss functions Ek (1) (k=0,1,...,m) given in (6) for
which standard quasi-Newton methods can be applied. Here we use the Barzilai and Borwein
(BB) method [1], which is a well-known technique in optimization that approximates the
secant equation by two consecutive points to find a nearly Newton step size. See Section 3 of
[6] for an application of the BB method to non-censored smoothed quantile regression.

Note that each Ly,(+) for k > 1 is a shifted version of Lo(-), so that for any 3,3’ € RP,

VIk(B) — VLK(B) = VLo(B) ~ VLo(B), k=1,....,m
At the kth quantile level and given the previous estimates Eg, e ,,@k,l, the gradient of Ek (+)
is given by

n k—1

VI(B)=VLo(B) - *ZZKh —a}B)){H(7j41) — H(r))}@:.

=1 j=0

With the above preparations, we summarize the BB method for solving mingeg» Ek (B) in
Algorithm 1.

Algorithm 1 Barzilai-Borwein gradient descent method for minimizing Ek()

Input: Censored data {(y;, z;, A;)}i—;, current quantile level 7, € (0,1), previous estimates { Bj }?’:é

initial values ,@]go) = Bk—l’ bandwidth h, step size upper bound amax, tolerance level e.

1: Compute ,@l(fl) — '@l(cO) — ka(ﬁl(fo))

2: fort=1,2...do
o B0 _ B

a1 |stl3/(st. 9t). v + (st,9t)/ll9tl13
at +min{oy 1,4 2, amax} if (s¢,g¢) > 0, and ay < 1 otherwise

4
5
6:  Update ,B(t+1) — B(t) ka(ﬁg))
7: end for when ||VLk(5k )HQ <e

(=0 g VILBY) — v BIY) = vIe(BY) - ve(a! Y

b

A.2. High-dimensional setting. In the high dimensional regime, we need to solve the
following weighted ¢ -penalized programs sequentially:

(A.1) Br = B(r) € azgrﬂrgin{fk(ﬁ) + Ao Blh}, k=0,...,m
ERP
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where o denotes the Hadamard product, and Ay, = (Mg 1,..., A; )" may depend on the previ-

ous estimates {BJ }?;1. To this end, we apply the iterative local adaptive majorize-minimize
(I-LAMM) algorithm proposed in [5].

To illustrate the basic ideas, consider the general problem of minimizing a nonlinear func-
tion f(-) on RP. Starting at a given point 3y, the majorize-minimize (MM) algorithm involves
two steps: first, construct a majorizing function g(- | By), satisfying

9(Bo|Bo) = f(Bo) and g(B|Bo) = f(B) forany 8 € R¥;

global majorization property

secondly, update By by B1 := argmingcg, g(3]Bo) [8]. Noting that

majorization minimization

f(B1) < 9(B1]Bo) < 9(Bo|Bo) = f(Bo),

the objective value of such an algorithm is non-increasing in each step. In fact, the global
majorization property is not necessary to ensure non-increasing objective values. Instead, we
only need the following local majorization property

9(Bo|Bo) = f(Bo) and g(B1]Bo) > f(B1).

To construct a proper majorizing function for Ek() around 3y, we define an isotropic
quadratic function

F(B:6,80) := L.(Bo) + (VLi(Bo), B — Bo) + g”ﬁ — Boll3

for some ¢ > 0. It is easy to see that F'(Bo;¢,B0) = Ek(,ﬁo). Using such a surrogate
loss function, the weighted ¢;-penalized program mingeg»{F'(3; ¢, B0) + || Ax o B||1} ad-

mits a closed-form solution 31 = S (B — Vik(ﬂo)/qﬁ, /@), where Sy (8, A) =
(sign(Bj) max{|B;| — Ak,j,0})j=1,.,p is the soft-thresholding operator. Moreover, the
quadratic coefficient ¢ > 0 should be sufficiently large so that the local majorization prop-
erty F'(B1;¢,80) > fk(ﬁl) is satisfied. Starting with a relatively small value ¢ = ¢q, we
iteratively increase ¢ by a factor of v > 1 and compute

B = Ssoe(Bo — VLi(Bo)/bes Ar/de) with ¢ =70, £=0,1,....

until the local majorization property holds. Repeating this procedure yields a sequence of
iterates {3; }+—o,1,... until the stopping criterion is met, say || 311 — B¢||2 < €. We treat ¢g, 7y, €
as internal optimization parameters; the default choice is (¢, 7, ¢) = (0.5,1.5,107°).

APPENDIX B: PROOFS OF THE MAIN RESULTS IN SECTION 3.2
To begin with, we revisit and define some notations that will be frequently used. For prede-
termined grid points 7, =79 <71 <+ < Ty = Ty, We write 37 = B*(7;) and B; = B(7;),
j=0,...,m. Since the estimators {,@] }Lo are constructed sequentially, the statistical error

of Bj at quantile level 7; depends on the accumulated errors of Bo, cee, Bj—l-
For every r > 0, define the local ellipse O(r) = {§ € RP : ||d]|x < r} under the ¥-induced
norm. Under Condition 3.2 on the (random) feature vector « € R?, for every ¢ € (0, 1] we set

(B.1) ns =inf{n > 0:E{(z"v)*1(|z"v| >n)} <4 forallveSP~'},

where z = ¥ 71/2x. Since E(2"v)? = 1 for any v € SP~!, 55 is well-defined for each 4, and
depends implicitly on the underlying distribution of z. Throughout the proof, we write

T —-1/2 .
zi = (Zi1,- - 2ip)" =8 /af:@-,zzl,...,n.
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For a non-negative kernel function K (-) and a bandwidth h > 0, we write

Kp(u)=h"'K(u/h), K,(u)=K(u/h) and K (u / K(t

B.1. Technical lemmas. We first collect several technical lemmas that serve as the
building blocks for proving the main results.

LEMMA B.1 (Convexity lemma). For a vector-valued function Q(3) : RP — RP with
positive semi-definite Jacobian, define the corresponding divergence function D = D¢ : RP x

R? —[0,00) as D(B1,B2) = (Q(B1) — Q(B2), B1 — B2). For any 8,8’ € R? and n € [0,1],

we have
DB +n(B-08),8)<nD(B,8).

Lemma B.2 below provides a Bernstein-type inequality for the /2-norm of a sum of cen-
tered random vectors, which will be frequently used to bound the smoothed estimating func-
tions.

LEMMA B.2. Assume Condltlon 3.2 holds, and let {&;}'_, be independent random vari-
ables satisfying E(&2|x;) < 02 and |&;| < M for some M 2 o > 0. Then, for any t > 0,

1 n
— 320\/§+0\/%+Mcp4t
n = ) n n 3n

Z(ﬁizi —E&zi)
holds with probability at least 1 — e™!, where (, = maxgex ||z||s-1.

Lemma B.3 provides concentration inequalities for some of the stochastic terms in the
estimating functions Qo(-) and Q;(-) (j > 1).

LEMMA B.3. Letj=0,1,...,mandt>0.
(i) With probability at least 1 — e ?,

~ t
1Q0(8}) — EQo(8))]n-1 < 27 (\/7++\/>+Cp3n>
where Ty = max(719,1 — 79).
(\/7 \/; Cp?m)

(i) With probability at least 1 — e?,
1 _ _
- > (1-E) / { Ky — 278" (u) — Ku(y: — 278" (7;)) }dH (u) -

i=1 7j

1/2 « [DF1 9cx b
<miw; -5 Vo g G

where wj = H(7j+1) — H(7;) = log( 17y,

1-7j41

LS B i - @8

i=1

(iii) With probability at least 1 — e ¢,

»-1




The following lemma concerns the first-order property of the smoothed estimating func-

tions @J() in (3) and (4). Define the corresponding symmetrized Bregman divergence
D :RP x RP — [0,00) as

(B.2) D(B1,82) = (Q;(B1) — Q;(B2), 81 — Ba2) = (Qu(B1) — Qu(B2), B1r — Ba)-

Note that the divergence D is independent of j.

LEMMA B.4 (Restricted strong convexity). Assume Conditions 3.1-3.3 hold, and let
h,r >0 satisfy 4ny,4m < h < 1 with 1,4 defined in (B.1). Then, for any 0 < j < m and

t>0,
> D(B,85;5) 23, g /hp / _th
pe o) |18 — BIIE ~ 42

with probability at least 1 — ™!, where c =1/4 4+ 1/48 ~ 0.27.

For 7 =0,1,... and r > 0, define

(B.3)
wj(r)=  sup *Z{Kh — Knp(yi — i B)) }os + Hi(B— 37)||
BeB;+6(r) -1
(B.4)
wj(r) = sup fZA {Kn(@iB — i) — Kn(x[ B — i)} — J;(B-B))||
BeB;+O(r) st

where J; = J(1;) = E{g(mT,Bﬂw)a:ccT} and H; = H(7;j) = E{f, (2" B]|z)zz"}. The fol-
lowing lemma provides upper bounds for the two suprema w;(r) and w;(r) for any given
7> 0.

LEMMA B.5.  Assume Conditions 3.1-3.3 hold, and write mj, = sup,,cso—1 E|z u|* (k =
3,4). Let j =0,1,...,m and r > 0.
(i) With probability at least 1 — e~ !,

n

1 = - *
(B.5) sup —Z(l —E){Kn(y; — x;B8) — Kn(yi — =} B}) } i
BEB;+O(r) n i=1

- [p+1
5 (Hufm4)1/2 pnT T

provided that the “effective” sample size satisfies nh 2, Cg (p +t). Moreover, for any 3 €

B; +0(r)

»-1

E{Kh(y — xT,@) - Rh(y - wT,B;)}:C + HJ<6 - ,6;() < ll (0.5m3r + Kvlh) - T.

»-1

(ii) With probability at least 1 — e~*,

1 - [ T [ T Q%
(B.6) sup  ||= Y (1= E)A{ Kn(@] B — i) — Kn(@] B — i) b
Bep;+o(r) || n-t
_ +1t
S (/iugm4)1/2 pnT T,
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provided that nh 2 {f, (p +t). Moreover, for any B € 3; + O(r),

EA{Kp(x"B—y) — Kn(z"8; —y)}x —I;(B—3;) <11 (0.5mgr + kih) -7

n-1

LEMMA B.6. Assume Conditions 3.1-3.3 hold. For any 71, < 11 < 17, < 11,

IS a-E /Kh B (u))dH (u) -

sup
TE [Tl 77—u]

»-1

Tu — Tl [p+logn+t logn +t
1—7, n n

holds with probability at least 1 — e~

Moreover, Lemma B.7 provides upper bounds on the approximation error (see (B.12) in
the proof of Theorem 3.1), which consists of the smoothing and discretization errors. Let

Qo(8) =EQo(8).

LEMMA B.7. Foreachj=1,...,m

(B.7)

j—1
‘ro@;) =S wE{K(y - 276w}

=0

$-1

|_|

5 1R2h2{1+H (15) — H(mo }—i— f/f Z’we To+1 — T¢),

where wy = H(7y41) — H (7). In particular, (B < O.5l1/<;2h2.

The next lemma establishes the asymptotic uniform equicontinuity of the centered process
Gn () in €°°([11,7r7]). This is an equivalent definition to asymptotic tightness, and is an
important step towards the weak convergence stated in Theorem 3.3.

LEMMA B.8 (Asymptotic uniform equicontinuity). Assume the conditions of Theo-
rem 3.3 hold, and let {ay}n>1 be a normalized sequence such that ||a,||sx. = 1. Then, for
any x >0,

lim hmsup]P’{ sup  |Gn(11) — Gp(m2)| > x} =0,

=0 n—oo |71 —72| <8

where G,,(+) is defined in (20).

B.2. Proof of Theorem 3.1. We first prove a uniform upper bound over the grid of 7-
values—{79, 71, ..., Tm }. That is, with probability at least 1 — Cyn "1,
(B.8) 18; = Bjlls =11B(r) = B* ()l <750 §=0,1,...,m

for a sequence of radii {r;};=o,1,..m and some absolute constant C; > 0. To begin with,
define a crude (sub-optimal) convergence radius ¢ = h /(4m /4) with 7y /4 given in (B.1).

Accordingly, define “intermediate" points 5] (1—u;)B; —l—ujﬂj, where

=1 1fﬂjeﬁ +0(r®),

uj =sup {u € [0,1]:u(B; - B) € O()} {e (0,1) if B; ¢ B +O(r9).
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It is easy to see that ,Ej = Bj ifﬁj €6+ O(r®), and Ej € B; +00(r®) ifﬁj ¢ B; +0O(r)).
Here 0O(r) denotes the boundary of ©(r). In either case, we have Bj €8+ o(r?).

Recall the symmetrized Bregman divergence D (31, 32) = (@j(ﬁl) - @j(,ﬁg),ﬂl — B2)
defined in (B.2). Applying Lemma B.1 yields that, for each j =0, 1,...,m,

D(B;,B5) <uj- D(B,8;) = u; - (Q;(8)) — Q;(87). B; — B}).

Since Bj solves the estimating equation @j (BJ) =0, by the Cauchy—Schwartz inequality we
have

D(B,8) <uj - (—Qi (81,85 — B < 1Q;(B)ls— - 18; — B=.

For some curvature parameter x > 0 to be specified, define the event

(B.9) F= ﬂ{ ) >k ||B— B3 forall B€ B +0O(r )}

Conditioning on F, it follows that
(B.10) 18 = B;lls < &7 MQi (B)s—+, §=0,1,....;m

Next we derive upper bounds for {||@j (B;)l[s-1}j=0,1,....,m sequentially. For each j, we
decompose @j(ﬁj*) as

Jj—1 j—1
Qi(B]) =Qu(B;) — Qu(B;) =D wi(Ar+ Ap) + Qu(B}) = > wB{Ky(y — x" 8} )z}
=0 =0
where Qo(8) = EQo(8), wy = H(r4+1) — H(7), and
B.11) 342%ZL{K}L(%_—@B@)—Kh(yi—wfﬂ?)}wia
. A¢= 3 20 (1= E) Ky (y; — 8] );.
By the triangle inequality,
(B.12)
j—1
1Q;(B))[s-+ < 1Qo(85) — Qo(B5) |- + Y we([Acls + [|Al5)
(=0

~
statistical error of the jth estimating equation

accumulated error

, J=1,...,m.
-1

j—1
=0

approximation error

In particular, “@0(,88)”271 < H@O(ﬁg) —Qo(BY)|ls-1 + |Qo(B8f)|I-1. For the approxima-
tion error term in (B.12), by Lemma B.7 we have

7j—1
(B.13) H%(ﬁ;) S wE{ Ry - 27}
=0 by

1 7j—1
1 J=
2l1/€2h2+§w]a<a+§wja with a —*l1/€2h2+ff s>,
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For some ¢ > 0 to be determined, define the second event

(B.14) G= {Ogngx 1Q0(8;) = Qo8-+ \/ | max_ (1Al < 6},

where the A,’s are given in (B.11). Conditioned on F NG, it follows from (B.12)—(B.14) that
j—1

1Qu(B) s+ <d+a, [Q;B)lls+ <d+a+> wi(d+a+|Ads), j=1,...,m.
/=0

Based on the above general bounds, we iteratively control || Bj — Bjlls and ||Bj||z—1,
starting at j = 0. By (B.10),

180 = Billz < M| Qo(B5)lls+ <ro:=r""(5+a).

Provided o < r°, the intermediate point Bo falls into the interior of the local region 3 +
O(r®). Via proof by contradiction, we must have Bo = By and hence By € B85+ ©O(ro).

Turning to (ﬁl,,ﬁl) it follows from (B.10) with j = 1 that ||3; — Bill e <k H{o+a+
wo(||Aglg-1 +6 6 +a)}. Note that Ao depends on the preceding estimate 3. Since, as proved
in the last step, B € B4 + O(ro) conditioned on F N G, it follows that

180l < @o(ro) + [H(70) (Bo — B) -+ < wo(ro) + Fro,
where g (-) is defined in (B.3). Conditioned further on {zg(rg) < fro}, this implies
181 — Btllg <71 = {6+ a+wo(2fro + 5 +a)}.

Aslong as ry < ro, 51 lies in the interior of 37 + @(ro), which enforces B\l = ,51 and hence

Bi € B +06(r).
Applying the above argument repeatedly, at the j-th step (1 < j < m), we obtain that
conditioned on {w;_1(rj—1) < frj—1},

7j—1
18; =B lls < {5+a+zw] |Aeuzl+a+a)}

=0

1 =
(B.15) §H{é—I—a—l—ng(Zfrg—l—(S—l—a)}::Tj.

=0

Provided r; < <, by way of contradiction we must have ﬁ] ﬁj € B; + O(r;). Equiva-
lently, the above sequence of radii {r;}"" o can be recursively defined as

= (1426 " fwjo1)rjo1 + & w1 (6 +a), j=1,...,m, and 7o =r"'(6 +a),
where a is given in (B.13). Taking C' = x~1(2f + 1), it follows that
(B.16)
i1 i1 |-\ C
ri <(14+Cwj_1)rj—1 < ---SH(l—i—ng)-roSexp <C’ng> o= (1_Tj> 7.

=0 =0

Thus far we have established the result Bj €B; +06(rj) (j=0,1,...,m) as a determin-
istic claim, but conditioned on the “good" event

m—1

]-'ﬁ Q N ﬂ {Wg(m) S?T@}

=0
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with properly chosen «,6 and {r;}*,. By Lemmas B.4 and B.3, we choose x = (gr;)/2 and
§ = +/(p+logn)/n+ (¢ log(n)/n, so that P(F¢) < (m + 1)/n? and P(G°) < 2(m + 1)/n?
as long as nh 2 p + logn. With this choice of §, and since a = 0.5l1k2h* + (f/f)6* <
h? +n~1/2, we obtain from (B.16) that

C C
1- 1- 1 1
7“j§< TL> -rox( TL> ! [p+ ogn+cp ogn 42
11— 1—1) = n n

Moreover, it follows from Lemma B.5 that with probability at least 1 — m /n?,

Ip+1
we(re) S (m}l/2 p+nzgn+m37‘g+h> -rp forall £=0,1,...,m—1,

provided nh 2 Cg (p + logn)'/2. By the prescribed choice of the bandwidth h = h,, =

{(p + logn)/n}? with v € [1/4,1/2), and the sample size requirement n > g,f/“‘” (p+
logn)(1/2=1/(1=7)  we conclude that the above “good" event occurs with probability at least
1—Cin~ Y, and

¢ / ¥
1-— 1 1
( TL) g ! pxosn =T <7 = <p+ ogn> forall j =0,1,...,m.
1—7 = n n

This proves the claim (B.8).

To establish the uniform rate of convergence for {B (1), 7 € |11, Tv]}, define disjoint in-
tervals Z; = [7j,7j41) for j =0,1,...,m — 1, and Z,,, = {7, }. For any 7 € [r,7y], by
the definition of B() there exits a unique index j € {0,1,...,m} such that 7 € Z; and
3(7') = B(Tj) = Ej. Hence, conditioned on the “good" event that occurs with high proba-

bility,
1B() = B*(T)lls = 185 — B*(T)lls <185 — Bills + 18" (r) — B* (m3) |l < rj + f15".

Taking the maximum over j on the right-hand side, and then the supremum over 7 € [77,, /]
on the left, we obtain

sup [|B(r) = B*(7)lls < max rj+ f716" =y + £,
0<j<m - -

TE[TL,TU]

completing the proof. O

B.3. Proof of Theorem 3.2. Similarly to the proof of Theorem 3.1, we divide the proof
into two stages. In stage one, we prove a uniform bound over the grid points {79, ..., 7y, }; in
stage two, we prove the claimed bound (16) which holds uniformly over the interval |77, 7¢/].
STAGE ONE. As before, we write J; = J(7;) and H; = H(7;) for j =0,...,m, and define
the discretized integrated error up to 7; as

7j—1
(B.17) 50 ::J(](,BO —,36) and gj :IJ]’(BJ' —,3;)+ngHg(,33 — BZ), ] = 1, o, M.
N ———’

=0
current step

preceding steps

Let {r;}7" be the sequence of radii from the proof of Theorem 3.1. We will show that

~ N +logn
B19  sw ||ej+Qj|\z-1,s<mi/2m+m3rj+h>.rj,
J= m

20ty
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holds with probability at least 1 — Cyn~! for some absolute constant Cy > 0, where

(B.19) Qi =0Qo(85) = Z{AKh xf B35 —y;) — mo}; and
=1

1 n
(B.20) Q;:nZ{A Kp(x ngKh —a:fﬁz‘)—m}wi for j € [m).

=1

We prove the claim (B.18) in a sequentlal manner, conditioned on some “good" events.
Set

m
A= {IIB; - Bllls <7}, satisfying P(A) > 1~ Cyn,
j=0
For an increasing sequence 0 < A\g < \; < --- < )\, to be determined, define the event

m—1
(B.21) E= () {mi(ry) <Xj i, wilr)) <X ri [ V{wi(rm) < A -7m }s

§=0
where @ (-)’s and w;(+)’s are defined in (B.3) and (B.4), respectively. Recall that @g (Bo) =
Q1(B1) =+ = Qm(Bm) =0. Conditioning on the event AN &, we have

180 + Qs+ = |Qo(Bo) — Qo(Bg) — Jo(Bo — Bl < Xoro,
and for j € [m],

j-1
12 + Qs = ||3;(8; — B) — Q;(B)) + Y _ weH(Be — B;)
=0

1 & _ . -t .
+ nz; {AiKh(az;fﬁj — i) — %ngh(yi —x;0;) —To}:]’)i
1= =

»-1

3585 - 8) S Ad R By — i) — K@l — v}
=1

j—1 7j—1 n
N 1 _ N _
N wH (B —B7) + S we - — S {Rnlys — @1 Be) — Knlys — x8))
+Z:0we «(Be ﬁZ)Jrg:oW "i:l{ n(yi — ; Br) n(yi —x; B}z

»-1

=A, in (B.11)

1 o _ ~ _
;ZAi{Kh(wfﬁryi)*Kh(wfﬁf vi) i — 3;(B; — B})
=1

»y-1

j—1
+ > willAr+Hy(By - B)) |5
/=0

Jj—1 Jj—1
< wj(rj) =+ ZUMW@(’W) < /\jTj =+ ng)\ﬂ“g.
=0 £=0

Recall from the definition of r; in (B.15), we have Zj -l wyry < (2?)_1147“]-, and hence

1€+ QFll=- 1<{1+ 2f)~ m} Ajrj, j€[m].
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In view of Lemma B.5 with ¢t = 2logn, we set

+logn .
)\jxmiﬂ\/%—i—mgrj+h, 7=0,1,...,m,

so that event £ in (B.21) holds with probability at least 1 — 2(m + 1)n 2. This proves (B.18).

STAGE TWO. To generalize (B.18) to (16) on the whole process 3 (+), define disjoint intervals
Z; = [1,7j41) for j =0,...,m — 1 and Z,,, = {7, }. For any 7 € |1, 7], there exists a
unique index j € {0,...,m} such that 7 € Z; and @(7’) = Bj. With this notation, the left-
hand side of (16) equals

“max sup
3=0,m e,

)

»-1

o(r) - i”{m | Rt =518 ) )~ AR (a78°(7) =)

where &(7) = Bin (1) — B::.. (7). To control the discretization error, conditioning on the event
ANE we have, foreach j =0,1,...,m

sup [ 3(7){B(7) = B (7)} = 3;(B; — B})|Is

TEL;
< sup [{I(1) = I;3(B; — B))|ls+ + sup [I(1){B} — B*(T)}=-

T€L; T€L;
(B.22) <l f 'mgris* +gf1or <67,
and

J—1 Te4+1
(B.23) sup / H(u){B8(u u)}dH (u Z / H (B, — B})dH (u)
T »-1

J—-l Te+1 R
> [ B - 8w~ (B - p)ar)

<
0=0"Tt »-1
T -~ y 1-— 70 %
+ sup / H(u){8(u) — 8" (u) }dH (u) Slog (1 — > 0"
TEIJ' " »n-1 T]+1

Next we control the approximation error for discretizing the linear process (1/n) >, U;(+).
For any interval Z;, write v(7) = 8*(7) — B; for 7 € I, satisfying [|v(7)|[x < f~ Y7j41 —
7;) by the Lipschitz continuity of 3*(-). Moreover, we have

|EA{ (@8 ()~ vi) — KB - v}
= uzg}glE[Ai{Kh(wfﬁ*(T) — i) — h(wfﬂj —yi) Hu, 2;)]

_ [ (B 0w (=8 |
- 2 [ () ()t s

= sup h- E/oo {K(w+ziv(r)/h) — K(v)}g(x]B8; — hv|x)dv - (u, z)

uesSr—1

oo 1
<7 sup E/_ {/0 K(v—kwx}v(ﬂ/h)dw}dw<v(7),mi)(u,zi>

uesSr—1
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uesSr—1!

<5 o B[ [ Ko+ usto(r)/mavan) - (i), z) w2

<g Sup E|(v(7),2i)(u, z:)| < gllo(7)[ls <7/ (741 — 7).
ueSr—1!

This, combined with Lemma B.5—(ii) with r = f ~15* and t = 2logn, yields that with prob-
ability at least 1 — (m + 1)n =2,

1 - I * I T Q%
(B.24) oies, sup || D A (87 (7) — yi) — K@) i) s
Smre i=1 n-1
nh

as long as nh 2 Cg (p + logn). Similarly, it follows from Lemma B.3—(iii), Lemma B.6 and
the union bound that with probability at least 1 — 2mn 2

’

j—1

sup i;(l—ﬂi){ /T:f_(h(yz‘—wgﬁ*(u))dH(u)—Z—o [_{h(yi—mjﬂZ)dH(u)}wl
n Jj—-1 Te41
ZZ 1-E / {Kn(yi — ;8" (u)) — Kn(yi — ] B7) }dH (u) - z;
i=1 (=0 Te 5
cop 13208 [ Rt st wparo) =

%Z 1-E / Ry — 216 () — Rl — w185 }AH (0) - 2

2

S>0-B) [ Rl - 2B () () -z
i=1 7

+ sup
’TEIj

2
(B.25)

1—19 1/2 |p+logn logn .
Slog<1_7_‘>(m4/ nh + ’% nh 0
J

1_ .
—i—log( T; > ( /p+logn+cplogn> 5
1—Tj+1 n n

forall j =0,1,...,m. Turning to the deterministic approximation error, it can be shown that
forany j =0,1,...,m—1and 7 €Z;,

j—1 T(’+1
{/ Kn(yi — 78" (w))dH (u Z/ K —ch.Tﬂ;)dH(u)}mz

1—’7’0
<1 0%,
~ Og<1—7'j+1>

Together, (B.18) and (B.22)—(B.25) prove the claimed bounds (14)—(16).

»-1

E—l
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It remains to control the bias term EU;(+). Define the non-smoothed version of U;(+) as

Vi(r) =

L

.

L+ / Hyi > 28" (u) }dH (u) — Ail{y; < 93?5*(7)}] x;, 7€ [T, TUl
-

By the martingale property, EV;(7) = 0 for every 7 € [, 77]. Note that

Ui(r) = Vi(r) = (Az‘ [1{y: <xiB* (1)} — Kn(xi B (1) — ui)]

+ /T [Kn(yi — 278" (v)) — T{y: > «’E?B*(U)}]dH(U)> ;.

Following the same calculations that lead to (E.16), we obtain

sup  [[EU(7)[[s-1 = sup  |[E{Ui(r) — Vi(7)}l|s-+ < 0.5lik{1 + log (1=1= ) }h*.

177’(}
TE[TL,TU] TE[TL,TU]

This completes the proof of the theorem. O

B.4. Proof of Theorem 3.3. Assume without loss of generality that ||a,||s = 1; other-
wise, we simply replace a,, by a,/||ay||s. Following the general result in Theorem 1.5.4 of
[15], the claimed weak convergence (22) is a direct consequence of the weak convergence of
finite-dimensional marginals and the asymptotic tightness of G, ().

For the former, via the Cramér—Wold device, it is equivalent to show that for any finite set

of values {Tg}g’:l C [z, ] and (y1,...,70)" € RE,
L L&
(B.26) D UCn(10) =D %G(r),
(=1 (=1

with G(+) defined in (22). Fori =1, ..., n, define centered variables W; = 25:1 Yelan, Uoi(¢))
with Uy;(7) := Ui(7) — BU;(7), so that 3¢, %Gy () = n~/2 27, W;. Moreover,

L
Var(W;) = Var ( Z Yel{Qn, UOz‘(Té)>>

(=1

L
Z Ye, e, - Cov ({@n, Uni(7e,), (@n, Uni(71,)))

2

I
M=

~
Il
-
~
Il
-

1

L
> Y6, - an E{Uui (70, ) Ubi(7e,)" } an

=
L L

=> > e an E{Ui(m,)Ui(m,)" }an

Elzl £2:1
L L

- Z Z Yo, Ve, ‘GEE{UZ'(T&)}E{Ui(Tg2)T}an

l1=14,=1

L L L
- Z Z Ye, Ve, - H (41, £9) = Var (Zw@(@) as n — 0o,

l1=1405=1 (=1

I
M=

~
Il

—_
~
—_

1
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where H (-, -) is defined in (21). The finite-dimensional weak convergence (B.26) then follows
from the central limit theorem.

Turning to the asymptotic tightness of G, (-), an equivalent characterization is the asymp-
totic uniform equicontinuity in probability; see Theorem 1.5.7 in [15] and the definition above
it. That is, for any > 0,

limlimsupPq  sup  |Gp(71) — Gu(2)| > 2 p =0,
0—=0 n—oco |71 —72| <8
which is ensured by Lemma B.8.
Finally, the existence of almost surely continuous sample paths of G(-) follows from Ad-
dendum 1.5.8 in [15]. ]

APPENDIX C: PROOFS OF THE MAIN RESULTS IN SECTION 3.3

C.1. Technical lemmas. In this section, we provide the technical lemmas needed to es-
tablish the validity of the multiplier bootstrap procedure. Recall that e;’s are i.i.d. Rademacher
random variables that are independent of the observed data D,, = {y;, A;, x;}7- ;. Similarly
to (B.2), we define the symmetrized Bregman divergence D’ : R? x R? — [0, 00) in the boot-
strap world as

(C.1) D’ (By,B2) = <@g’(ﬂ1) - @?(52),51 - B2),

which is also independent of j, where @g()’s are the randomly perturbed estimating equa-
tions defined in (7) and (8).

LEMMA C.1 (Conditional restricted strong convexity). Assume Conditions 3.1 and 3.3
hold. Let r = h/(4ny 4) with 11 /4 defined in (B.1), and t > 0. Suppose the “effective" sample
size satisﬁes nh > max{p,(,t'/2}. Then, there exists an event E1(t) with P{E1(t)} > 1 —
(m+3)e™" such that conditioning on & (t),

; 1
inf inf 0676*)2 > and
J{Onmim) e ro(r) R 1B — B~ 27
Db * 1
P* inf inf (Biﬂ*)>f >1—(m+1)e”
JeOumim) e r0(r) R 1B — B~ 27

LEMMA C.2. Assume Condition 3.2 holds. Let {&;}"_, be independent random variables
satisfying |&;| < M for some M >0, and {e;}}'_, are Rademacher random variables inde-
pendent of the data {x;,&;}"_,. Then, there exists an event &y depending on {x;, &} such
that (i) P(£2) > 1 — n~2, and (ii) conditioned on &s,

< Ip+logn
~ n

2

n

%Z(ei - &iZi)

=1

holds with P*-probability (over {e;}}'_,) at least 1 —n~ 2 as long as the sample size satisfies
nz ¢, 2logn.

The following lemma provides upper bounds for two Rademacher weighted stochastic
processes. For j =0,1,...,m and any r > 0, define

(C.2) I'j(r):= sup
BeB;+O(r

Zez{Kh — Kn(yi —xi85) }zi

)

2
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(C.3) TJA(T) = sup
Bep;+0O(r)

)

ZezA {Kh iB—yi)— }Zz

where {e;}""  is a sequence of independent Rademacher random variables that are 1ndepen—
dent of {y;, A;,x;}7_,, and z; = X1/ 2x;

LEMMA C.3. Assume that Conditions 3.1-3.3 hold, and K (-) in Condition 3.1 is lx-
Lipschitz continuous. Given any 0 < r < (, there exists an event E3 with P(€3) > 1 — 3n~1
such that, with P*-probability at least 1 — (m + 1)n_2 conditioned on Es,

1 1
sup  T;(r) <r p+logn my/? + 2 progn )

provided n 2, Cg log n. The same uniform bound also applies to FjA (r).

LEMMA C.4. Assume that Conditions 3.1-3.3 hold, and K (-) in Condition 3.1 is lk-
Lipschitz continuous. Then, there exists an event £, with P(€4) > 1 — (m + 3n+ 1)n"2 such
that, with P*-probability at least 1 — n~2 conditional on &,

sup || 358 B5) —{Q5(B) — @3B} s

BeB;+O(r)

1 1 1/2 1 1/2
<Iml [p+ ogn+m3r+h+42(p ogn)/*(p+logn) .
nh P nh

holds uniformly over j =0,1,...,m, where J; = E{g(z" B} |z)zz" }.

LEMMA C.5. Assume Conditions 3.1-3.4 hold, and let r > 0. Then, there exists an event
Es with P(E5) > 1 — mn~2 such that conditioning on &s,

n j-1 Tet1 N B
oSSm0 B8, - 57) — Wil R~ 2150) — Rl -

niZa{BeeB;+o(m} || i1 =0 /™

+1
Slog (1= TO) : { (m};ﬂ\/ pinzgn +mar + h) T +£_£I}?>;_1Fe(7“)}

holds for all j =1,...,m, where Hy; = E{ f, (" B} |x)xxz"} and T'(r) is defined in (C.2).

The following lemma establishes the asymptotic uniform equicontinuity of the process
Go,() =n"1 23" eilan, Ui(+)) in £°([rr, 7v]), thus validating the asymptotic tightness
of G (-), where Uj(-) is defined in (15).

LEMMA C.6. Assume that the conditions of Theorem 3.6 hold. For any x > 0 and
sequence of vectors a,, satisfying ||a,||xs = 1, conditioned on any observed data D,, =
{(yi, Ai, i}, we have

(C4 lim limsupP*{ sup ‘Gi(ﬁ) - GEL(TQ)‘ > x} =0.

6—=0 n—r00 |’7'1 —7'2|<5

where G, (-) =n~2 3" eilay,, Ui()) with U;(t) defined in (15).

‘Efﬁe)}wi}

n-1
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C.2. Proof of Theorem 3.4. Similar to the proof of Theorem 3.1, we first prove a uni-
form bound over the grid points {7g,..., 7, }. Recall the bootstrapped SEE Q; (B3) given

in (7) and (8), and @? (B\?) = 0. Following the localized argument as in the proof of The-
orem 3.1, for the same radius parameter r<> therein, define ,Bb B; + (ﬁ ,8*) with
v; :==sup{y € [0,1] : ([3 B;) € O(r } so that ,Bb ﬁj if ﬂ; €6 +O(r ®) and
ij SYCHES 20(r?) if 3 B ¢85 + O(r®). Consequently,

D*(83,85) < p; - (—Q(8;), B} — B) < 1Q(8)) 5+ - 18} — B5 s,

where D’ is defined in (C.1).
In addition to F in (B.9), define

m

(C.5) 7= {Db(ﬁ,ﬁj) > k- |8 - B3 forall B e B; +®<r<>>}-

j=0
Conditioned on F”, we have for all 7=0,1,...,m that
185 = B;lls < kM IQ5(B))I-+-

For the bootstrapped estimating function, by the triangle inequality we have

1R85l

1 - J—1 ~
< nZei{AiKh(iBiTﬁ;—yz’)—TO_ZwéKh(yi_mgBZ)}ml
i=1 /=0 -1
n j—1 R
+ *ZzezW{Kh —x!B)) — Kn(yi — B} }wi
i=1 {=0 $-1
j—1 i1
+1[Qo(B5) — Qu(B)) = > wi (A} + Ag) + Qu(B; szE{Kh (y — " B))xi}
=0 - -
(C.6)
Lo i1
< Zei{AiKh(mz‘TB;_yi)_TO_ZwﬁKh(yi_m;r:@Z)}wl
n =1 /=0 ¥t
=Q5(8;)
Jj—1 _
+11Qu(B5) — QB )lls— + Y we(IAY I + 1A |-+ + 1Al 5-+)
=0
j—1
+1|Qu(B) = > wE{Kn(y — " B))zi}||
/=0 ¥t

for j > 1, where wy = H(7y41) — H(7y),
~ 1 _ ~ _
b T b T 3*
AZ—nzlei{Kh(yi—wiﬂg)_Kh(yi_inBZ)}azi’
i=
PO =
Ry = -5 {Kalwi— 213 ~ Kalyi— 28] Ja

=1
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and Ay is defined in (B.11). In particular,

IS . .
- Zei{Az‘Kh(a:iT:Bo —Yi) — To}wz'
i=1

+11Q0(85) — Qo(B)llz+ + 1Qo(B5) I+

The rest of the proof is similar to that of Theorem 3.1, and thus we skip some of the
technical details. For some & > 0 to be determined, define the event

(C.7)

gb:{ max 2587 \/ jmax [1Q0(8)) — Qu(8)ls-+ /| max_ A ga}.

0<j<m 0<b<m—

1Qa(8E) s+ =

»-1

Conditioned on F” N G, it follows from Lemma B.7, (C.6) and (C.7) that

1Q2(BY) s+ < 20 +a,
j—1

@?(B;)HE—l < 25+G+Zw£(5+a+ ||Zz||2_1 + ||£Z||Z_1)a Jj=1...,m,
=0

where a is defined in (B.13). Similarly to (B.16), conditioned on the “good" event

m—1

(C.8) F g n () {=elre) VTe(re) < fre,
=0

the convergence radii {r;} L are recursively defined as

(C.9
ri= (143" fwj1)rjo1 + 5 'wj—1(+a), j=1,...,m, and ro=r""(26 +a).

Denoting C = /-4;71(3? + 1), it follows that rj < (11:77—_L )C - To.

Next we complement the above deterministic analysis with probabilistic bounds. By Lem-
mas B.3, B.5 and Lemmas C.1-C.3, we choose x = (gr;)/2 and 6§ < /(p+logn)/n +
(plog(n)/n so that there exists an event £ with P(€) > 1 — Cyn~! such that conditioned on
87

P*(F NG ) >1—Con™ !,

+logn
sup wy(re) < m}l/zw pTogn +msre+h| Ty
2e{0,...,m—1} nh
and

1 ]
sup  Ty(rg) Srpy | E08" <m}/ ety p;fj’) with P*-probability at least 1 — 1",

0€{0,....m—1} nh

provided nh 2 §g (p + log n)l/ 2and n > <13 log n. Moreover, the uniform bound (11) holds
conditioned on £. Consequently, it follows from (C.9) and (B.13) that

c c
1— 1 +1 1
v < ( TL> -r0x< TL) - /p+logn G 0gn | 4o
1—7 l—7) = n n

holds uniformly over j € {0,...,m}.
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Recall that m3 and m, are dimension-free moment parameters. Given the bandwidth h =
hn, < {(p + logn)/n}? with v € [1/4,1/2), and under the sample size requirement n >
¢/ (p + logn) M/2=0/ 0= (plog n) /=29 we conclude that conditioned on &, the
“g00d" event (C.8) occurs with P*-probability at least 1 — C3n~!, and

c
1-— 1 I v
< TL) gfl\lpi%_ sl =7 <r¥ = <p+ ogn> forall j=0,1,...,m.
1—-7; = n n

This proves the uniform bound over 7 € {7, 71, ..., Tmm }, Which can naturally be extended to
T € [, i7] following the last paragraph in the proof of Theorem 3.1. O

C.3. Proof of Theorem 3.5. We divide the proof into two steps as in the proof of Theo-
rem 3.2. Recall that W; = e; + 1, where ¢;’s are independent Rademacher variables.
STEP 1. (Uniform bound over {7y, ..., 7 }) For simplicity, we write J; = J(7;) and H; =
H(7;) for j=0,...,m, and define the accumulated bootstrap errors as

& (70) :=Jo(B) — Bo) and

J-1 Teq1 N N
gignt(Tj)::Jj(B?—ﬁj)-i—Z/ Hg([i’z—/@g)dH(u)7 j=1,...,m.
=0T

)4

We claim that there exits an event F on which (14)—(16) hold such that P(F) > 1 — Cyn~ 1,
and

(C.10)

5 %b 1/2p +logn p+logn o (p+logn)(plogn)!/?
]:SOUPmH Eint(T5) + Q5 [In—1 S my nhl/2 +h n +6 n3/2h
with P*-probability at least 1 — Csn~! conditioned on F, where

1 n
P = - Zei{AiKh(w;rﬁé —yi) — 7o},
i=1
, 1o — I e
QY == ed NKy(zrB —y;) — Kp(yi — i B;)dH (u) — 70 px;
i T J
i=1 =07t

forj=1,...,m.
From Theorem 3.4 and its proof, we see that there exists an event £ with P(&;) > 1 —
Cyn~! such that conditioned on &,

~ [p+logn
C <, /o
OISI‘ljaé)anIBJ IBJHEN n )and
* 3 _ 3 <1/p7+logn >1—Csn !
(C.11) P (01%1%);]],3] 53”2N - >1—-C3n™ .

We then prove the claim (C.10). For j = 0, by the triangle inequality we have

1€t (70) + Q|-+

< || €nt(10) + Qpl|=-1 +

To(B — B5) + - S Wil A(a 8 — i) — o)
i=1

271
=: 1y + I,
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and for j > 1,
~h *b
€t (75) + QF [ |5

Te+1

+Z / HL(B) - 8})dH (u)

< ||€1nt(TJ)+Q |s-1 +

J—1 Tz+1 _
+ — ZW{A Kh T,B Z/ —:EZ-TBZ)dH(u)—To}.’Bi

= Ij + Hj,
where €i,¢(7;) and Q; are defined in (B.17) and (B.19)—(B.20). Let & be the event that
(14)—(16) hold. Then P(&) > 1 — Cyn~! for some constant Cy, and conditioned on &,

~ N 1/2p +logn p+logn
(C.12) Ogljagnljz||€int(7'j)+QjHZ—1§m4 W+hVT'

It remains to bound II; for j = 0,1, ..., m. Recall that @g (,@5) =0, we have

o = || Jo(Bh — B5) — {QH(BY) — QA(BE)} Il
andforj=1,...,m,
I, < || 3;(8% - 5*) —{Q%(B) — Q(B)} |5

»-1

Z /H1 Hz(ﬁe*/@g — Wi Kn(yi — @] 8}) + Kn(y; *93356)931'}}

zlf

Putting together the pieces, and taking r =< +/(p + logn)/n, we conclude that conditioning
on & N&y,

(C.13)
;< sup || J;(8-8)—{QUB) — Q5(B)} s
BeB;+6(r)
1 I e ~ -
b s ST ) [Bu(8, - B) - Wil Balos — 18) + Ka(o
MiZe{BeeB;+0(r)} || i1 =0 /e

holds with P*-probability at least 1 — C3n L.
Let £3—&5 be the events from Lemmas C.3-C.5, so that P(E35N &, NE) > 1 — Cyn~t
Applying Lemmas C.4 and C.5 to (C.13) yields that for any j =0,1,...,m,

1/2p+logn p+logn
(C.14) II; S { my 12 + hy/ -

1/2

5 (p+1logn)(plogn) 1-7
+Gp n3/2h +0<r?<ajx 1Ff {log (=2 ) V1}

holds with P*-probability at least 1 — n~2 conditioned on & N &5, where T'y(r) is defined
in (C.2). Note that log (1 TO) <log ( e ) is bounded by a constant. For I'y(r), it follows

from Lemma C.3 with r < /(p + logn) / n that conditioned on &3,

1
(C.15) max Ty(r) S mi/2PT 087 |

0</<m

2 (p+1logn)(plogn)!/?

nhl/2 Cp n3/2},

»-1

- acfﬁg)ac,-}

]

»-1
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holds with P*-probability at least 1 — C5n ! provided n > Cg logn.

Finally, define the event F = & NE;NE3NELNEs, satisfying P(F) > 1— Cn~! for some
constant C' > 0 independent of (n,p). Combining (C.12), (C.14) and (C.15) proves (C.10),
as claimed.

STEP 2. The arguments from Stage Two in the proof of Theorem 3.2 can be similarly ap-
plied to bridge the gap between discrete and continuous uniform bounds. Thus the details are
omitted. O

C.4. Proof of Theorem 3.6. Without loss of generality, we assume ||a,,||s; = 1 through-
out the proof; otherwise, we first rescale the vectors a,, so that the same arguments apply.

Conditioned on the observed data I, = {(vi, A, x;)},, we have E*(a,,, U’ (7)) =0
for any 7 € [, 7y]. By the asymptotic (conditional) tightness established in Lemma C.6
and the central limit theorem, the limiting distribution of G? (-) given I, is a zero-mean
Gaussian process. Following the arguments in Appendix 1 of [10], it suffices to show that
the conditional covariance function of G? (-) given ID,, converges to H (-, -) defined in (21),
which is the limit of the (unconditional) covariance function of G,(-). To this end, for any
s,t € [11, Ty], note that

Cov* (Gy,(s),Gy (1)) =E*{G), ()G, (t)}

- :LIE{ Z(an,eiUi(s»} - {

=1

n
1=

<am€iUz‘(t)>}

1
J o as
== > arUi(s)Us(t)"an = H(s, 1),
i=1
where the almost sure convergence follows from the strong law of large numbers. This com-
pletes the proof. O
APPENDIX D: PROOF OF THEOREM 4.1
For j=0,1,...,and r,q > 0, define
(D.1)

$i(r,q) = sup
BEB;+6(r)NA(g)

LS B Kalyi — 218) ~ Kalyi —218)) Ja]|
=1

o0

where A(q) := {u € R? : ||ul|; < q||lu||x} is a cone-like set.
D.1. Technical lemmas.

LEMMA D.1. Letj=0,1,...,m,andt > 0.
(i) With probability at least 1 — e~ !,

1G08)) — Qo(8)1 < To{g 25 2], 1+l }

where 7y = max (79,1 — 70) and 0% = maxy<j<p ok < 1.
(ii) With probability at least 1 — e~?,

1 - [ T %
EZ(l —E)Kp(yi — ; /33‘)3%‘
=1

2t + 2log(2p) n t + log(2p)
n 3n

o0
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PROOF. It suffices to prove part (i) since the second inequality can be obtained from the
same argument. Fix j, we have

1 _
- > (1 —E) {AiKu(a] 8] — yi) — 10} win,
B =:&ij

where éij = AZKh($;F,6;< *yi) —Tp 1s such that ’&j‘ <Tp= HlaX(’TQ, 1 *7‘0) and E(gzszk)Q <
7ookk. Applying Bernstein’s inequality yields that, with probability at least 1 — 22,

1
— Z(l —E)éjzie| < To <O‘i£2\/ + ;) forany 1 < k <p.
n n

i=1
The claimed bound then follows by taking z =t 4 log(2p) and the union bound. U

1Q0(8%) — Qo(B7)[loc = max

1<k<p

LEMMA D.2. For any t > 0, we have that with probability at least 1 — e,

logp —1/2 t+logp t + logp
(ra) < N
n

PROOF. For any j fixed, and k = 1,..., p, define after a change of variable v = 3 — B;
that

n

+ Yo -B) (Ko = o) = Rilei)
=1

Yik(r,q) = sup
veEO(r)NA(q)

)

=:go (Yi,Ti)

where ¢;; = y; — 7 8;. Then 1;(r, q) < maxi<x<p;k(r, q). Note that sup,, |gs (¥i, xi)| <
|zi| < 1. Let o be any positive number such that 6 > sup,cer)na(q) 92 Vi, ). By The-
orem 7.3 in [3]—an improved version of Talagrand’s inequality, we obtain that for any z > 0,

z

(D.2) Y k(r,q) <Ej(r,q) + \/{0—2+2E¢]qu} +3n

holds with probability at least 1 — e~*. For the second moment Eg2 (y;, x;), by a change of
variable and Minkowski’s integral inequality we derive that

Egu (yza 331 =

zk/ {Khu—mv — Kp(u }fy Tﬁj+u|ml) ]

3, /_OO {f((v —xjv/h) — K(v)}zfy(mfﬂ;‘ + vh]:ci)dv]

00 1 2
x5 (xTv)? /_ {/0 K(v—wmf'v/h)dw} dv]
L - /2 2
gfh_1E<1:?k(miTv)2[/ {/ K%v—wmf’u/h)dv} dw] )
0 —o0

< kufh B (2, - 2Fv)? < Ky fh 12, valid for any v € O(r).

<fh7'E

It remains to bound E; (7, ¢) in the concentration inequality (D.2). Note that g, (y;, ;)
is (ky/h)-Lipschitz continuous in z[wv, ie., for any v,v’, |gu(yi, i) — o (yi, Ti)| <
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(ku/h)|xiv — xTv'|. Hence, it follows from Rademacher symmetrization and Talagrand’s

contraction principle that
Z elgv Yi, mz
veO(r)NA(q)
<4k, E sup
v€EO

Ze,w v } §4mu£-E
(r) nh

where ey, ..., e, are independent Rademacher variables. By Hoeffding’s moment inequality,

1/2
< max ( > wk> 210g(2p),

where E. denotes the expectation over {e;}I* ;. Plugging this into the previous bound yields

2log(2p)
E; k(1 q) <4k, h —

Finally, the claimed result follows by taking z =t + logp in (D.2) and the union bound.
O

;1 (r, q) < 2E{ sup

n
E €Ty

i=1

)

o0

n

E €L

=1

Ee

o0

The following result extends the restricted strong property in Lemma B.4 to high dimen-
sions. It follows from Proposition 4.2 in [13] with slight modifications.

LEMMA D.3.  Assume Conditions 3.1-3.3 hold, and let h,r > 0 satisfy 4n; ;7 < h <
g/(2ly) with ny )4 defined in (B.1). Then, for any 0 < j <m and t >0,

{ (8,85) > Sgru- 18— B3, forall B € B; +9()ﬂA(Q)}21—et

provided that n. > h(q/r)?(t V logp).

D.2. Proof of the theorem. Following the argument as in the proof of Theorem 3.1, it
suffices to derive a uniform bound on the grid of 7-levels, 7, =19 <71 < --- < Ty = Ty
Again, we start with constructing intermediate points {EJ =(1- uj)ﬁ;f + ujﬁj }i=0,1,...;m
that satisfy Bj €65+ O(r®), where ¢ = h/(4m, /4)- For each ﬁj, by the first-order opti-
mality condition, there exists some subgradient g; € 8| 3|1 such that Q;(3;) + \j - g; =0
and <§j,[§j> = ||[§]||1 Consequently, for each j =0,1,...,m,

D(B;,B;) < u;D(B;, B%) = uj(~\;g; — Q;(8)).B; — B

(D.3) <N (185 = BDs, L = 185 — B))ss 1) +(—Q3(80), B — B5),

where S; = supp(ﬁ;). Denote the cardinality of S; by s, satisfying s; < s for all j. Consider
the decomposition

-1
Q;(87) = Qu(B)) — Qu(B;) = Y we(Av+ Ay)
/=1

7—1

+Qo(B ZWE{K}L (y—a"B7)x} + ZweBz Be),
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where Ay ({ =0,1,...,m — 1) are given in (B.11),
n

A= %Z(l —E){Kn(y; — 27 Be) — Kn(yi — 27 8}) } s,
=1
and By(B) =E{Ku(y —x"B)z} — E{Ky(y — =" ])z}.

Recall from the proof of Lemma B.5 that || B¢(8)|s-: < f||3 — B;||s- Then, by Holder’s
inequality,

(D.4) (Q;(87).8; — B5)

j—1
< {H%(ﬁ;*) ~Qo(B))lloe + Y we (|| Alle + HAZHOO)}H@ ~B;lh
£=0
j—1
+[@o(8) = D" wE{Kn(y — 7 8;)x)

=0

18; - B; I

-1

< (14Wj)a by (B.13)
j—1
+fzw€||ﬁf _IBEHE ' ||B] —ﬂ;HEa ] = 17"'7m>

and [(Qo(85), Bo — B3)| < 1Qo(B5) — Qo(B)llsol1Bo — B Il + allBo — B3|, where

J—-1 Tj
(D.5) a=0.5lreh” + ff716* and W;=> wy :/ dH (u) = log (773
=0 L

For some positive sequence {qj }j:0717__.7m and curvature parameter k > 0 to be deter-
mined, define the “good” events

= {H@o(ﬁ;) —Qo(Bj) oo < 2}

N i1 s
N {\\Qo(ﬂ}f) — Qo(B))lloo + D well Arlloo < gj, j=1,... ,m} and

=0

ﬂ{ )= k-8 -6 |2 for all BeB;+O(r )ﬂA(qj)}.

Conditioned on F N G, it follows from (D.3) that

1) +allBo — B*ls,

~ A ~ ~
(D.6) 0= D(Bo.B5) < 3 (3ll(Bo — B5)so Il — 11(Bo — B5)s;

thus implying the cone-like constraint ||(3y — BO)SC <3||(By — B4)s, |l1 + (2a/ o) 180 —
B*||s:. Taking go = 4(s0/7) /% +2a/\o, we see that By falls into the cone-like set B;+A(q),

and so does 3. Hence, D(Bo, B5) > k- || Bo — B ||%. Combining this with (D.6) yields, after
some algebra, that

(D.7) 180 — Bills < ro:=r"{1.5(s/7)"*Xo +a}.
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Provided 7 < 79, ﬂo lies in the interior of the local region ﬁo +O(r%). As before, we argue
by contradiction that ,60 coincides with ,80, thus implying Bg € B85+ 0O(ro) N A(qo).
For (,6’1,,81), from (D.3) and (D.4) it follows that

<M (1B = BDs. Il = 1By — BDs:lh)
+ (M /3 4 woll Aolo) 181 — Bl + (a+ woa + Fuo||Bo — B3 1) 181 — Bils-

We have already shown that 8, € B;+0(ro) NA(go) conditioning on FNG. Then || Ao <
Yo(ro,qo), where ©;(-, -) is defined in (D.1). Conditioned further on {wyto(ro,q0) < A1/3},
we have

0< D(B1,6;)
A - ~
< 31(5H(51 =B)s = 181 — B7)s;

1) + {a+wo(fro+a)}|B1 — B,

which in turn implies ,51 € 87 + A(q1) with ¢ := 6(31/1)1/2 +3{(1 +wo)a + fwore}/A1.
On the event F, D(31, B7) > k- Br— B ||%. Combining the upper and lower bounds yields
(D.8) ngl —Bills<r = 5_1{2(8/1)1/2)\1 + (1 +wp)a + wofro}.

Provided r1 < ¥, we reach the conclusion that 3; € B +06(r) NA(q1).
We now recurse this argument, in particular controlling the error terms ||Ay||~ sequen-
tially, so that at the j-th step (1 < j <m), B; satisfies

0< D(B;,8])

<N (185 = B)s, 11 = 18B; = B))s: 1)

(A +Zwumum)uﬁj Bh+{a+zwe m+a>}\@ Bills.

=0

Conditioning on the event {Zé;o wee(re,qe) < Aj/3}, we obtain the cone-like constraint
Bj € B; + A(g;) with ¢; := 6(sj/1)1/2 +3{(1 +Wj)a+ ?Z%;é were}/Aj, thus implying

j—1
(D.9) 18 = Bjlls <rj:= /{_1{2(5/"}/)1/2)\]‘ +(14+Wj)a —I—wagrg}.

£=0
In view of (D.7)—(D.9), we write
1 1= .
= {3(s/)2N + 1+ Wpa, =r"Tuy, §=0,1,..,

where Wy = 0, so that the sequence of radii {r;};>o satisfies 7; < A; + ZZ;& cyry. Since
A0§A1 SAQS"-,wehave

j—1 ) f/k

j—1 1—

TjSH(l—i-Cg)'AjSeZ‘f:Uce -Aj:Cj-Aj with Cj = (1_:—_ > .
=0 J
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In particular, we write Cy = 1. As long as maxo<j<m 1; < <, we have established the result
Bj € B; +O6(rj) NA(g;) (j=0,1,...,m) as a deterministic claim, conditioned on the event

m 7—1 ]
Fngn() {ZWW(%Q@) < /;j}

j=1 Le=0
with properly chosen x > 0 and regularization parameters Ao, A1, ..., A, Where go =
4(50/1)1/2 +2a/\o and ¢; = 6(5]-/1)1/2 +3{(1+W;)a+ fzz;é were}/Aj for j > 1 with
W; givenin (D.5).

Next we choose {\;}—0.1,....m in a sequential manner so that the above good event occurs

with high probability. Applying the two inequalities in Lemma D.1, both with ¢ = 2log p,
implies that with probability at least 1 — 2(m + 1)p~2,

j—1
A * * log p .
=0

where Wy = 0. Throughout, assume the following upper bound constraint on the magnitude

of h:
S (s/2) logp
n

Starting at j = 0, set Ao < y/log(p)/n so that gg < (s/l)l/2 and rg = m_1{1.5(5/1)1/2)\0 +
a} < k7 1(s/9) 2 Xg. With this choice of (Xg,70,qo), it follows from Lemma D.2 with ¢ =
2log p that, with probability at least 1 — p~2,

A 1 1
Yo(ro,q0) S ° 0\/ 8P 08P
/ilh n n

Recall that a = h? + 6* < h2 + n~Y/2. We then choose A; = (1 + W;)+/log(p)/n
so that A > 3max {woto(ro, 90), [|Qo(B}) — Qo(B)|lsc + wolArllec} as long as h =
(k) 'sy/log(p)/n. Furthermore, it follows that

ql,SC’l(s/l)l/2 and 7‘1501(5/1)1/2)\1//{.

For a general j > 2, assume we already have A\, < (1 + W,)/log(p)/n, ¢¢ < 04(5/1)1/2
and r¢ < Co(s/)/?\g/k for £=1,...,5 — 1. And with probability at least 1 — jp~2,

q [logp logp )
QZJE(TK’(M)SJE %T€+ 7% 7£:O>1a"'7]_1'

The accumulated error can thus be bounded by

j—1 Jj—1
9 slogp log p
ZZ%WW(%%)5(1+Wj—1);wece il + W o

Provided that h > (k) ~'s+/log(p) /n,

I j—1 R J—1
(1+ W)/ in = \j > 3max { > wetbe(re, q0), ||Q0(/3;)—Q0(5j)”oo+zwdAé”oo}-
=0

£=0

and therefore the event that involves \; is certified.
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With the above choice of {rj } j=0,1,...,m and the lower bound constraint on the magnitude
of the bandwidth—h > (k)" 'sy/log(p)/n, we have

1
Cj/f_l(l—i-Wj)(s/l)l/zw o7glp rj <r¥=<h forall j=0,1,...,m

Finally, by the restricted strong convexity lemma—Lemma D.3 with r = h/(47,,4), ¢ <
(s/ 1)1/ 2 and t = 2log p—we take k = (gr;)/2 so that event F happens with probability at
least 1 — (m + 1)p~2 provided that the “effective" sample size satisfies nh > slogp. O

APPENDIX E: PROOF OF TECHNICAL LEMMAS
This section contains the proofs of all technical lemmas from Sections B and C.
E.1. Proof of Lemma B.1. Fix 3,3 € RP, and define the function f(n) = (Q(8,) —
Q(B'),B8— B') for n € [0,1]. Since Q(-) is differentiable with a positive semi-definite Jaco-

bian, we have f'(n) = (VQ(B,)(8 — B8'),8 — B’) >0, and hence f(-) is non-decreasing.
Consequently, for any 7 € [0, 1],

D(By, B") = (Q(By) = Q(B), By = B) =n(Q(By) — Q(B),B -5
nf(m) <nf(1)=n(Q(B) - QB).B—B)=nD(B,B),

as claimed. O

E.2. Proof of Lemma B.2. First, by the variational representation of || - |2

n

U3 (G- BGz)|| = swp (1 - B)ful ),

=1

where fy (&, 2i) := (u, &z;) satisfies | fu (&, 2i)| < MGy and B{f3 (&, i)} = B{&} (u, z:)*} <
o2. Applying a refined Talagrand’s inequality (see, e.g., Theorem 7.3 in [3]) yields that with

probability at least 1 — e™?,
2t AM(,t
AgQEA—FU\/*-FiCp.
n 3n

It remains to bound EA. By the Cauchy-Schwarz inequality,

2\ 12 1 n 1/2
EA< |E <1 o
_( ) —n<ZEH&zz Eﬁlzl||2>
2 =1
1 n 1/2
1/2 P
Sn{ZE@?Hz’H%)} S (EH 2|2 )/ :a\/;,
i=1

Combining the above two displays gives
12t 4t
320\/54—0 — + MG —
) n n 3n

holds with probability at least 1 — e, O

A=

n

% Z(fizi —E&izi)

=1

i;(&zi —E&2z;)
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E.3. Proof of Lemma B.3. Proof of (i). For each 5 = 0,1,...,m, define random
variables &;; = AK h(wf,@; — y;) — To, so that the centered process can be written as
2_—1/2{Q0(5;) —EQo(B;)} = (1/n) Yo (&ijzi — E&ijzi). Since A; € {0,1} and 0 <
K(-) <1, we have |§;;| <7y = max(79,1 — 79). In particular, for j = 0, it is shown in the
proof of Lemma C.2 in [6] that E(£2)|x;) < 70(1 — 79) + (1 + 79)l1k2h?. For general j > 1,
we can simply use the crude second moment bound E(ﬁfj |z;) < 72. The claimed bound of
(1) then follows directly from Lemma B.2. B
Proof of (ii). The bound follows trivially from Lemma B.2 and the facts that |Kj(x; 3] —
yi)| <1and E{K} (] B} — yi)|zi} < 1.

Proof of (iii). The proof is based on a similar argument used in the proof of Lemma B.2.
Fix j, set v = 37, — B3] so that |v||s < f16*. By the monotonicity of u — ¥ 3*(u) and
Kp(+), we have

/ T BB () — yi) — Kn(@ B () — i) }AH ()

E.1) < wi{Kn(x] B}, — vi) — Kn(@ B} — 1:)} < kuwjh™ ' afv < ko f wih ™ (0%,

implying the boundedness, where the last step follows from Condition 3.4 and (10). To con-
trol the (conditional) second moment, note that

i1 2
{ / R (@r B (u) — wi) — Kn(@? 8] — ) }dH (u }

< wjz/ {En(2i B 11 —u) — Kn(x7 B8] - u)}2fy(u|w)du

E

_w2h/ (K (v+xfv/h) — K(v)}’ f,(@! 8 — hv|@)dv

- 2
wa]zh_l(wfv)Q/ {/o K(v—i—ww}v/h)dw} dv

» L - 1/2 2
< fw?h_l(a:ff'v)Q </ { / K2(v+ wmgv/h)dv} dw)
0 —o0

< mufw?h_l(mffv)Q,

where Minkowski’s integral inequality is applied in step (). Turning to the unconditional
second moment, we have for any unit vector w that

2
Ti+1 _
E{ / {En(@i 8" (v) — yi) — Kn(@] B"(75) — yi) ydH (u) (u, Zz'>}
7,27 —1 T, \411/2 T, \411/2 T2 27 —1 %2
(E.2) < kufwih {E(zfv)*} "{E(zfu)'} " < kuff mawih™ 0",
where my is given in (9). Combining (E.1) and (E.2) with Talagrand’s inequality as in

Lemma B.2 proves the claimed bound. O

E4. Proof of Lemma B.4. Throughout the proof, for any fixed j =0, 1, ..., m, we write
B* =B, Q) = QJ( ) and Q(-) = EQ(-) for simplicity. Recall the smoothed estimating
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functions defined in (3), (4), and the induced metric (symmetrized Bregman divergence)
(B3)  D(B,8) ZA {En(@iB — i) — Kn(xi B — i)} (B~ B"),

where Kj(-) = K(-/h). Given h,r > 0, define the events & = {|z7B* — y;| < h/2} N
{lzf (B — B ] <||B=pB*s-h/(2r)} fori=1,...,n. Forany 3 € B* + O(r), it is easy to
see that |y; — a7 3| < h on &;, hence implying

(E.4) D(8,8%) ZA{:B (B-B)) 1,

It then suffices to bound the right-hand side of (E.4) from below uniformly over 3 € 3* +
O(r).

For R > 0, define the function g (u) = u?1(Ju| < R/2) + {usign(u) — R}?*1(R/2 <
|u| < R), which is R-Lipschitz continuous and satisfies the following properties: p.r(cu) =
cop(u) for any ¢ >0, o(u) =0, and

ES) L(lu] < R/2) < pr(u) < w1 (Ju] < R).
For 3 € 3* 4 O(r), consider the change of variable § = ¥'/2(3 — 3*)/||3 — 3*||s.. Together,
(E.4) and (E.5) imply

D(B,8")
rillB = B*II% ~

where w; := 1(|z] 8% —yi| < h/2,A; =1).
We first bound the expectation E{Dy(d)}, and then control the concentration of Dg(d)
around E{Dg(d)}. When 0 < h <1, Condition 3.3 ensures that

1 n
(E.6) Do(8):= — > Wi oy (279),
=1

xTB*+h/2
(E.7) g-h <E(wx;) = / g(ulx;)du <g-h almost surely.
o xlB*—h/2

It then follows from (E.5) and (E.7) that
E{wi - on/(2r) (27 8)} = gh- By ar) (27 6) = gh - E{(2]6)*1(|2{ 6| < h/(4r)) }
=gh-{1—-E(276)*1(|2]8| > h/(4r))},

which further implies

inf E{Do(8)}>g-|1— sup E{(276)°L(|z]8|>h/(4r))}|.

gespt uesr—t

By the definition of 7 in (B.1), as long as 0 <7 < h/(4n, 14),

3
E. f E{D > —g.
(E.8) b E{Do(0)} = 19
Turning to the random process {Do(8) — EDy(8) : & € SP~1}, it suffices to bound
(E.9) A= sup {—Dy(8)+EDy(d)}.
écSp—1

By the fact that 0 < pg(u) < min{(R/2)?, (R/2)|u|} for all u € R, we have
0 < (wi/h)en/(2r) (27 8) < wymin{ (47)2h, (4r) |27 8]}
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Combining this with (E.7) yields
E{(wi/h)* @5 (2r) (270)} < (47) PE{E(wilz:) (2] 8)*} < (4r) 2 gh.

With the above preparations, we apply a refined Talagrand’s inequality—Theorem 7.3 in

[3]—to obtain that, for any ¢ > 0,
g2/ oy bt
8r2 (4r)2 3n
h

+gY ,/82 1/4+1/48)t

with probability at least 1 — e~*. It remains to bound EA. To this end, we define

A <EA + (EA)'/?

(E.10)

»-P\Cﬂ

wj r 1 . _
E(0;zi,y:) = 5 Pn/2r)(200) = 7 Puin/(ar) (Wi 5), 6esP.

where the second equality follows from the property that ¢.g(cu) = c2pr(u) for any ¢ > 0.
By the Lipschitz continuity of ¢g(+), £(d;2;,;) is (2r) ~!-Lipschitz continuous in w; 274,
and £(9; z;,y;) = 0 for any & such that w;z]d = 0. Furthermore, define the subset 7" C R"”
as

T={t=(t,....tn)" 1t;=w;z]8,i=1,...,n, 6 €SP},
and contractions ¢; : R — R as ¢;(t) = (2r/h) - ¢,,n/(2r) (t). In fact, the Lipschitz continu-
ity of wg(:) implies |¢(t) — ¢(s)| < |t — s| for all ¢, s € R. Let €,...,€, be independent
Rademacher random variables, and denote by E. the expectation taken only with respect to

€;’s. Then, via a standard symmetrization and contraction argument (see, e.g. Lemma 6.3 and
Theorem 4.12 in [9]), we have

E5A§2Ee{ sup 1261'5(5;%7%)} 7E {Sup Z€Z¢z z}
=1

dese—1 i teT 1
1 1 —
sup €it; | = —E. sup — € wiz; 0 p < E €WiZ;
(teT”Z > r {éesplnz ; 2

Taking the expectation over {(z;,4;)}?, on both sides yields EA < g'/2,/hp/(r?n). Sub-
stituting this into (E.10), we obtain

_1(5 [ hp ht _oht
E.l1 A<g/l bt Sy 2= 4 1/4+1/48)r—2=
(E.11) 4 7“2n+ 8r2n +(1/4+1/48)r n

with probability at least 1 — e ¢
Finally, combining (E.6), (E.8), (E.9) and (E.11) completes the proof. O

E.5. Proof of Lemma B.5. To begin with, define the centered process

n

S(B)==) (1-E)Ku(yi — ] B8)zi, BER".

i=1
After a change of variable v = %1/2(3 — B;), we have
sup_|S(8) = S(B)llz= sup || S(B; +E7%0) = S(B]) ||2-

BeB;+6(r) veB? (1) ~
=:¥(v)
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Since the empirical process W(v) is continuous with respect to v, we will apply the concen-
tration bound from Theorem A.3 in [12] to control the supremum sSup,,cgs () | ¥ (v)2-
First, note that the function ¥(-) : R? — RP satisfies ¥(0) =0, E{U(v)} =0

1 n
VO@) == > {diozil — E(duz2") ),
=1

where ¢; » = K (2] v —¢;), ¢ = Kp(2"v—¢) and g; = y; — x;3;. Itis easy to see that 0 <

Giw < Koy /I With Ky, = sup,cg K (u). Forany g,h € SP~! and |\| < min{nh/(mugg), n/g},

by independence and the elementary inequality e* < 1 + u + u2el¥! /2, we obtain that
Eexp{)\gTV\I/ h}

IN

- ) n
1+2)\—eg‘:‘E‘z ngh‘E{¢ z'gz"h —E(¢p2"gz"h }Qemﬁr"z ngh|]
n?

—~
—-
=

IN

A2 e n
1+ ﬁeg‘)\vnE{qﬁvangh_E((bvangh)}Qe 'nlhl‘z gz h]
n

IN

1+7E{¢>vz 92 h —E(¢yz"gz"h) }e m<2|A/(nh>]

A 2 T T "
(E.12) < {H (;ng E(pp2"g2 h)2} ,

where inequality (i) follows from the bound E|z2"gz"h| < 1. For ¢, = K;(z"v — ¢), under
Condition 3.3, its conditional second moment can be bounded by

E(¢2|z) :sz/_oo K2<zT”+fﬁ;_t>fy(t|m)dt

1 [ . K
(E.13) = h/_oo K*(u) fy(z"v + @" B} + hu|z)du < =

g
il

Substituting this into (E.12) yields
Eexp{Ag" V¥ (v)h} < {1+ kufe’msA?/(2n°h)}" < exp{ryfe*mar?/(2nh)}.

This verifies condition (A.4) in [12]. Therefore, applying Theorem A.3 therein, we obtain
that with probability at least 1 — e~?,
n

1 _ _
sup  ||= > (1 =E){Kn(yi —x;8) — Kn(yi —x;3}) } zi
BeB;+O(r) || T Z; { ’ } 2

(E.14) — sup [ U(0)]|s < (ruFrma) 2,/ P
veEBP (1) nh

as long as nh 2> Cg (p + t)'/2. This proves (B.5), and (B.6) can be obtained from the same
argument.

Turning to the mean difference approximation, applying the mean value theorem for
vector-valued functions implies

E{Ky(y—z*B) — Kn(y — x'37)}z

1
_/0 E{ Kn(y — (@, 8; + (8- B)))=a" }dt - (B— B7).
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With v = ©1/2(8 — B7), note that
E{Kn(y — (=B8] +1(8 - B)))|x}

- % /OO K (@) fy(a"Bj + ulz)du = /_Z K (v) fy(x" B} + tz"v + hv|z)dv

—00

By the Lipschitz continuity of f,(-|z), we have

E{Kn(y — x"B) — Kn(y — 2" 6])}z + E{ fy (2" B |x)z2" }v

2

1 poo
= E/ / K(){fy("8; +tz"v + h|z) — f,(x"B}|x) } zz"dvdt - v
0 J-o0o

2

1 poo
<li sup E/ / K (v)(t|z"v| + hlv|)dvdt - |[z"uz"v| < 13 (0.5msr + k1h)r,

uesSp—1!

as claimed. UJ

E.6. Proof of Lemma B.6. For any € € (0,7, — 77), we divide the interval |7, 7] into
L := [(1, — 7)/(2€)] + 1 subintervals, centered at the points 7% for k € [L], and each of
length at most 2¢. For any 7 € [7;, 7], there exists some & such that |7 — 7| < ¢, and hence

‘ iZ(l —E) /T Ky (yi — @3B (w)dH (u) - 2,

Z—l
<|=>_a-E Kn(yi — 278" (w))dH (u) - x;
TR
+ ;Z(l—E) kKh(yz—ﬂﬁf “(u))dH (u) - @;
i=1 T -1
< %Z(l -E) ' Kn(yi — B (u))dH (u) - ;|| + 2 |H(T) — H ().
i=1 Tt 2

For any given k € [L], applying Lemma B.2 yields that with probability at least 1 — e~

>

5|H<T’“>—H<T>r<\/p+” G )
, l

Recall that H (u) = —log(1 — u), u € (0,1), we have |H (u) — H(v)| < |[u —v|/(1 —u V).
Finally, taking € = (17, — 77)/(2n), v =1log L + ¢ (¢ > 0), and the union bound over k =
1,..., L, we conclude that

S (1-E / Ky (yi — 76 (u)dH () - 2

sup
TE [Tz 7Tu]

=1 Tj

$-1

Tu — Tl [p+logn+t logn +t
1—7, n n

holds with probability at least 1 — e~t. This proves the claimed result. O
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E.7. Proof of Lemma B.7. For Qo(83) = E{AK(z*8 — y) — 7o}, it follows from
integration by parts and change of variables that

E{AR,(z"8" — y)|z} = /oo K(T) A i) = + /OO K("’Tﬂ;_t) G(t|z)at
_ /OO K(u)G(a" 8" + hulz)du
oo =T B*+hu
(E.15) — G(z"F|z) + / K (u) / {g(t]z) — g(a" B*|2)}dt du.
—c0 zT 3+

On the other hand, using the martingale property gives

E x

/0 " 1y > "6 (w)}dH(w) |z | = E{N(2"8))[x} = P(y < "B, A = 1[z) = C(a" B} ).

Together, the last two displays and the Lipschitz continuity of g(-|x) imply

(E.16) E A[_(h(mTﬁj—y)—/Tj 1{yzmTﬂ*(u)}dH(u)]m g%zth
0 n-1
Next, for /=0,1,...,5 —1,
_ oo z"B;+hv
B{Ru(y 2w} =1~ Ry Bife) — [ @) [ ) — fye i e)) e

This, combined with the Lipschitz continuity of f(-|x), implies

(E.17)

N |

1 A
S lllﬁghzzwg.
1 =0

j-1
E !Zwe{Rh(yi —x{B7) — 1y = wfﬁZ)}wi]
=0

-

It remains to compare [” 1{y > *3*(u)}dH (u) and ﬂ;é wel(y; > x] B}) + 19. By the
global linear conditional quantile model assumption, the function u +— 1{y > x"3*(u)} is
non-increasing in u € [77,, 77]. Consequently,

m)

g

=l
OSE(Z/ [L(y > ="6]) — L{y > =" 8" (u)}] dH (u)

=0"Tt

Jj—1 Tet1
< E(Z/ {1y>=2"6;) — Uy > =" Bj4,) } dH (u)

=0Tt

g1 Tet1
:Z/ {Fy(x" B} 1 |x) — Fy(x" B} |) } dH (u)

Recall from the last paragraph of Section 3.1 that [|8},, — B} |lx < f~'|7e41 — 74| for £ =
0,1,...,m — 1. Under the condition of no censoring below 7y = 71, we have E fOT 1{y >
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" 3*(u) }dH (u) = 7¢. Putting together the pieces we conclude that

E[/OTjIl{yZac “(u)}dH (u ng]ly>m Bz)—70]$

n-1
j—1
<(FIHD welrepr — 7).
£=0
Combining this with (E.16) and (E.17) proves (B.7). ]

E.8. Proof of Lemma B.8. Fix 0 > 0, for any 71,72 € |11, 7] satisfying |71 — 72| < 0,
define the centered random variables V; := (a,, Uy;(71) — Up;(72)) for i =1,...,n, where
Uyi(T) = U, (1) —EU; (7). Assume without loss of generality that 7o > 7. For some constant
L > 1 to be determined, applying Rosenthal’s inequality to S := > | V; yields

1/2 n 1/(2L)
(]ESZL)l/ (2L) {(ZEV2> + (ZEV’ZQL) }7
i=1

where C, > 0 is a constant depending only on L. We then bound the second and higher-order
moments of V;’s. By Minkowski’s integral inequality as in the proof of Lemma B.3,

E(an, Ui(m) - Ui(72))’
3 B 2
—E{ / Kaly <>>dH<>+AiKh<wzﬂ*<m>—y»—AiKh(wzﬂ*(n)—ya} (an, )’

S(FV{(l—m) 2+ fPmuh™ } (o — )2
Moreover, for any ¢ > 2,
[E(an, Ui(11) — Ui(72))’
S Ean, Ui(n) — Ui(m2))> S (F V{1 = 72) 2+ £ 2mah ™ > — 1)
Putting together the pieces, we obtain that for any 71 < 7 satisfying 7 — 71 > (¢,/ma4)'/2(h/n)'/2,
(ES?E)Y# S nl 2 ma /1) 2 7 — ] 4+ CEI B @I {1y f 1) 2y — [}
<SP (ma /)P |ry — 7.

Note that G,,(11) — G, (12) = n~/2S. Hence, taking t(x) = 22" in the above inequality
leads to

(E.18) G (11) = Gn(12)|ly < (ma/R)V? |15 — 7],

where || - ||, denotes the ¢)-Orlicz norm; see Section 2.2 in [15].

The rest of the proof is based on a packing argument, and is inspired by the proof of
Lemma A.3 in [4]. Define the metric d(-,-) as d(s,t) = h=/?|s — t| for s,t € [r,7v/].
Then, for any € > 0, the packing number P([rr,, 7], €,d) < h'/2e . Let 7j = 2+/(,/ (man),
so that lim,,_,~, 7 — 0, and (E.18) holds for all 71,7 satisfying d(71,72) > 77/2. Applying
Lemma A.1 in the Appendix of [7] gives

sup ‘Gn(ﬁ) — Gn(TQ)‘ = sup ‘Gn(ﬁ) — Gn(rg)‘

|71 —T2|<d d(71,m2)<h=1/2§

(E.19) <S1+  sup  |Gu(s) — Ga(t)
d(s,t) <, teT

)
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where the set 7 contains at most P([7z,, 7], 7, d) < h'/2771 < \/nh/¢, points, and S is a
random variable satisfying

(E.20)
2L
P(151!>9€)§{/j2¢1(7’([TLaTU]a€7d))d6+(h1/25+2?7)1/11(772([TL77U],777d))} a2t
n

for any n > 7 and = > 0. Note that

n [ . . —-(2L)~
UM (P o] e.d))de < AOY / P de= R U
/2 "2 1-(20)~

and ¥~ (P2([rz, 7v],m.d)) < hGD™ ". Substituting these into (E.20) with n = h~1/4

and L =1 implies

1—-(20)~* _ (ﬁ/2)1—(2L)*1
—(2L)1

2L
P(|Sy| > z) < {h(“)_l N + (126 + 277) - h(QL)_lnL_l} 2k

2
- {2h1/8 — 2hMA(7/2)1/2 + h14s 4 277h3/4} 2
Since 7 — 0 and h — 0 as n — oo, we have for any « > 0 that

(E.21) hm hmsupP(\Sl] > 1) =0.

n—oo

It remains to deal with the supremum on the right-hand side of (E.19). For any fixed ¢t € T,
and s € [rz,, 7] satisfying |s — t| < h'/25 = 2,/Coh/ (man),

sup ‘Gn(s) - Gn(t)‘

|s—t|<h1/27
Ki( dH ni
_ls s IZ/ n(y B (u))dH (u) - apx
A K (zf yi) — DK (7 B(s) — vi) fape;
o, fz{ W)~ ) =~ Al BT) ) eie
(E22) :=I+IL

We bound the two terms on the right-hand side respectively. For the first one, applying the
triangle inequality and Lemma B.6 to the centered random quantity yields

= w238 [ Kl w8 )HG) e
+|s ts\ggl/z fz 1-E / K (yi — =787 (v))dH (u) - ap;

=1

+logn+wv logn +wv
(E23) ,S(cph)”?(\/p L G )

= /p+logn + 1
Sn1/2h1/2nZE|a;Lmi|+n1/2h1/2n< p+ Oin U+Cp ng+v>
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with probability at least 1 — e~ for any v > 0. Turning to the second term, by the Lipschitz
continuity of || 3*(-)||x as in (10), |s — t| < h!/?7 indicates ||B*(s) — B*(t)||z < i_lhl/Qﬁ =

2f*\/Cph/(man). Denote r :=2f 1 /(,h/(man), we have

1 = I * [ * T
n< sup |— ZE{AiKh(wf,B (t) — yi) — DNiKp (2] 8% (s) — ys) bana;
|S*t|<h1/2ﬁ n i=1
+  sup 1—E){AiKn(x;B*(t) — yi) — AiKn(x] 8 — yi) Jajxi
BeB*(t)+O(r \F Z ENX ;
(E.24)

+ logn
S (G2 + G/ [ FBE

with probability at least 1 — e™" for any v > 0, where Lemma B.5—(ii) is applied in the last
step. With the bandwidth h = {(p + logn)/n}?/° and under the sample size requirement

nz Cp (p + logn), it follows from (E.22)—(E.24) with v = 2log n that, for any ¢ € T,

1/5
sup  |Gnls) — G (t)] < dﬂ<p+““j

s:|s—t|<hl/27 n

holds with probability at least 1 — n~2. Since \’7'| < v/nh/(p, taking the union bound over
t € T renders

1/5
p+logn>

n

sup ‘G’n(s) - Gn(t)’ = sup ‘Gn(s) Gt )’ €1/2<

d(s,t)<i, teT |s—t|<h'/2q,teT

with probability at least 1 — ¢/n for some constant ¢ > 0. Provided CS/ 2(p +logn) =o(n),
this implies

(E.25) lim sup]P{ sup  |Gn(s) — Gy(t)| > CL’} =0, valid for any = > 0.
nee Ld(s )<, teT

Finally, putting together (E.19), (E.21) and (E.25) completes the proof. O

E.9. Proof of Lemma C.1. For simplicity, we omit the subscript j as in the proof of
Lemma B.4. Using arguments similar to those that lead (E.4) and (E.6), we obtain

D’(8,8%) Z A Kn(@i B —yi) — Kn(ziB" — yi) (1 + &)z} (B — BY)

* 1 T
18— B (1 e o (310
=1

—:Dj(v)

where v = X1/2(8 — 3%) /|18 — B*||s € SP7L, w; = A1 (|2FB* — yi| < h/2) € {0,1}, and
©(+) is as in (E.5). Recall the definition of Dy(v) in (E.6), we have

b *
_DB.BY inf Do(v) — sup {Do(v) — Dy(v)}.

(E.26) >
Bep +o() k|| B — B*||4 T vesr vesr—1
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A lower bound for inf,cgr—1 Dg(v) can be derived from Lemma B.4. Let £4.(t) be the event
that the bounds in Lemma B.4 with r = h/(47,4) hold uniformly over j =0,1,...,m, so
that P{&s.(t)} > 1 — (m + 1)e~t. It suffices to control the bootstrap error

1 o T
Iy, := sup {Dg(v) — D%(v)} = sup E eiw; - Pny(ar) (% V).
vespP-1 dese—t WA ST

Since pr(u) < (R/2)%, w; € {0,1} and e; € {—1,1}, we have E*{e;w; - p/(2r) (27 0)}* <
(h/4r)*w; and |e;w; - ©n)r)(2iv)] < (h/47)?%. Then, by Theorem 7.3 in [3],

h 1 — 1/ 2t 4t
4r>2{<n§“i> n+3n}

holds with probability at least 1 — e~!. Furthermore, by the Lipschitz continuity of u —
¢r(u) and Ledoux-Talagrand contraction principle,

* 1 *
E (I‘n)_Z— (ég})anezwl z; ’U)
1/2
1
ES ] < (2 wtant)

27
Next we deal with the data-dependent quantitles (1/n) Z?:l w; and (1/n) Z?Zl wil|zi H%
Note that E(w;|z;) < gh and thus E(w||2;]|3) < gph. Moreover, wil|z;[|3 < ¢ (almost
surely) and E(w?|]3) = E(ws||zi[|3) < g¢2ph. By Bernstein’s inequality, together

2
7 12: B 2t t
" i st Ei'n 3”<< B \/7> (\/> \/7>

and

1 < 2 t , 4t
E.28 - illzil13 < gph + (@Gph) 2 ¢\ [ = + ¢ “aph —
(E.28) H;WIIZ 2 <gph + (gph)~'<¢p e gp +

I, <2E*(T,) +

P 3n

hold with probability at least 1 — 2e~%. Let £, () be the event that (E.27) and (E.28) hold.
Putting the above four bounds together, we conclude that conditioned on &, (t),

1/2
4t 1
b 2
(E.29) vgggl{Do(v)—Do(v)} < grh+Gyo ) 5rml/2

h t 2t 4t
2 Sah ] — ) e
+(4 )2{< gh+ 2n> n+3n}
holds with P*-probability greater than 1 — e~

Define the radius 7 = h /(47 /4) and event & (t) = Ersc(t) N Eloc(t). Together, Lemma B.4,
(E.26) and (E.29) imply that, with P*-probability at least 1 — e~ conditioned on &1 (t),

D’(8,8;) > *gml\ﬂ ;1%

holds uniformly over B € 3} +©(r) as long as nh 2 max(p, ¢pt'/?). Taking the union bound
over j =0,1,...,m concludes the proof. O
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E.10. Proof of Lemma C.2. We proceed the proof via a covering argument. Let A/ be
an (1/2)-net of the unit sphere SP~! with cardinality |\| < 5”7 such that

n

%Z(ei : ﬁizi) )

1 n
3 SQ%%EZ&'&W’Z”
1=

Since e;’s are independent Rademacher random variables and |¢;| < M, conditional on the
data {x;, &} 4, it follows from Hoeffding’s inequality (see, e.g., Theorem 2.8 in [2]) that,
with P*-probability (over {e;}? ;) at least 1 —e™*,

BN 1 < 2u
(E.30) — > ei &ilu, zi) < MAT (n > :ziziT> Vo
i=1 i=1

where A\pnax(A) denotes the largest eigenvalue of a symmetric matrix A. For the normalized
empirical design matrix (1/n)> " | z;z! satisfying E(z;2]) =1, and ||z;]|2 < (, (almost
surely), it follows from Theorem 5.41 in [16] that with probability at least 1 — n =2,

(B31) Aﬁr@x( Zzl )<1+Cgp log(2pn)
n

We denote by &, the event that (E.31) holds.
Finally, taking a union bound over uw € N and setting u = 2(p + logn) in (E.30), we
conclude that with P*-probability at least 1 — n~2 conditioned on &s,

logn p+logn p+logn
’<V<1+Cp\/n )\/ n 5\/ n

as long as the sample size satisfies n = Cz logn. This proves the claimed bound. O

n

%Z(ei -&izi)

i=1

2

E.11. Proof of Lemma C.3. To avoid unnecessary repetitions, we only provide details
for bounding T'; (). After a change of variable v = /(3 —B;) e BP(r) for B € B; +O(r),
we write

(E.32)

LR(r)= sup [|G;(v)ll2:= sup
vEBP (1) vEBP (1)

Zel {Kn(zfv —eij) — Kn(—€ij) } 2

9

2
where €;; = y; — x;B;. The process {G;(-)} satisfies G;(0) = 0, E*{G;(v)} = 0 and

VGj(’U) = (1/77,) Z?:l ei¢ij7vzizf, where (bij,v = Kh(ZZ»T’U — e’;‘ij) and Kh($) = K(a?/h)/h
For any A € R and u, w € SP~!, we have

exp{/\n1/2 "VG,( w} HE*eXp{/\n 1/ Qezqﬁwvz Uz w}
=1

<Hexp{ </5sz ziu- z; w)Z}:exp{ ng)mv (z; u-ziT'w)2}.

Note that ¢;; . < ky/h, and by Holder’s inequality,

1/2 n
quﬁ”v ziu -zl w) S% { Z¢z]v zju) 4} {iZqﬁij,v(ziTw)‘L}
i=1

1/2



SUPPLEMENT 37

Given r > 0, define the supremum
U(r)= sup tYu(r):= sup ZKh (rzjv— E,J)(zfu)4.
u,veSP—1 u,peSp—1 N

Under this notation,

sup logE* e><p{)\n1/2 "VG,( }<
vEBP (1)

It then follows from a conditional version of Theorem A.3 in [12] that

1/2 1/2 p+logn

(E.33) sup [|[G(v)ll2 Sk (r) /=y ————
veBP (1) nh

holds with P*-probability at least 1 — n 2

It remains to control the data-dependent quantity W(r) = sup,, ,eso-1 Yu,v (). For any
€1,€2 € (0,1), let {uy,...,uq, } and {vy,...,v4,} be the €1- and ex-nets of SP~1 with car-
dinalities di < (1 + 2/e1)? and dy < (1 + 2/e)P. Given u,v € SP~L, there exist some
1<¢<d; and 1 <k <ds such that [[u — uy||2 < €1 and ||v — vg||2 < €. Consider the
decomposition

(E.34) Vuw (1) = VYuw (1) = Vuw (1) + Puw, (7).
For 1y, 4 (1) — u,v, (), the Lipschitz continuity of K (-) ensures that
(E.35)

’¢u,’v() wuvk _ZKTZ’z U_'Uk z )4_h2€p max( Zzz )‘Tf-

For ), v, (), using the triangle inequality gives

n 1/4
1
Y, (1) = {n > Kn(rzfv, — cij) (2w + u — W)4}

i=1

n 1/4
1

< — B T — & T 4

= {n E h(T’Zl Vg 6J>(zz 'U/g) }

i=1
Lo 1/4
4
+ {n Z;Kh(rzka —ij)(zi,u —uy) }
1=
< Vv (1) + €1 SUPy o1 Yuyoy (7")1/4-
Taking the supremum over u € SP~! and then the maximum over / yields

(E36) SupuESP—l ¢U7’Uk (T) S (1 - 61)74 maXlSZSdl w’uzﬂ’k (T)

The problem then boils down to controlling the maximum max g x)c[d,] x[d,] Y, v, (7). Note
that EK? (rzfvg — eij) (27 ue)® < f/{um4§4/h and Kp,(rz] vy —eij) (2] u£)4 < /@u(‘l/h By
Bernstein’s inequality, we have that with probability at least 1 — e™*,

qzz)ue,vk (T) é Ewué,vk( ) (fﬁumll)l/QCp H 2h uCp 3n h
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<fm4+(ff€um4)1/2Cp\/2h uCp3 5

— 4u
4
< §fm4+/iu D3R

Taking e; =1 —2""4, ey =n~2 and u = plog(1+2/e;)(1+2/e2) +log(n) in the above
bounds, we conclude from (E.31) and (E.34)—(E.36) that with probability at least 1 —n~!,

ogn

U (r) S my +g4pnh +¢

r
(nh)?
as long asn 2 Cg log n. Substituting this bound into (E.33) completes the proof for a partic-

ular j € {0,...,m}. The claimed uniform bound follows from a union bound over the grid
points. O

E.12. Proof of Lemma C.4. For j =0,...,m, define the random process
N(B) = Q}(B) - Q5(8;) — I;(B - B;), BERP.
The goal is to bound the local fluctuation supﬂeﬁ +o(r ||A (B)]|2 for a prespecified r > 0.
Since E(W;) = 1, we have E*{Qb( B)} = Q]( ), and E*{Ag( )} =A;(8), where

ZA{Kh 18 —vi) — Kn(x] B} — i) i — I;(B — B7).

Consequently, by the triangle inequality,

(E.37)

sup  A5(B)ls— < sup [[ANB) —A;(B)s—+  sup  [A;(B)]Is-r.
BEB;+O(r) BeB+O(r) BeB:+O(r)

=T2(r) by (C3)

For the first term on the right-hand side of (E.37), Lemma C.3 guarantees the existence of
an event £3 with P(€3) > 1 — 3n~! such that, conditioned on &,

plogn p+logn
(E.38) sup  [A%(B) = A;(B)]l2 < | my/ 4+ 2y /B2 ) 0
Beﬁ;+®(r)” 1B) = Ai(B)lz PV nh nh

holds with P*-probability at least 1 — n~2, provided n 2 ¢>logn. Moreover, let £ be the
event that (B.6) holds for all j =0,...,m with t = 2logn, so that P(£§) > 1 — (m + 1)n 2
Conditioning on &,

1
(E.39) sup  ||[A;(B)]s- S mi/Q pt ogn +mar+h |-,
BEB;+O(r) nh

provided that nh 2 (2(p + t).
Finally, taking £4 = £3N &S so that P(E4) > 1 — (m+ 3n+ 1)n~2. Together, (E.37)—(E.39)
yield that with IP*-probability at least 1 — n~2 conditioned on &,

) 12 [p+logn 2 (plogn)'/%(p + logn)!/2
sup N(B)|a2S(m —= 4+ m —|—h+C -,
ﬁeﬁ;+e(r)\\ Bl { 1 — » "

completing the proof. O
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E.13. Proof of Lemma C.5. For j =1,...,m, define the random processes
Rb‘(ﬂoaﬁb o 7ﬂj71)
n j—1

= ZZ/MI dH (u) [Wi{f(h(yi — ! 3)) — Kn(yi — 2 Be) }zi — SV Hy(By — B;)

[ am[{F - 60 - Ky~ 2180}z - = PHUB - 57)],

and note that E*R?-(Bo, B1,....8j-1) = R;(Bo,B1,-..,Bj—1). By the triangle inequality,

(E.40)
) sup ”R?'(/Boﬂﬁlv'”w@j*l)HQS ) sup ||Rj(1807ﬁ13"'718j*1)”2
2o {BeeB; +O(r)} NI 2o {Be€B; +O(r)}
+  sup 1R} (B0,B1. - -, Bj—1) — Rj(Bo. B, - .. Bj-1)]|2-
M=o {BeEB; +O(r)}
Let &5 be the event that (B.5) holds forall £ =0, ..., m —1 with ¢t = 2logn. Then, P(&5) >
1 — mn~2, and conditional on &s,

(B.41)

o [p+logn
v sup HRj(,Bo,Bl,...,,Bj_l)HgSlog(%_—T‘;)- <mi/2 phg—i—mgT—i-h> o
NiZi{BeeBi+0(r)} ' n

holds for all j =0,1,...,m provided that nh = Cg (p + t). For the second term on the right-
hand side of (E.40), note that

sup HRE’(,@O,,@M oo 7/8j—1) - Rj(ﬁ()vﬁl: cee 7/6]'—1)"2

NI 2o {Be€B; +O6(r)}

1 - 7% * [ T
<Z sup *Zei{Kh(yz' —x;8;) — Kn(yi —xz?ﬁ@)}zi log(ll nfl)
71— PeEB+O(r) n i—1 9
(E.42)
_ 1 1—79
ng ) - log (= Tzl) < E:(r)??)];_lfg(r) -log (1—%)7
where {T'(r)})_, are defined in (C.2).
Combining (E.40)—(E.42) proves the claimed result. ]
E.14. Proof of Lemma C.6. We first show an unconditional version
(E.43) lim limsupP{  sup !Gb (11) G?L(Tg)’ >z =0
=0 n—oo |71 —72| <8

via the proving techniques of Lemma B.8. By the law of total expectation and following the
arguments that lead to (E.18), it can be verified that

IG3(11) = G(m2)lly S (ma/B)!?|r2 = ],
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for any 11 < 7y satisfying 7o — 71 > ((p/ma)'/?(h/n)/2, where ¢)(x) = 22 so that || - ||,
coincides with the Lo-norm. The rest follows from the same packing argument as in the
proof of Lemma B.8.

Then, we prove the claimed result by contradiction. Conditioned on a sequence of ob-
served data {ID,, }, if (C.4) does not hold, then there is a sequence {d,, : m C Nt} such that
lim,,— 00 0, = 0, and a subsequence of natural numbers {ny, : k¥ C N*} C N* such that

lim lim ]P*{ sup ‘sz(Tl) —G?Lk(Tg)} > 1:} >0 over A,

M—00 k—00 |71 —T2|<Om

=Xm,k
where A is an event over the data space with P(LA) = po > 0. This further means there are
sufficiently large integers M and K such that x,, ; > co > 0 over A for any m > M and
k > K. On the other hand, by the law of total probability,

]P’{ sup ’G?Lk(ﬁ) —Gik(Tz)‘ >$} ZE[Xm,k : ]l{A}] > €oPo;

|71 —T2|<8m

for any m > M and k > K. So far, we have identified subsequences {d,,} and {ns}, such
that lim,,, o0 0, = 0, limy,_, oo Ny, = 00, and

lim lim ]P{ sup ‘G,blk (1) — sz(TQM > x} > copo > 0,

m—>00 k—0c0 |T1—T2| <O

which contradicts with (E.43), thus completes the proof of (C.4). ]

APPENDIX F: ADDITIONAL SIMULATION STUDIES

F.1. More comparisons in low dimensions. We first compare the SEE method with its
non-smoothed counterpart [11] on small-scale datasets. Let n € {200,400} and p = 5. We
generate covariates @; (i = 1,...,n) from N(0,%X = (0jx)1<jk<5), where oj; = 0.5kl
The remaining settings are the same as in Section 5.1. The results on the ¢s-error, estimated
quantile effects and running time are presented in Figures F.1 and F.2. Taking also into ac-
count Figure 1 in the main text, we see that the SEE method exhibits desirable finite-sample
performance especially at higher quantile levels. The computational advantage becomes more
prominent for large-scale data.

When both the sample size and dimension increase, Figure 3 in Section 5.1 presents the
ly-errors and runtimes, both as functions of n, at 7 = 0.7. Since the censoring rates vary
from 30% to 45% in these settings, the estimation at 7 = (0.7 is prone to some “boundary”
issues related to the non-identifiability of upper quantiles. To have a more complete picture
of the performance, Figure F.3 below shows the simulation results at quantile levels 7 €
{0.3,0.5,0.7}. The benefit of smoothing becomes more evident as 7 increases.

F.2. Reports of selection consistency. For the speed comparison between SCQR-Lasso
and CQR-Lasso [17] in Section 5.2, we applied a simpler tuning scheme (to both methods)
by setting A\, = {1 + log( %:i )}Ao for k=1,...,m and choosing Ay via cross-validation.
The variable selection performance in terms of TPR and FDR is shown in Figure F.4, which
complements Figure 5. As remarked in Section 5.2, [17] considered equally-spaced A values,
ie. \p =Ag+c-kfor k=0,1,...,m, and used cross-validation to choose \g and c by a
two-dimensional grid search. Since this tuning scheme is not adopted, the selection measures

are presented for reference only.
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