Today: Poisson processes

Next: PK 5.2

This week:

- HW 6 due today 11:59 pm
Poisson distribution

If $X \sim \text{Pois}(\lambda)$ with $\lambda > 0$, then

-
-
-

If $Y \sim \text{Pois}(\mu)$ with $\mu > 0$ independent of X, then

-

Let $\{\xi_i\}_{i=1}^\infty$ be a family of i.i.d. $\text{Ber}(p)$ independent of X, consider the random sum $M = \sum_{i=1}^X \xi_i$, $M \sim \text{Bin}(X, p)$. Then

-

Something to remember

- Little-o notation: two functions \(f(x), g(x) \), limit \(x \to x_0 \in [-\infty, +\infty] \)

 \[f(x) = o(g(x)) \text{ as } x \to x_0 \quad \text{def.} \quad \iff \]

 \[f(x) \text{ is asymptotically dominated by } g(x) \]

 E.g. 1) \(f(n) = \frac{1}{n^2}, \ g(n) = \frac{1}{n}, \ \text{limit } n \to \infty \)

 2) \(f(x) = x^2, \ g(x) = x, \ \text{limit } x \to 0 \)
Poisson process (Poisson point process)

Def. A Poisson process of intensity (rate) $\lambda > 0$ is an integer-valued stochastic process $(X_t)_{t \geq 0}$ such that

(i) $(X_t)_{t \geq 0}$ has independent increments:

(ii) increments of $(X_t)_{t \geq 0}$ are Poisson r.v.'s

(iii) $X_0 = 0$

$E(X_t) =$
$\text{Var}(X_t) =$
Example 1

Police department receives calls according to a Poisson process of rate 3 calls per hour. Denote this process \((X_t)_{t \geq 0}\).

There were 4 calls in the first two hours. What is the probability that there will be no call during the next 30 min?

Remark.
Example 2 (PK, p. 226)

Customers arrive in a store according to a Poisson process of rate $\lambda = 4$ per hour. The store opens at 9:00 am. What is the probability that exactly one customer has arrived by 9:30 am and a total of five have arrived by 11:30 am?
Intensity (rate) parameter and nonhomogeneous processes

Interpretation of λ:

$$P(X_{t+h} - X_t = 1) =$$

\Rightarrow during a short period of time the probability that an event occurs is proportional to the length of the period of time with proportionality constant λ.

If the Poisson process is homogeneous, then λ is constant.

If in (*) we allow $\lambda = \lambda(t)$ depend on t, then we get a nonhomogeneous PP. A nonhomogeneous PP with rate func. $\lambda(t)$ is defined as PP with (ii) replaced by...
Example of a nonhomogeneous PP (PK, p. 227)

Let \((X_t)_{t \geq 0}\) be a PP with rate \(\lambda(t) = \begin{cases} 2t, & 0 \leq t < 1 \\ 2, & 1 \leq t < 2 \\ 4-t, & 2 \leq t \leq 4 \end{cases}\)

Compute \(P(X_2 = 2, X_4 - X_2 = 2)\)

Remark. Suppose \((X_t)_{t \geq 0}\) is a PP with rate \(\lambda(t) > 0\).

Define \(\Lambda(t) = \int_0^t \lambda(u) \, du\) and define a process \(Y_t = X_{\Lambda(t)}\)

(note that \(\Lambda\) is strictly increasing thus invertible). Then
Cox processes

Example.
The Law of Rare Events

Recall: \(\{\xi_i\}_{i=1}^{\infty} \), i.i.d. Ber(\(p \)).

Then \(\sum_{i=1}^{N} \xi_i \sim \text{Bin}(N, p) \), counts # of successes

If \(X \sim \text{Bin}(N, p) \) and \(Np = \mu > 0 \)

\(N \) large : many trials

\(p \) small : low success rate (rare event)

Then