Today: Poisson processes and rare events
Next: PK 5.3
Poisson process (Poisson point process)

Def. A Poisson process of intensity (rate) \(\lambda > 0 \) is an integer-valued stochastic process \((X_t)_{t \geq 0}\) such that

(i) \((X_t)_{t \geq 0}\) has independent increments:

for any \(t_0 = 0 < t_1 < t_2 < \cdots < t_n \)

\[X_{t_1} - X_{t_0}, \, X_{t_2} - X_{t_1}, \ldots, \, X_{t_n} - X_{t_{n-1}} \]

are independent.

(ii) Increments of \((X_t)_{t \geq 0}\) are Poisson r.v.'s

for any \(s \geq 0, \, t > 0 \)

\[X_{s+t} - X_s \sim \text{Pois}(\lambda t) \]

\[P(X_{s+t} - X_s = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!} \]

(iii) \(X_0 = 0 \)
Interpretation of λ:

$$P(X_{t+h} - X_t = 1) = \frac{\lambda h}{1!} e^{-\lambda h} = \lambda h \left(1 - \lambda h + \frac{(\lambda h)^2}{2!} - \cdots\right)$$

$$= \lambda h + o(h) \quad (\ast)$$

\Rightarrow during a short period of time the probability that an event occurs is proportional to the length of the period of time with proportionality constant λ.

If the Poisson process is homogeneous, then λ is constant.

If in (\ast) we allow $\lambda = \lambda(t)$ depend on t, then we get a nonhomogeneous PP. A nonhomogeneous PP with rate func. $\lambda(t)$ is defined as PP with (ii) replaced by

$$(\text{ii}') \text{ for any } s \geq 0, t > 0, X_{s+t} - X_s \sim \text{Pois} \left(\int_s^{s+t} \lambda(u) \, du \right)$$
Example of a nonhomogeneous PP (PK, p. 227)

Let \((X_t)_{t \geq 0}\) be a PP with rate \(\lambda(t) = \begin{cases} 2t, & 0 \leq t < 1 \\ 2, & 1 \leq t < 2 \\ 4-t, & 2 \leq t \leq 4 \end{cases}\)

Compute \(P(X_2 = 2, X_4 - X_2 = 2)\).

\[
\begin{align*}
\int_0^2 \lambda(t) \, dt &= \quad , \quad P(X_2 = 2) = \\
\int_2^4 \lambda(t) \, dt &= \quad , \quad P(X_4 - X_2 = 2) = \\
P(X_2 = 2, X_4 - X_2 = 2) &= \quad
\end{align*}
\]
Time change of non-homogeneous PP

Remark. Suppose \((X_t)_{t \geq 0}\) is a PP with rate \(\lambda(t) > 0\) on \((0, +\infty)\). Define

\[\Lambda(t) = \int_0^t \lambda(u) \, du \]

and define a process \(Y_t = X_{\Lambda(t)}\) (note that \(\Lambda\) is strictly increasing thus invertible). Then
Nonhomogeneous PP with rate $\lambda(t)$,

where

Example. Mixed Poisson process.

Let $(X_t)_{t \geq 0}$ be a homogeneous PP with rate 1,

Let Θ be a r.v., $\Theta > 0$.

Cox processes
The Law of Rare Events

Recall: Let \(\{ \xi_i \}_{i=1}^{\infty} \) be i.i.d. \(\text{Ber}(p) \), success/failure

Then \(S_n := \sum_{i=1}^{n} \xi_i \sim \text{Bin}(n, p) \) counts \# of successes

If \(np = \mu > 0 \), \(n \) large (many trials), \(p \) small (rare events)

then \(P(S_n = k) \approx \frac{\mu^k}{k!} e^{-\mu} \)

Generalization:

Thm (PK thm. 5.3).

Remark.
Characterization of the Poisson process

Experiment: count events occurring along \([0, +\infty)\) \(1\)-D space

\[
\begin{array}{c}
0 \quad \times \quad \times \quad \times \quad \times \quad \times \\
\end{array}
\]
\(t\)

Denote by \(N((a,b])\) the number of events that occur on \((a,b]\).

Assumptions:

1. Number of events happening in disjoint intervals are independent

2. For any \(t \geq 0\) and \(h > 0\), the distribution of \(N((t, t+h])\) does not depend on \(t\) (only on \(h\), the length of the interval)

3. There exists \(\lambda > 0\), s.t. \(P(N((t, t+h]) \geq 1) = \lambda h + o(h)\) as \(h \to 0\) (rare events)

4. Simultaneous events are not possible \(P(N((t, t+h]) \geq 2) = o(h)\) as \(h \to 0\)

Then
Proof that $N((0, t]) \sim \text{Pois}(\lambda t)$
Proof that $N((0,t]) \sim \text{Pois}(\lambda t)$ (last step)

$S_n = \# \text{ of intervals containing at least one event}$

$S_n \neq N((0,t])$ iff there is an interval $I_i^{(n)}$ that contains more than one event

Denote $X_t := N((0,t])$. Then split $\{X_t=k\}$ as
Proof of thm 5.3

Thm (PK thm. 5.3). Let \(\{\xi_i\}_{i=1}^\infty \) be independent r.v.'s, \(\xi_i \sim \text{Ber}(p_i) \), \(p_i > 0 \).

Denote \(S_n := \sum_{i=1}^n \xi_i \) (\# of successes) and \(\mu = \sum_{i=1}^n p_i > 0 \).

Then \[\left| P(S_n = k) - \frac{\mu^k}{k!} e^{-\mu} \right| \leq \sum_{i=1}^n p_i. \]

Coupling technique: in order to prove something about the (marginal) distributions of r.v.'s \(X \) and \(Y \) construct r.v.'s \(X', Y' \) s.t.

(i) \(X' \) has the same (marginal) distribution as \(X \)

(ii) \(Y' \) has the same (marginal) distribution as \(Y \)

(iii) some information is available about the joint distribution of \((X', Y') \).

Proof.
Proof of thm 5.3

Let \(\{U_i\} \) be i.i.d. r.v's, \(U_i \sim \text{Unif}[0, 1] \).

Define

\[
\varepsilon_i' =
\]

and

\[
X_i' =
\]
Proof of thm 5.3

\[1 - \pi \leq e^{-\pi} \]