1. (25 points) Consider a Markov chain whose transition probability matrix is given by

\[
P = \begin{bmatrix}
0 & 1 & 2 & 3 & 4 \\
0 & 0.2 & 0.4 & 0.2 & 0.1 & \alpha \\
1 & 0.2 & 0.3 & 0.3 & 0 & 0.2 \\
2 & 0 & 1 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 1 & 0 \\
4 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

(a) (3 points) Determine the value of \(\alpha \).

Solution. Each row of a transition probability matrix must be equal to 1, thus

\[
\alpha = 1 - (0.2 + 0.4 + 0.2 + 0.1) = 0.1.
\]

(b) (22 points) Starting in state 0, determine the probability that the Markov chain ends in state 3.

Solution. States 3 and 4 are absorbing. Denote by \(T \) the absorption time \(T = \min\{n : X_n \in \{3, 4\}\} \) and denote by \(u_i \) the probability of getting absorbed by state 3 starting from state \(i, i \in \{0, 1, 2\} \), i.e.,

\[
u_i = P(X_T = 3 \mid X_0 = i).
\]

Applying the first step analysis leads to the following system of equations

\[
\begin{align*}
u_0 &= 0.2u_0 + 0.4u_1 + 0.2u_2 + 0.1, \\
u_1 &= 0.2u_0 + 0.3u_1 + 0.3u_2, \\
u_2 &= u_1.
\end{align*}
\]

Plugging (6) into (5) gives

\[
u_1 = 0.2u_0 + 0.3u_1 + 0.3u_1 \implies u_1 = 0.5u_0.
\]

Plugging (6) and (7) into (4) gives

\[
u_0 = 0.2u_0 + 0.2u_0 + 0.1u_0 + 0.1 \implies u_0 = 0.2.
\]

Thus, \(P(X_T = 3 \mid X_0 = 0) = 0.2 \).
2. (25 points) The number of offspring in a population has a shifted Geometric distribution with parameter $p \in (0, 1)$, i.e., if ξ denotes the number of offspring of a certain individual, then

$$P(\xi = k) = p(1 - p)^k$$

for $k \in \{0, 1, 2, 3, \ldots\}$.

(a) (10 points) Denote by u_n the probability that the population will go extinct on step n or earlier. Express u_n as a function of u_{n-1} (simplify all infinite sums).

Solution. Let $(X_n)_{n \geq 0}$ be the Markov process of the population size starting from $X_0 = 1$. Denote the probability of getting extinct before time n by u_n

$$u_n = P(X_n = 0).$$

Then

$$u_n = \sum_{k=0}^{\infty} P(\xi = k)(u_{n-1})^k$$

$$= \sum_{k=0}^{\infty} p(1 - p)^k(u_{n-1})^k$$

$$= p \sum_{k=0}^{\infty} ((1 - p)u_{n-1})^k$$

$$= p \frac{1}{1 - (1 - p)u_{n-1}},$$

where at the last step we used that $|(1 - p)u_{n-1}| < 1$ for any $p \in (0, 1)$ and any $n \geq 1$.

(b) (5 points) Denote the extinction probability by $u := \lim_{n \to \infty} u_n$. What quadratic equation must be satisfied by u? (Use the result of part (a)).

Solution. From part (a) we have that

$$u_n = p \frac{1}{1 - (1 - p)u_{n-1}}.$$

Taking the limit $n \to \infty$ in (15) gives

$$u = p \frac{1}{1 - (1 - p)u} \Rightarrow u(1 - (1 - p)u) = p.$$

Thus u satisfies

$$(1 - p)u^2 - u + p = 0.$$
(c) (10 points) By solving the equation from (b), compute the extinction probability \(u \) for \(p \in [1/2, 1) \).

Solution. Denote the solutions to the equation (17) by \(u^{(1)} \) and \(u^{(2)} \). It is clear that one of the solutions to (17) is

\[
u^{(1)} = 1.
\]

(18)

Then

\[
u^{(2)} = \frac{p}{1 - p}.
\]

(19)

If \(p \in [1/2, 1) \), then \(p \geq 1 - p \), so \(\frac{p}{1 - p} \geq 1 \). Since \(u \leq 1 \), we conclude that \(u = 1 \) for \(p \in [1/2, 1) \).

This means that if \(p \in [1/2, 1) \), then the population will get extinct in the long run with probability 1 (almost surely).
3. (25 points) Every day a particular customer buys one yogurt and consumes it. The customer chooses between three brands (denote them 0, 1 and 2), paying $1 + j$ dollars for brand j, $j \in \{0, 1, 2\}$. The customer switches brands depending on what brand of yogurt he consumed the day before according to a Markov chain with the following transition probability matrix

$$P = \begin{bmatrix}
0 & 0 & 0 \\
0.6 & 0.4 & 0 \\
0.2 & 0.6 & 0.2
\end{bmatrix} \quad (20)$$

(a) (15 points) What fraction of time is the customer consuming the cheapest brand 0?

Solution. Transition probability matrix P is regular: $(P^2)_{ij} > 0$ for any $i, j \in \{0, 1, 2\}$. By the limit theorem for Markov chains with regular transition probability matrix, the limiting distribution is given as a strictly positive solution to the following system of equations

$$\pi_0 = 0.2\pi_1 + 0.4\pi_2, \quad (21)$$
$$\pi_1 = 0.6\pi_0 + 0.6\pi_1 + 0.6\pi_2, \quad (22)$$
$$\pi_2 = 0.4\pi_0 + 0.2\pi_1, \quad (23)$$
$$1 = \pi_0 + \pi_1 + \pi_2. \quad (24)$$

From (22) and (24) we have that

$$\pi_1 = 0.6. \quad (25)$$

By subtracting (21) from (23) we get that

$$\pi_0 = \pi_2. \quad (26)$$

Plugging (25) and (26) into (24) implies

$$\pi_0 = \pi_2 = 0.2. \quad (27)$$

In the long run the limiting distribution gives the fraction of time spent in particular state. Therefore, in the long run 20% of the time the customer consumes the brand 0.

(b) (10 points) In the long run, how much money does the customer spend daily on yogurts?

Solution. From part (a) we have that in the long run 20% of the time the customer consumes yogurt 0, 60% of the time yogurt 1 and 20% of the time yogurt 2. Thus of average every day the customer spends

$$0.2 \cdot 1 + 0.6 \cdot 2 + 0.2 \cdot 3 = 2 \quad (28)$$

dollars on yogurts.
4. (25 points) Let \(Y \) be a random variable taking values in the set of all integer numbers \(\{0, \pm 1, \pm 2, \pm 3, \ldots \} \) with probability mass function \(P(Y = k) = \alpha_k > 0 \) for \(k \in \{0, \pm 1, \pm 2, \pm 3, \ldots \} \). Consider a Markov chain \((X_n)_{n \geq 0} \) on the set \(\{0, \pm 1, \pm 2, \pm 3, \ldots \} \) with stationary one-step transition probability matrix

\[
P = \begin{bmatrix}
\cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & \cdots \\
\cdots & \ddots \\
-3 & \cdots & 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\
-2 & \cdots & 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\
-1 & \cdots & 0 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & \cdots & \alpha_{-3} & \alpha_{-2} & \alpha_{-1} & \alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 & \cdots \\
1 & \cdots & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\
2 & \cdots & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots \\
3 & \cdots & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots \\
4 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\
\cdots & \ddots
\end{bmatrix}
\] (29)

You may assume without proof that \((X_n)_{n \geq 0} \) is irreducible and aperiodic.

(a) (10 points) Draw a graph (diagram) representing the dynamics of \((X_n)_{n \geq 0} \) on the set \(\{-2, -1, 0, 1, 2\} \). Show that \((X_n)_{n \geq 0} \) is always recurrent. (Hint. Compute \(f_{00} \). Note that you can return to 0 in \(k \) steps either from the right or from the left.)

Solution. The diagram restricted to the states \(\{-2, -1, 0, 1, 2\} \) has the following form

Markov chain \((X_n)_{n \geq 0} \) is irreducible, so in order to prove that \((X_n)_{n \geq 0} \) is recurrent it is enough to show that one of the states is recurrent. Consider state 0. The \(k \)-step first return probability for state 0 is given by

\[
f_{00}^{(k)} = \begin{cases}
\alpha_0, & k = 1 \\
\alpha_{k-1} + \alpha_{-(k+1)}, & k \geq 2.
\end{cases}
\] (30)

Now

\[
f_{00} = \sum_{k=1}^{\infty} f_{00}^{(k)} = \alpha_0 + (\alpha_1 + \alpha_{-1}) + \alpha_2 + \alpha_{-2} + \cdots = \sum_{\ell=-\infty}^{\infty} \alpha_\ell = 1
\] (31)

since \(\alpha_\ell, \ell \in \{0, \pm 1, \pm 2, \ldots\} \), is the distribution (probability mass function) of the random variable \(Y \). Since \(f_{00} = 1 \), we conclude that state 0 (and all the other states) are recurrent.

(b) (10 points) Show that \((X_n)_{n \geq 0} \) is positive recurrent if and only if \(E(|Y|) < \infty \). (Recall that \(E(|Y|) = 1(\alpha_1 + \alpha_{-1}) + 2(\alpha_2 + \alpha_{-2}) + 3(\alpha_3 + \alpha_{-3}) + \cdots \))

Solution. The criterion for positive recurrence is that the mean first return time is finite

\[
m_0 = \sum_{k=1}^{\infty} k f_{00}^{(k)} < \infty.
\] (32)
Compute m_0:

$$\sum_{k=1}^{\infty} k f_{00}^{(k)} = \alpha_0 + 2(\alpha_1 + \alpha_{-1}) + 3(\alpha_2 + \alpha_{-2}) + 4(\alpha_3 + \alpha_{-3}) + \cdots$$ (33)

$$= \alpha_0 + (\alpha_1 + \alpha_{-1}) + (\alpha_2 + \alpha_{-2}) + (\alpha_3 + \alpha_{-3}) + \cdots$$ (34)

$$+ 1(\alpha_1 + \alpha_{-1}) + 2(\alpha_2 + \alpha_{-2}) + 3(\alpha_3 + \alpha_{-3}) + \cdots$$ (35)

$$= 1 + E(|Y|).$$ (36)

We see that m_0 is finite if and only if $E(|Y|) < \infty$.

(c) (5 points) Assume that $E(|Y|) < \infty$. By computing the mean first return time, determine the limit

$$\pi_0 = \lim_{n \to \infty} P_{00}^{(n)}.$$ What is the relation between π_0 and $E(|Y|)$?

Solution. Since $E(|Y|) < \infty$, we conclude from part (b) that the Markov chain $(X_n)_{n \geq 0}$ is positive recurrent. By thy limit theorem for positive recurrent aperiodic Markov chains, there exists the limiting distribution $\pi = (\pi_i)_{i=\infty}^{\infty}$ and

$$\lim_{n \to \infty} P_{ii}^{(n)} = \pi_i = \frac{1}{m_i} > 0.$$ (37)

In particular, for the state 0

$$\lim_{n \to \infty} P_{00}^{(n)} = \pi_0 = \frac{1}{m_0} = \frac{1}{1 + E(|Y|)}.$$ (38)