Problem 1 Matt has a biased coin that is more likely to come up heads than tails. He flips this coin \(n \) times and counts the number of tails. Show that this number is more likely to be even than it is to be odd.

Solution: Let \(p > 1/2 \) be the probability that a single flip comes up heads. Let \(a_n \) be the probability that we have an even number of tails after \(n \) flips. Clearly \(a_0 = 1 \). For \(n > 1 \), we have an even number of tails if and only if we either had an even number after \(n - 1 \) flips and got a heads on the \(n^{th} \) flip, or had an odd number after \(n - 1 \) flips and got a tails. Thus,

\[
a_n = pa_{n-1} + (1 - p)(1 - a_{n-1}) = (1 - p) + (2p - 1)a_{n-1}.
\]

From here it is easy to see by induction on \(n \) that \(a_n = 1/2 + (2p - 1)^n/2 > 1/2 \).
Problem 2 Let $n \geq 2$ be a positive integer and X be a set containing n^2 consecutive numbers. Let A be a subset of X with n elements. Show that $X \setminus A$ contains at least one arithmetic progression with n elements.

Solution: Arrange the numbers in an $n \times n$ table in increasing order in each row and each column. If A "misses" a row or a column, we have an arithmetic progression; else, if A has exactly one element in each row/column, index with i_1 the column where the element of A is in row 1, with i_2 the column where the element of A is in row 2, etc. If any $i_{k+1} \geq i_k$, we have an arithmetic progression between the rows k and $k + 1$. Else the only way to do it is by taking the anti-diagonal; in which case, the elements in the first upper-anti-diagonal (positions $(1, (n - 1)), (2, (n - 2)), \ldots, ((n - 1), 1))$ and $((n - 1), n)$ give an arithmetic progression.
Problem 3 Let \(n > 0 \) be an integer. It is known that the difference \(d \) of two divisors of \(55^n \) is a power of 2. Show that \(d = 4 \).

Solution: Let \(1 \leq d_1 < d_2 \) be the two divisors whose difference is \(d \). Write

\[
d = d_2 - d_1 = 2^c.
\]

The divisors \(d_1 \) and \(d_2 \) of \(55^{50} \) can only contain the primes 5 and 11 in their factorization. Furthermore, \(d_1 \) and \(d_2 \) cannot be both divisible by 5 at the same time and they cannot be both divisible by 11 at the same time since their difference \(d = 2^c \) is divisible neither by 5 nor by 11. Therefore,

\[
d_1 = 5^a, d_2 = 11^b \text{ or } d_1 = 11^a, d_2 = 5^b.
\]

We analyze the equations

\[
5^a - 11^b = 2^c \text{ and } 11^a - 5^b = 2^c.
\]

We show \(c = 2 \).

(i) Assume \(11^a - 5^b = 2^c \) holds.

- Reducing the equation mod 5 we obtain

\[
2^c \equiv 1 \mod 5.
\]

Inspecting \(c \mod 4 \), we obtain \(c \equiv 0 \mod 4 \), so in particular

\[
c \text{ is even.}
\]

- Noting that \(11^a - 5^b \) is even we obtain that \(c > 0 \) so \(c \geq 2 \).
- Reducing the equation mod 4 we obtain

\[
(-1)^a - 1 \equiv 0 \mod 4 \implies a \text{ even.}
\]

- Reducing the equation mod 3 we obtain

\[
(-1)^a - (-1)^b \equiv (-1)^c \mod 3.
\]

This cannot hold since \(a \) is even and \(c \) is even.

(ii) Assume \(5^a - 11^b = 2^c \) holds.

- Reducing mod 3 we find

\[
(-1)^a - (-1)^b \equiv (-1)^c \mod 3
\]

which shows \(a, b \) cannot have the same parity.
- We reduce mod 8 to show that $c = 2$ is the only possibility.

If a is even and b is odd, write

$$ a = 2k; \quad b = 2\ell + 1, $$

and note that

$$ 5^a - 11^b = 25^k - 11 \cdot 121^\ell \equiv 1 - 11 \cdot 1 \mod 8 \equiv 6 \mod 8 \implies 2^c \equiv 6 \mod 8. $$

By inspection, this is impossible for $c \leq 2$. For $c \geq 3$ we obtain a contradiction since $2^c \equiv 0 \mod 8$.

If a is odd and b is even, write

$$ a = 2k + 1, \quad b = 2\ell, $$

and note that

$$ 5^a - 11^b = 5 \cdot 25^k - 121^\ell \equiv 5 \cdot 1 - 1 \equiv 4 \mod 8 \implies 2^c \equiv 4 \mod 8. $$

For $c \geq 3$ we obtain a contradiction since $2^c \equiv 0 \mod 8$. Thus $c \leq 2$. By inspection, $c = 2$ is the only possibility.

We showed $c = 2$ and therefore

$$ d = 2^c = 4. $$

The difference $d = 4$ can be achieved for instance for the pairs $(1, 5)$ or $(121, 125)$.
Problem 4 Let C be a set of n points on a circle in the plane. Prove that amongst any set of $n + 1$ line segments between points in C, there exist two geometrically disjoint line segments, but that n segments are not sufficient.

Solution: We prove the latter part first. In particular, we show that there is some set of n lines so that any pair intersect. We can do this for example by picking one of our points p and drawing the $n - 1$ segments from p to each other point and the one segment between p’s nearest neighbors on either side. The segments through p all intersect at p, and it is easy to see that the remaining segment intersects each of the others.

To show the other direction, for each of the n points p, select the segment (p, q) from our list where q is the closest point counting clockwise from p for which there is a segment. Since there are $n + 1$ segments and only n points, some segment (p, q) must not have been selected. Since this was not the segment selected from p, there must be another segment q' so that we have a segment (p, q') in our set and p, q', q appear in that order going clockwise. Similarly, there must be a segment (p', q) so that q, p', p appear in that order going clockwise. Therefore, (p, q') and (p', q) are two segments in our set that do not intersect.