Problems are from Brown and Churchill, "Complex Variables and Applications,"  8th ed. unless otherwise indicated. If I write S2, p. 4-5:  3, 4, 10 : it means do problems 3, 4 and 10 at the end of Section 2 on pages 4-5 of the book. (Subject to Change!) Homework #0: (Due Tuesday, September 28  in Section.) S2, p. 5:  3, 4, 10 S3, p.8:  1 S4, p. 12:  3, 4. These problems on basic properties of complex numbers  will not be collected but they will be covered in Section. _________________________________________ Homework #1: (Due Tuesday, October 5 in Section.) S5, p. 14-15: 2, 8, 14 S8, p. 22: 1, 4, 5cd, 6, 9, 10 S10, p. 29-31: 1, 2, 6, 7 S38, p.121: 2, 3, 4 _________________________________________ Homework #2:   (Due Tuesday, October 12  in Section.) S11, p. 31: 1 -- 3 S12, p. 37: 1 -- 3 S14, p. 44: 2, 3, 7 S18, p. 55-56:  5, 10, 11 S 20, p. 62-63: 1, 3, 4,  9 (Do not hand in #9.) _________________________________________ Homework #3:  (Due Tuesday, October 19 in Section.) Problems 6.1 and 6.2 in the following file: Taylor Exercises.pdf. S23, p. 71-72: 1, 2, 6 S25, p. 77-78: 1, 2, 4 (#7 will be done In class.) S26, p. 81-82: 1ab, 2, 4, 7  (moved to Homework 4.) _________________________________________ TEST #1:  Wednesday October 20 in class _________________________________________ Homework #4:  (Due Tuesday, October 26 in Section.) S26, p. 81-82: 1ab, 2, 4, 7 S29, p. 92-93: 1,3,5,6,13 S31, p. 97-98: 2, 3, 5, 7 (Should say find z so the i\pi/2 is in log z.). S32, p. 100: 1, 2, 5. S33, p. 104: 1, 2, 6, 7 S35, p. 108: 2, 10, 15, 16.  (Moved to text homework assignment.) ______________________________________________________ Homework #5: (Due Tuesday, November 2 in Section.) S35, p. 108:   S34 on p. 108-109:  2, 10, 15, 16. S36, p. 114: 1, 2.. S38, p. 121: 1 and 5  (do not turn in) S39, p. 125-126: 1, 3 S42, p. 135: 3, 6, 7, 8, 11a S43, p. 140-141:  1, 2, 4, 5. ______________________________________________________ Homework #6: (Due Tuesday, November 9 in Section.) S45, p. 149: 2, 4, 5. S 49, p. 160-163: 1, 2, 7 S52, p. 170-172: 1, 2,  5, 7 S54, p. 178-180: 1, 3, 5. ______________________________________________________ TEST #2:  Wednesday November 10 in class ______________________________________________________ Homework #7: (Due Tuesday, November 16 in Section.) S52, p. 170-172: 1, 2,  5, 7  (Hint: for 2a use an extension of the Cauchy Integral formula.) S54, p. 178-180: 1, 3, 5. S56, p. 188: 2, 4, 6 S 59, p. 195: 1-3, 7, 12, 13. S66, p. 219: 1-3. ______________________________________________________ Homework #8: (Due Tuesday, November 23 in Section.) S66, p. 219: 1-3. S67, p. 225. 1, 3, 4. S79,  p. 267. 4, 6,  8,    S 81, p. 275. 4, 6, 8   (Please use the Corollary (above) of Jordan's lemma when solving these problems.)   Also compute the following integral   where a>0 and b>0 and  a  is not equal to  b.  (Hint: Use the Residue theorem method from class where we computed the integrals of (1+x2)-1 and   (1+x4)-1.) ______________________________________________________ Homework #9: (Due Tuesday, November 30 in Section.) S71, p. 239: 1. S74, p. 248. 3, 5. S79,  p. 267. 2. S 81, p. 275. 3. S85, p. 290:  1, 3.  ______________________________________________________ Final Exam:  Thursday December 9, 11:30a - 2:29p.