Department of Mathematics,
University of California San Diego
****************************
Math 243: Functional Analysis Seminar
Patrick DeBonis
Purdue University
The W* and C*-algebras of Similarity Structure Groups
Abstract:
Countable Similarity Structure (CSS) groups are a class of generalized Thompson groups. I will introduce CSS$^*$ groups, a subclass, that we prove to be non-acylindrically hyperbolic, that includes the Higman-Thompson groups $V_{d,r}$, the countable R\"over-Nekrashevych groups $V_d(G)$, and the topological full groups of subshifts of finite type of Matui. I will discuss how all CSS$^*$ groups give rise to prime group von Neumann algebras, which greatly expands the class of groups satisfying a previous deformation/rigidity result. I will then discuss how CSS$^*$ groups are either C$^*$-simple with a simple commutator subgroup, or lack both properties. This extends C$^*$-simplicity results of Le Boudec and Matte Bon and recovers the simple commutator subgroup results of Bleak, Elliott, and Hyde. This is joint work with Eli Bashwinger.
January 13, 2026
11:00 PM
APM 6402
Research Areas
Functional Analysis / Operator Theory****************************

